

AMERICAN ENVIRONMENTAL ASSOCIATES, INC.

UNDERGROUND STORAGE TANK FACILITY SITE CHARACTERIZATION / REVISED REMEDIAL ACTION PLAN

LEO'S 3 CAR WASH 2938 WEST 26TH STREET ERIE, PENNSYLVANIA 16506

FACILITY ID# 25-90615

CITY OF ERIE ERIE COUNTY, PENNSYLVANIA

PREPARED: May 2014

1135 Butler Avenue • New Castle, PA 16101 Phone: (724) 652-1004 • Fax: (724) 652-3814

LEO'S CAR WASH 2938 WEST 26TH STREET ERIE, PENNSYLVANIA

FACILITY ID# 25-90615

SITE CHARATERIZATION REPORT

MILLCREEK TOWNSHIP ERIE COUNTY, PENNSYLVANIA

PREPARED FOR:

LEO'S CAR WASH 2938 WEST 26TH STREET ERIE, PENNSYLVANIA

PREPARED BY:

AMERICAN ENVIRONMENTAL ASSOCIATES, INC. 1135 BUTLER AVENUE NEW CASTLE, PA 16101

TABLE OF CONTENTS

Section		<u>Page</u>
Α.	Introduction	1
	A.1 Site History	1 & 2
	A.2 Site Setting	3
_	A.3 Properties of Substance Released	3
	A.4 Additional Interim Remedial Action	3 thru 5
	A.5 Conceptual Site Model	5 thru 7
B. 1	Field Investigation	7 & 8
C.	Laboratory Analysis	8 & 9
D. 1	Remedial Action Options	9 thru 12
E. (Conclusion	12
<u>Figures</u>		
Figure 1	: Topographic Location Map	Figure 1
Figure 2	: Satellite Image of Site	Figure 2
Tables		
Summar	y of Analytical Results – Soil Samples	Table 1
Summar	y of Analytical Results – Groundwater Samples	Table 2
Append	<u>lices</u>	
Appendi		
Appendi		
Appendi	<u>-</u>	
Appendi	<u> </u>	
Appendi	<u>-</u>	
Appendi	x F: Remedial Action Plan	

A. INTRODUCTION

American Environmental Associates, Inc. (AEA) has been contracted by Leo's Car Wash to provide environmental services pursuant to Underground Storage Tank (UST) corrective action and Environmental Remediation Standards Act (ACT 2) regulations at the subject site.

A.1 Site History

Corrective actions were initiated in response to a release that was discovered during construction of a new canopy on January 23, 2002. The release was eventually found to be associated with a loose swing joint in the regular unleaded line for the middle dispenser. A minor amount of contaminated soil was removed; approximately five tons, and then the new canopy footers were poured. The swing joint lead was repaired at this time. Clean soil conditions were never obtained and over excavation was not performed at this time due to site restraints. A Notification of Reportable Release was confirmed on January 22, 2002 and submitted to the PADEP's Meadville Office on January 23, 2002.

An Initial Site Characterization report was prepared and dated November 27, 2002 documenting the installation of monitoring wells MW#1 through MW#6. These wells were installed to delineate subsurface impacts.

In October of 2002 monitoring wells MW#1 through MW#6 were installed to delineate subsurface impacts. Soils samples were collected on October 29, 2002 and October 30, 2002. Soil sample results showed exceedances of Benzene and of MTBE. Groundwater exhibited levels of benzene, toluene, ethylbenzene, naphthalene and MTBE that exceeded Statewide Health Standards.

An Interim Site Characterization Report was prepared and dated February 13, 2003 documenting the installation of Monitoring Wells MW #7, MW# 8, and MW #9.

These wells were installed to further delineate sub-surface contamination. Monitoring well soil samples were collected on January 17, 2003 for MW #7, MW# 8, and MW #9. The analytical results for soil were within the PADEP's Statewide Health Standards for Used Aquifers in Soil. Groundwater impacts were still present.

During April of 2003, AEA installed monitoring wells MW#10, MW# 11, and MW #12. Monitoring wells soil samples were collected on April 8, 2003 from MW#10, MW#11 and MW#12. The analytical results were within the PADEP's Statewide Health Standards for Used Aquifers in Soil. Groundwater analytical results indicated that monitoring wells MW#1, MW#2, MW#5, MW#6, MW#8, MW#9, MW#10 and MW#12 exceed Statewide Health Standard of Used Aquifers for one or more of the required parameters for unleaded gasoline.

In May of 2003, AEA submitted an overall Site Characterization Report for the facility. The report summarized site characterization activities including the drilling and installation of twelve groundwater monitoring wells and the collection of twelve soil samples and twelve groundwater samples.

In July of 2012, AEA submitted a revised RAP to PADEP for the installation of five additional groundwater recovery wells. In November of 2012, PADEP requested the installation of additional P.O.C. wells before they would approve the revised RAP. In November of 2012, AEA submitted a proposal to the PADEP for the additional P.O.C. wells they had requested. In May of 2013, PADEP approved the installation of additional P.O.C. wells. In July of 2013, P.O.C. wells MW#18, MW#19, and MW#20 were installed.

In November of 2013, the DEP directed the installation of one additional off-site monitoring well to be located downgradient of monitoring well MW#19. On March 27, 2014 monitoring well MW#21 was installed. Two vapor points were also installed on March 27, 2014 next to the homes located on two off-site properties; VP-1 was installed at the Dzikowski property and VP-2 was installed at the Parker property.

A.2 Site Setting

The site is located at 2938 West 26th Street in Erie, Pennsylvania, Millcreek Township, Erie County (see Figure 2: Satellite Image of Site). Reconnaissance of the surrounding area indicates that residential and commercial properties are connected to a municipal water supply.

A.3 Properties of Substance Released

The substance released is unleaded gasoline. The substance is a liquid. The amount released is unknown. There are several known toxins in gasoline, some of which are confirmed human carcinogens. Physical and toxicological properties of organic regulated substances (gasoline analytes) are included in Table 5 of the Pennsylvania Code Title 25, Chapter 250. Depending on the site, gasoline contamination may remain on site for years depending on the nature of the soil present, groundwater flow characteristics and the rate of natural attenuation of site contaminants.

A.4 Additional Interim Remedial actions

A Remedial Action Plan was submitted to the PADEP on July 18, 2003. This plan recommended that American Environmental Associates, Inc. install a system to remediate the dissolved gasoline contaminates in the groundwater at the site. In a letter dated July 28, 2003, the DEP approved the Plan. The system is a dual phase high vacuum extraction (DPE). Monitoring wells MW#1, MW#3, MW#4, MW#5 and MW#6 will be utilized as recovery wells.

Site preparation included the installation of below grade recovery piping (2-inch diameter, schedule 40 PVC) and modification of the recovery well heads. Trenching was done for electric, vapor extraction, groundwater recovery piping and a discharge line to the groundwater discharge location.

The remediation system consists of a 7.5 Hp oil sealed liquid ring pump (LRP) to recover liquid and vapor phase fluids. The pump consists of a shrouded rotor which rotates freely within an eccentric casing. There is no metal to metal contact between the rotor and casing. Centrifugal force acting on liquids within the pump causes the liquids to form a ring inside the casing. A fixed port cylinder, concentric with the rotor, directs the gas into the suction ports. Gas is trapped between the blades by the liquid pistons formed by centrifugal force as the liquid recedes from the port cylinder. It is trapped at the point of maximum eccentricity and is then compressed by the liquid ring as it is forced radially inward toward the central port cylinder. After each revolution, the compressed gas and accompanying liquid are discharged. During the pumping cycle, the gas is in intimate contact with the sealing liquid and compression is nearly isothermal. When handling saturated vapor-gas mixtures, the liquid ring acts as a condenser, greatly increasing the effective capacity of the pump. Seal liquid will be oil supplied via a reservoir mounted on the LRP skid.

The recovered fluids are pumped through a vapor/liquid knockout tank. Liquids are then directed, via transfer pump, through liquid phase granular activated carbon absorbers (GACA) to municipal sewage. Vapors are drawn from the knockout tank through the LRP and vapor phase GACA's and discharged to the atmosphere. Treatment of the vapors will be conducted through two carbon units.

The subject site was put into operation in the first quarter of 2005 in order to obtain results to prepare a pay for performance proposal for the Underground Storage Tank Insurance Fund. The contract has since been executed and the system was put into operation permanently in January 4, 2006.

The system operates under the City of Erie Wastewater Groundwater Remediation Permit No. GRP 09-01. Quarterly reports are submitted to the City of Erie documenting analytical results and approximate volume of discharge. The system was operational

throughout the first quarter of 2014. The treatment system pumped approximately 22,097 gallons of water in the first quarter of 2014 and approximately 4,242,057 gallons of water since the system was put into operation (January 4, 2006).

Static water levels were obtained for MW#2, MW#7, MW#8, MW#9, MW#10, MW#11, and MW#12 on March 24, 2014. Groundwater samples were taken from monitoring wells monitoring wells MW#2, MW#7, MW#8, MW#9, MW#10, MW#11 and MW#12 on March 24, 2014. All samples were analyzed for unleaded gasoline parameters including; Benzene, Toluene, Ethylbenzene, Xylene, Cumene, Naphthalene, and MTBE (EPA 5030B/8260B). No free product was encountered during the sampling event.

A.5 Conceptual Site Model

A.5.1 Source Identification

Corrective actions were initiated in response to a release that was discovered during construction of a new canopy on January 23, 2002. The release was eventually found to be associated with a loose swing joint in the regular unleaded line for the middle dispenser. A Notification of Reportable Release was confirmed on January 22, 2002 and submitted to the PADEP's Meadville Office on January 23, 2002. Site characterization activities were initiated.

A.5.2 Migration Pathways

Potential pathways for the contamination to route through include sanitary sewer, storm water sewer lines, water, and natural gas lines.

A.5.3 Exposure Pathways and Potential Receptors

Types of potential receptors include human and ecological receptors. Potential human receptors include current and future commercial workers, future construction workers, future adult/child on-site residents and current and future off-site residents.

There are no identified ecological receptors associated with this site. No further ecological action is required, because the only constituents detected on site were Light Petroleum Products [Section 250.311(b)(1)] and the site is less than two acres in size (Section 250.311(b)(2)].

A.5.4 Possible Pathways

Current and future commercial workers: Groundwater ingestion and skin contact are unlikely because the buildings are supplied by public water.

Future construction worker: Skin contact and volatilization to outside air may be considered complete exposure pathway

A.5.5 Potential Migration Pathways

Several underground utilities exist at or near the subject site.

A.5.6 Water Well Inventory

The subject site is supplied by public water. All adjacent properties are also serviced by public water supplies.

A.5.7 Conclusions

Based on the presented pathway information, it is possible for a construction worker's skin to come in contact with contaminated media and complete an exposure pathway. Currently, no plans exist to further develop this site.

B. FIELD INVESTIGATIONS

An Initial Site Characterization report was prepared and dated November 27, 2002 documenting the installation of monitoring wells MW#1 through MW#6. These wells were installed to delineate subsurface impacts.

In October of 2002 monitoring wells MW#1 through MW#6 were installed to delineate subsurface impacts. Soils samples were collected on October 29, 2002 and October 30, 2002. Soil sample results showed exceedances of Benzene and of MTBE. Groundwater exhibited levels of benzene, toluene, ethylbenzene, naphthalene and MTBE that exceeded Statewide Health Standards.

An Interim Site Characterization Report was prepared and dated February 13, 2003 documenting the installation of Monitoring Wells MW #7, MW# 8, and MW #9. These wells were installed to further delineate sub-surface contamination. Monitoring well soil samples were collected on January 17, 2003 for MW #7, MW# 8, and MW #9. The analytical results for soil were within the PADEP's Statewide Health Standards for Used Aquifers in Soil. Groundwater impacts were still present.

During April of 2003, AEA installed monitoring wells MW#10, MW# 11, and MW #12. Monitoring wells soil samples were collected on April 8, 2003 from MW#10, MW#11 and MW#12. The analytical results were within the PADEP's Statewide Health Standards for Used Aquifers in Soil. Groundwater analytical results indicated that

monitoring wells MW#1, MW#2, MW#5, MW#6, MW#8, MW#9, MW#10 and MW#12 exceed Statewide Health Standard of Used Aquifers for one or more of the required parameters for unleaded gasoline.

In May of 2003, AEA submitted an overall Site Characterization Report for the facility. The report summarized site characterization activities including the drilling and installation of twelve groundwater monitoring wells and the collection of twelve soil samples and twelve groundwater samples.

In July of 2012, AEA submitted a revised RAP to PADEP for the installation of five additional groundwater recovery wells. In November of 2012, PADEP requested the installation of additional P.O.C. wells before they would approve the revised RAP. In November of 2012, AEA submitted a proposal to the PADEP for the additional P.O.C. wells they had requested. In May of 2013, PADEP approved the installation of additional P.O.C. wells. In July of 2013, P.O.C. wells MW#18, MW#19, and MW#20 were installed.

In November of 2013, the DEP directed the installation of one additional off-site monitoring well to be located downgradient of monitoring well MW#19. On March 27, 2014 monitoring well MW#21 was installed. Two vapor points were also installed on March 27, 2014 next to the homes located on two off-site properties; VP-1 was installed at the Dzikowski property and VP-2 was installed at the Parker property

C. LABORATORY ANALYSIS

Specifications for sample containers and sample preservation, which were employed, conformed to those outlined in EPA 5035 and EPA 5030B methodologies. Samples were packed in insulated shipping containers, which included appropriate samples bottles and preservatives for each set of analysis, as well as ice packs to maintain sample refrigeration during transport to the laboratory.

The soil samples obtained from the test borings were submitted to the laboratory for analysis of Benzene, Ethyl Benzene, Toluene, Xylenes, Cumene, Naphthalene, and MTBE. Table 1: Summary of Analytical Results: summarizes the soil sampling results.

Groundwater samples were submitted to the laboratory for analysis of Benzene, Ethyl Benzene, Toluene, Xylenes, Cumene, Naphthalene, and MTBE. **Table 2: Summary of Analytical Results:** summarizes the groundwater sampling results.

D. REMEDIAL ACTION OPTIONS

Several recovery/treatment processes are typically used throughout the petroleum remediation industry to remove dissolved and absorbed phase volatile hydrocarbons from the subsurface. The choices usually chosen are air sparging, excavation, pump and treat and soil vapor extraction (SVE).

D.1 Air Sparging

One remedial action alternative considered was air sparging in conjunction with SVE. The effectiveness of air sparging is sensitive to the type of lithology present in the saturated and unsaturated zones. The formation of gas pockets can cause significant lateral displacement of water, which can cause lateral migration of dissolved phase hydrocarbons. Due to the location of the hydrocarbon impacted area in relation to the subject site property boundary, this method was not considered the best remedial alternative.

D.2 Excavation

Excavation of impacted soils containing concentrations of hydrocarbons is primarily used as an interim remedial action. Excavation is usually restricted to shallow areas in the unsaturated zone. Excavation will not directly address dissolved phase hydrocarbons. Due to the presence of dissolved hydrocarbons and the site disturbance created by excavation, this method was not considered a practical remedial alternative.

D.3 Pump and Treat

Another remedial alternative is pump and treat. Pump and treat is useful when removing liquid and dissolved phases of hydrocarbons or to maintain hydraulic control, but when used as a stand-alone technology, will not remove the residual material contributing to the dissolved phase impacts.

D.4 Soil Vapor Extraction

Soil vapor extraction involves the volatilization of hydrocarbons present in the unsaturated zone. SVE, by the introduction of oxygen, would also promote biodegradation in both the saturated and unsaturated zones. SVE is a viable remedial option for the removal of hydrocarbons from the unsaturated and dewatered saturated zones.

D.5 High Vacuum Soil Vapor Extraction

High vacuum soil vapor extraction (SVE) involves the volatilizations of hydrocarbons present in groundwater. The HVE system typically volatilizes Volatile Organic Compounds (VOC) with less air than conventional systems, allowing a more concentrated stream of contaminants.

D.6 Natural Attenuation

Depending on amount and concentration of contaminants, this could also be an alternative if closely monitored and seeing a downward trend of contaminants.

Based upon evaluation of the data included with this report, a remedial action plan (RAP) involving installation of a dual phase high vacuum extraction (DPE) system was recommended. Monitoring wells MW#1, MW#3, MW#4, MW#5 and MW#6 will be

utilized as recovery wells. At this time it is proposed to implement 5 additional recovery wells, RW #13, RW #14, RW #15, RW #16 and RW #17.

Site preparation included the installation of below grade recovery piping (2-inch diameter, schedule 40 PVC) and modification of the recovery well heads. Trenching was required for electric, vapor extraction, groundwater recovery piping and a discharge line to the groundwater discharge location.

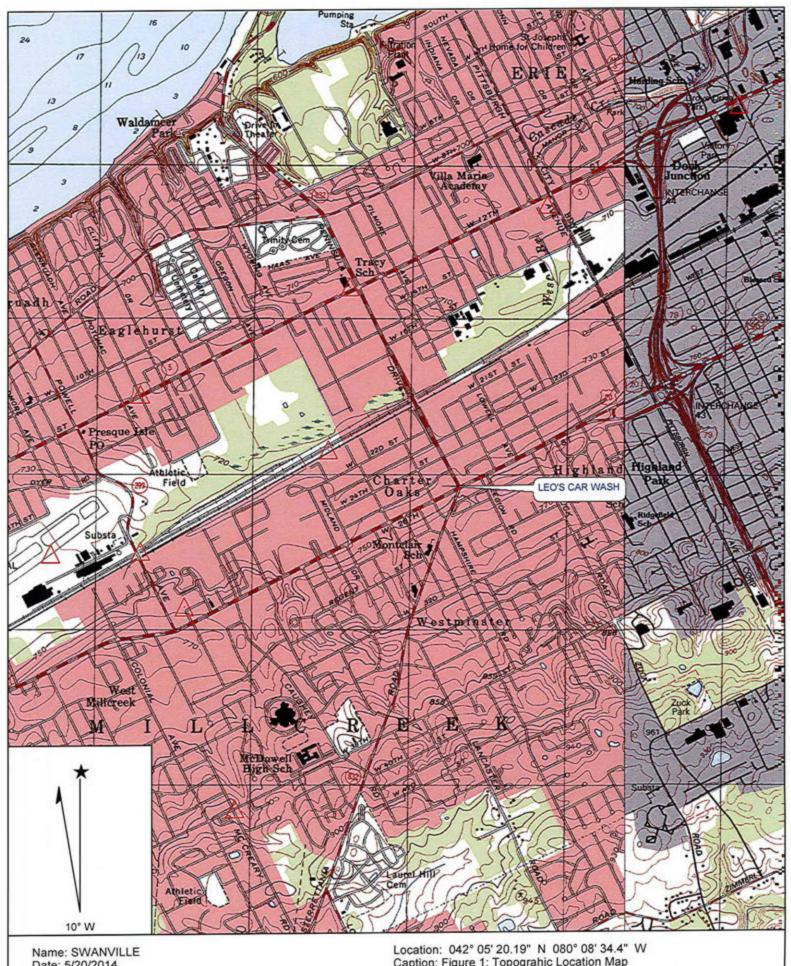
The remediation system consists of a 7.5 Hp oil sealed liquid ring pump (LRP) to recover liquid and vapor phase fluids. The pump consists of a shrouded rotor which rotates freely within an eccentric casing. There is no metal to metal contact between the rotor and casing. Centrifugal force acting on liquids within the pump causes the liquids to form a ring inside the casing. A fixed port cylinder, concentric with the rotor, directs the gas into the suction ports. Gas is trapped between the blades by the liquid pistons formed by centrifugal force as the liquid recedes from the port cylinder. It is trapped at the point of maximum eccentricity and is then compressed by the liquid ring as it is forced radially inward toward the central port cylinder. After each revolution, the compressed gas and accompanying liquid are discharged. During the pumping cycle, the gas is in intimate contact with the sealing liquid and compression is nearly isothermal. When handling saturated vapor-gas mixtures, the liquid ring acts as a condenser, greatly increasing the effective capacity of the pump. Seal liquid will be oil supplied via a reservoir mounted on the LRP skid.

The recovered fluids are pumped through a vapor/liquid knockout tank. Liquids would then be directed, via transfer pump, through liquid phase granular activated carbon absorbers (GACA) to municipal sewage. The manufacturer's carbon adsorbers specifications are attached. A Process and Instrumentation Flow Diagram is also attached as Figure 3.

Vapors are drawn from the knockout tank through the LRP and vapor phase GACA's and discharged to the atmosphere. Treatment of the vapors will be conducted through two

carbon units. The manufacturer's carbon adsorbers specifications are attached. A Request for Determination of Requirement for Plan Approval/Operating Permit (RFD) will be submitted to the PADEP Bureau of Air Quality.

E. CONCLUSION


In July of 2012, AEA submitted a revised RAP to PADEP for the installation of five additional groundwater recovery wells. In November of 2012, PADEP requested the installation of additional P.O.C. wells before they would approve the revised RAP. In November of 2012, AEA submitted a proposal to the PADEP for the additional P.O.C. wells they had requested. In May of 2013, PADEP approved the installation of additional P.O.C. wells. In July of 2013, P.O.C. wells MW#18, MW#19, and MW#20 were installed.

In November of 2013, the DEP directed the installation of one additional off-site monitoring well to be located downgradient of monitoring well MW#19. On March 27, 2014 monitoring well MW#21 was installed. Two vapor points were also installed on March 27, 2014 next to the homes located on two off-site properties; VP-1 was installed at the Dzikowski property and VP-2 was installed at the Parker property. (Analytical analyses are attached in this report).

Groundwater delineation has been completed at the subject site.

AEA is now proposing the installation of five additional recovery wells. RW #13, RW #14, RW #15, RW #16 and RW #17 as illustrated on the attached Field Investigation Map. This is in order to help expedite achievement of the proposed Statewide Health Standard.

FIGURE 1: TOPOGRAPHIC LOCATION MAP

Date: 5/20/2014 Scale: 1 inch equals 2000 feet

Caption: Figure 1: Topograhic Location Map

FIGURE 2: SATELLITE IMAGE OF SITE

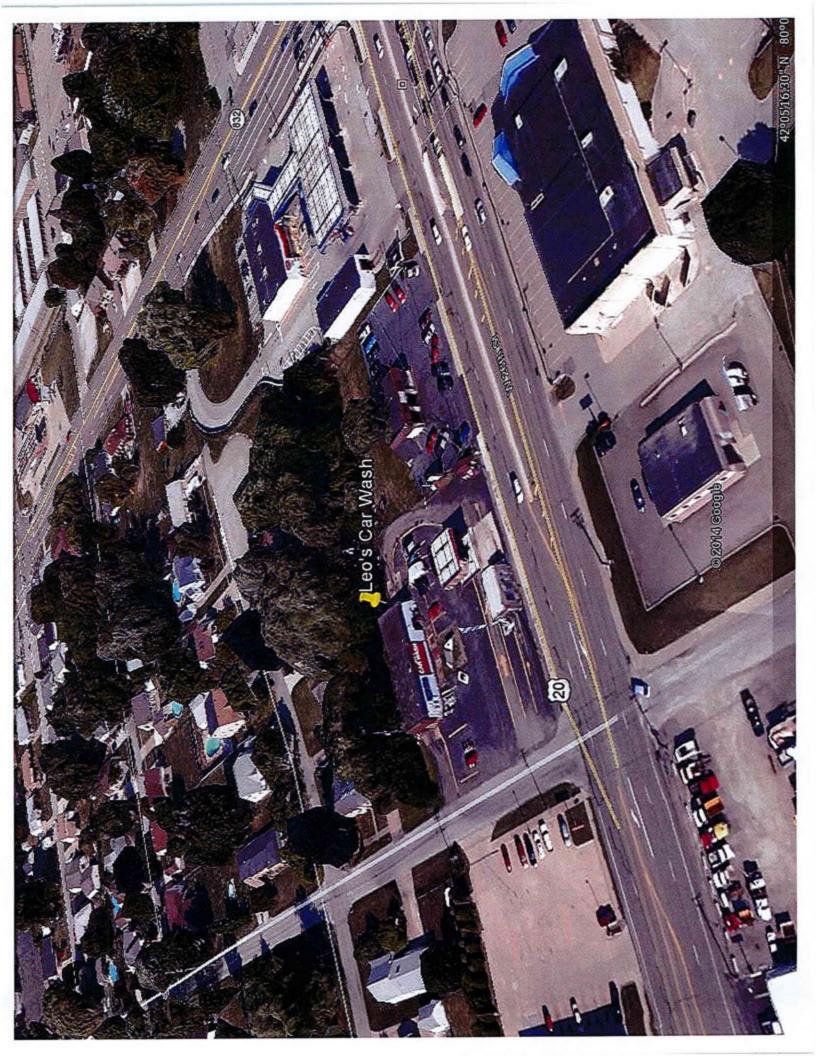


TABLE 1: SUMMARY OF ANALYTICAL RESULTS SOIL SAMPLES

Table 1. Summary of Analytical Results – Soil Samples
Leo's Car Wash
Erie, PA

Parameter	MW#1	MW#2	MW#3	MW#4	S#MW	9#MW	L#MW	8#MW	6#MW	SHS**
Benzene	<0.1	0.26	0.10	7.26	0.59	1.33	<0.1	<0.1	<0.1	0.5
Toluene	<0.2	<0.2	1.23	61.8	0.31	0.58	<0.2	<0.2	<0.2	100
Ethyl Benzene	06.0	3.39	3.45	17.6	0.38	14.9	<0.2	<0.2	<0.2	70
Xylenes	1.56	2.03	11.5	8.86	1.33	5.59	<0.2	<0.2	<0.2	1000
Cumene	<0.2	0.50	1.07	4.81	<0.2	0.55	<0.2	<0.2	<0.2	18
Naphthalene	0.29	0.82	1.71	3.42	<0.2	0.57	<0.2	<0.2	<0.2	10
MTBE	<0.2	<0.2	0.25	8.14	<0.2	<0.2	<0.2	<0.2	<0.2	2

Parameter	MW#10	MW#11	MW#12	SHS_{**}
Benzene	<0.1	<0.1	<0.1	0.5
Toluene	<0.2	<0.2	<0.2	100
Ethyl Benzene	<0.2	<0.2	<0.2	70
Xylenes	<0.2	<0.2	<0.2	1000
Cumene	<0.2	<0.2	<0.2	18
Naphthalene	<0.2	<0.2	<0.2	10
MTBE	<0.2	<0.2	<0.2	2

Note: All results are in mg/l or ppm.

Bolded numbers exceed allowable limits.

**SHS = Statewide Health Standard for Soil

1135 Butler Avenue . New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 11/05/02

Customer:

American Environmental

Generator:

Leo's Car Wash

Sample Name:

Test Boring MW#1 (8-10') Soil Sample

Sample Date:

10/29/02

Lab Sample #:

HW37583

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	<0.1	0.1
Toluene, mg/kg	<0.2	0.2
Ethyl Benzene, mg/kg	0.90	0.2
<pre>Xylenes, (Total, mg/kg</pre>	1.56	0.2
Cumene, mg/kg	<0.2	0.2
Naphthalene, mg/kg	0.29	0.2
MTBE, mg/kg	<0.2	0.2

1135 Butler Avenue • New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 11/05/02

Customer:

American Environmental

Generator:

Leo's #3 Car Wash

Sample Name:

Test Boring MW#2 (3-5') Soil Sample

LABORATORY RESULTS

Sample Date: Lab Sample #: 10/30/02 HW37584

EPA METHOD 5035/8260B

<u>Parameter</u>	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	0.26	0.1
Toluene, mg/kg	<0.2	0.2
Ethyl Benzene, mg/kg	3.39	0.2
Xylenes, (Total, mg/kg	2.03	0.2
Cumene, mg/kg	0.50	0.2
Naphthalene, mg/kg	0.82	0.2
MTBE, mg/kg	<0.2	0.2

1135 Butler Avenue • New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 11/05/02

Customer:

American Environmental

Generator:

Leo's #3 Car Wash

Sample Name:

Test Boring MW#3 (3-5') Soil Sample

Sample Date:

10/30/02

Lab Sample #: HW37585

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	0.10	0.1
Toluene, mg/kg	1.23	0.2
Ethyl Benzene, mg/kg	3.45	0.2
Xylenes, (Total, mg/kg	11.5	0.2
Cumene, mg/kg	1.07	0.2
Naphthalene, mg/kg	1.71	0.2
MTBE, mg/kg	0.25	0.2

Mark Swansiger

Lab Director

1135 Butler Avenue • New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 11/05/02

Customer:

American Environmental

Generator:

Leo's #3 Car Wash

Sample Name:

Test Boring MW#5 (3-5') Soil Sample

Sample Date:
Lab Sample #:

10/30/02

HW37587

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	0.59	0.1
Toluene, mg/kg	0.31	0.2
Ethyl Benzene, mg/kg	0.38	0.2
Xylenes, (Total, mg/kg	1.33	0.2
Cumene, mg/kg	<0.2	0.2
Naphthalene, mg/kg	<0.2	0.2
MTBE, mg/kg	<0.2	0.2

1135 Butler Avenue • New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 11/05/02

Customer:

American Environmental

Generator:

Leo's #3 Car Wash

Sample Name:

Test Boring MW#6 (8-10') Soil Sample

Sample Date:

10/30/02

Lab Sample #:

HW37588

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	1.33	0.1
Toluene, mg/kg	0.58	0.2
Ethyl Benzene, mg/kg	14.9	0.8
Xylenes, (Total, mg/kg	65.5	0.8
Cumene, mg/kg	0.55	0.2
Naphthalene, mg/kg	0.57	0.2
MTBE, mg/kg	<0.2	0.2

1135 Butler Avenue • New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 04/15/03

Customer:

American Environmental

Generator:

Leo's #3 Wash MW#10 (8'-10')

Sample Name: Sample Date:

04/08/03

Lab Sample #:

HW39736

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	<0.1	0.1
Toluene, mg/kg	<0.2	0.2
Ethyl Benzene, mg/kg	<0.2	0.2
Xylenes, (Total, mg/kg	<0.2	0.2
Cumene, mg/kg	<0.2	0.2
Naphthalene, mg/kg	<0.2	0.2
MTBE, mg/kg	<0.2	0.2

Mark Swanger

1135 Butler Avenue • New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 04/15/03

Customer:

American Environmental

Generator:

Leo's #3 Wash

Sample Name:

MW#11 (3'-5')

Sample Date:
Lab Sample #:

04/08/03 HW39737

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	<0.1	0.1
Toluene, mg/kg	<0.2	0.2
Ethyl Benzene, mg/kg	<0.2	0.2
Xylenes, (Total, mg/kg	<0.2	0.2
Cumene, mg/kg	<0.2	0.2
Naphthalene, mg/kg	<0.2	0.2
MTBE, mg/kg	<0.2	0.2

Mark Swarze

1135 Butler Avenue e New Castle, PA 16101

FAX (724) 652-3814

REPORT DATE: 04/15/03

Customer:

American Environmental

Generator:

Leo's #3 Wash

Sample Name:

MW#12 (8'-10') 04/08/03

Sample Date:
Lab Sample #:

HW39738

EPA METHOD 5035/8260B LABORATORY RESULTS

Parameter	Result as Received, (mg/kg)	Detection Limit, (mg/kg)
Benzene, mg/kg	<0.1	0.1
Toluene, mg/kg	<0.2	0.2
Ethyl Benzene, mg/kg	<0.2	0.2
<pre>Xylenes, (Total, mg/kg</pre>	<0.2	0.2
Cumene, mg/kg	<0.2	0.2
Naphthalene, mg/kg	<0.2	0.2
MTBE, mg/kg	<0.2	0.2

Mark Swanger

TABLE 2: SUMMARY OF ANALYTICAL RESULTS GROUNDWATER SAMPLES

Leo's Car Wash Static Water Level Data

ring	1st Qtr	2nd Qtr	3rd Qtr	Monitoring 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr 1st Qtr	1st Qtr	2nd Qtr	2nd Qtr 3rd Qtr	4th Qtr	1st Qtr	2nd Otr 3rd Otr 4th Otr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr 3rd Qtr 4th Qtr	3rd Otr	4th Otr
Well	2002	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008	2009	2009	2009	2009
MW#1	11.37	12.19	11.80	19.7	10,80	11.60	14.20	11.40	21.80	11.85	SW	SW	SW	SW	SW	SW
MW#2	10.29	13.99	12.90	11.40	1.90	11.82	13.00	11.35	11.60	11.82	12.25	11.60	12.25	12.22	12.38	13.20
MW#3	9.81	9.41	10.40	9.10	7.85	8.90	19.68	8.98	23.60	8.20	*	SW	SW	SW	SW	SW
MW#4	11.5	9.30	9.25	8.75	7.85	8.85	10.85	8.40	21.60	8.98	*	SW	SW	SW	SW	SW
MW#5	8.71	8.73	8.90	8.52	8.33	8.70	00.6	8.75	11.69	8.70	*	SW	SW	SW	SW	SW
9#MW	10.69	14.81	12.60	10.90	10.76	11.30	14.90	10.75	21.00	11.55	*	SW	SW	SW	SW	SW
MW#7	7.91	7.99	8.44	7.85	7.55	8.05	8.50	8.15	7.60	8.15	8.42	8.05	7.88	8.08	8.40	8.00
MW#8	12.97	13.70	12.59	12.30	11.72	12.63	14.36	12.50	12.27	12.85	12.82	12.38	12.90	12.69	13.50	14.00
6#MW	12.37	12.95	12.59	12.40	11.75	12.60	13.02	12.38	12.20	12.60	12.68	12.52	12.55	12.55	13.25	12.90
MW#10	*	69.6	9.65	9.41	9.10	9.58	9.82	9.45	9.38	09.6	9.70	6.50	09.6	9.63	9.71	08'6
MW#11	*	6.27	6.70	6.12	5.81	6.35	16.80	6.45	5.86	6.45	6.70	9.50	6.03	6.40	08'9	6.55
MW#12	*	9.93	10.00	9.18	8.80	9.36	10.00	9.25	9.04	9.40	9.95	9.26	9.30	9.40	89.6	9.70
K-1	-	1	1	1	1	10.08	9.42	8.93	8.80	9.03	9.37	9.17	9.80		9.75	1
K-2		-		1	1	9.42	10.40	00.6	8.57	9.05	9.34	9.10	9.10	1	9.40	1
K-3	1	1	-	ı	:	10.64	10.45	00.6	8.67	9.50	18.6	11.50	9.45	1	9.90	1

		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4th Qtr	2013	SW	11.50	SW	SW	SW	SW	7.82	12.51	12.35	9.42	6.20	9.22	9.65	13.20	9.50	9.20	10.00	8.32
2nd Otr 3rd Otr	2013	SW	11.85	SW	SW	SW	SW	8.26	12.87	12.64	9.62	6.55	9.55	9.80	13.80	9.45	9.37	9.90	9.05
2nd Otr	2013	NS	11.02	SW	SW	SW	SW	7.55	12.65	12.50	9.45	6.10	9.21				8.32	9.87	9.21
1st Otr	2013	SW	11.59	SW	SW	SW	SW	7.90	12.80	12.45	9.51	6.20	9.20	-		1	9.00	9.40	8.55
4th Qtr	2012	SW	11.56	SW	SW	SW	SW	7.99	12.61	12.37	9.40	6.29	9.31	-		1	8.23	8.32	8.60
3rd Qtr	2012	SW	11.72	SW	SW	SW	SW	8.40	12.87	12.52	9.52	02.9	6.67		-		9.17	9.17	9.50
2nd Qtr 3rd Qtr	2012	SW	12.13	SW	SW	SW	SW	8.34	13.15	12.67	19.6	6.64	10.54	-	1		9.26	9.52	10.19
1st Otr	2012	NS.	12.20	SW	SW	SW	SW	8.05	13.02	12.63	9.65	6.35	10.42	-	-		9.40	9.44	9.63
4th Qtr	2011	NS.	12.10	SW	SW	SW	SW	8.31	12.99	12.60	0.70	09.9	10.34	1	-	-	9.20	6.39	9.76
3rd Qtr	2011	NS.	12.10	SW	SW	SW	SW	8.35	13.07	12.68	9.70	6.63	10.01	1	1	-	81.6	9.35	9.73
2nd Otr	2011	11.13	11.43	8.35	8.24	8.33	11.23	7.50	12.40	12.32	9:36	5.76	9.02	1	-		8.80	8.74	9.30
1st Otr	2011	SW	10.16	SW	SW	SW	SW	7.34	11.80	11.64	8.90	99'5	8.60	-	-	-	-	-	
4th Qtr	2010	SW	12.80	SW	SW	SW	SW	8.23	13.57	12.70	08.6	6.54	9.52	1	1	1	9.20	9.37	9.74
3rd Qtr	2010	SW	12.24	SW	SW	SW	SW	8.35	14.60	12.86	9.85	6.65	9.50	-	-	1	9.20	9.20	9.62
1st Otr 2nd Otr 3rd Qtr 4th Qtr 1st Qtr	2010	16.11	11.84	8.82	8.80	89.8	10.71	8.09	12.71	12.55	09.6	6.40	8.96	1		-	8.87	8.85	9.58
1st Qtr	2010	SW	13.27	SW	SW	SW	SW	8.20	13.78	12.90	7.94	6.55	9.55	1		1	1		-
Monitoring	Well	MW#1	MW#2	MW#3	MW#4	MW#5	9#MW	MW#7	MW#8	6#MW	MW#10	MW#11	MW#12	MW#18	MW#19	MW#20	K-1	K-2	K-3

1st Qtr 2014	SW	11.62	SW	SW	SW	SW	7.89	12.85	12.46	9.52	6.15	9.22	-	-	1
Monitoring Well	MW#1	MW#2	MW#3	MW#4	MW#5	9#MW	MW#7	MW#8	0#MW	MW#10	MW#11	MW#12	K-1	K-2	K-3

Leo's Car Wash Monitoring Well MW#1/RW#1

Parameter	1st Qtr	3rd Qtr	3rd Otr	2nd Qtr	2nd Otr
(mg/L)	2006	2007	2008	2010	2011
Benzene	0.127	0.029	090'0	0.002	<0.001
Toluene	0.22	<0.002	0.010	<0.002	<0.002
Ethylbenzene	0.003	0.013	0.63	<0.002	0.032
Xylene	1.78	0.057	1.66	<0.002	0.040
Cumene	<0.002	<0.002	0.043	<0.002	0.004
Naphthalene	0.162	0.004	0.30	<0.002	0.009
MTBE	0.48	0.078	<0.002	0.011	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Leo's Car Wash Monitoring Well MW#2

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd Qt	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
(mg/L)	2005	2006	2006	2006	2007	2007	2007	2007	2008	8002	2008	2008
Benzene	<0.001	4.19	0.70	1.13	0.28	0.28	0.19	0.23	0.35	0.11	0.32	0.820
Toluene	<0.002	2.92	1.44	2.14	<0.1	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ethylbenzene	<0.002	1.19	1.35	1.63	0.84	19.0	0.64	0.21	0.12	0.10	0.14	0.263
Xylene	<0.002	5.89	6.21	7.57	3.35	2.46	1.58	0.23	0.21	0.18	0.18	0.354
Cumene	<0.002	0.08	0.16	0.18	0.18	0.20	0.23	0.09	0.08	0.07	0.12	0.132
Naphthalene	<0.002	0.35	0.48	0.39	0.25	0.27	0.35	0.10	90.0	0.05	0.03	0.084
MTBE	<0.002	0.58	0.37	0.26	0.23	0.18	0.05	0.10	0.07	<0.01	0.01	0.029

Parameter	1st Qtr	1st Qtr 2nd Qtr	4th Qtr	1st Qtr	2nd Qtr	3	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Otr
(mg/L)	2009	2009	2009	2010	2010	2010	2010	2011	2011	2011	2011
Benzene	0.335	869.0	0.139	0.121	0.212	0.104	9.000	0.500	0.316	0.089	0.13
Toluene	<0.010	<0.01	<0.010	<0.002	<0.002	<0.002	<0.002	0.005	<0.002	<0.002	<0.0020
Ethylbenzene	0.040	0.000	0.049	0.014	0.068	0.007	0.007	0.095	0.044	900.0	0.0000
Xylene	0.054	0.150	0.072	0.015	0.101	900.0	0.004	0.035	0.018	0.002	0.0070
Cumene	0.043	0.070	0.067	0.035	0.038	0.020	0.013	0.005	0.012	0.015	0.013
Naphthalene	0.035	0.030	0.021	<0.002	0.021	<0.002	0.002	0.020	0.003	0.002	0.0050
MTBE	0.012	<0.01	<0.010	0.013	0.015	900.0	0.005	0.014	0.011	0.005	0.0050

Parameter	1st Qtr	2nd Otr	3rd Qtr		1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Otr
(mg/L)	2012	2012	2012		2013			2013	2014
Benzene	0.25	0.17	0.16	0.152	0.345	0.034	0.120	<0.001	0.901
Toluene	<0.0020	<0.0020	0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	0.015
Ethylbenzene	0.022	0.007	0.0040	0.004	0.036	0.023	0.004	<0.002	0.290
Xylene	0.0030	0.0040	0.0030	0.002	0.015	0.042	0.005	<0.002	0.157
Cumene	0.0000	0.0080	0.0070	0.004	0.014	<0.002	900.0	<0.002	0.017
Naphthalene	<0.0020	<0.0020	0.017	0.002	0.007	0.017	0.010	<0.002	0.020
MTBE	0.011	0.0070	0.0050	0.007	0.009	<0.002	0.005	<0.002	0.009

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-001

Sample Name:

Monitoring Well MW#2 Groundwater Sample

Sample Date:

3/24/2014 1:00:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.901	0.001	D2	EPA 8260B	04/01/14 21:23	MGW
Toluene, mg/L	0.015	0.002		EPA 8260B	04/01/14 20:43	MGW
Ethylbenzene, mg/L	0.290	0.002	D2	EPA 8260B	04/01/14 21:23	MGW
Xylenes(Total), mg/L	0.157	0.002		EPA 8260B	04/01/14 20:43	MGW
Cumene, mg/L	0.017	0.002		EPA 8260B	04/01/14 20:43	MGW
Naphthalene, mg/L	0.020	0.002		EPA 8260B	04/01/14 20:43	MGW
MTBE, mg/L	0.009	0.002		EPA 8260B	04/01/14 20:43	MGW
Aqueous-phase purge-and-trap				EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Laboratory Director

Leo's Car Wash Monitoring Well MW#3/RW#3

Parameter	1st Qtr	3rd Qtr	3rd Qtr	2nd Qtr	2nd Qtr
(mg/L)	2006	2007	2008	2010	2011
Benzene	3.32	0.114	3.59	1.41	0.756
Toluene	7.88	<0.002	0.198	0.020	0.009
Ethylbenzene	0.80	0.009	0.30	0.132	0.114
Xylene	6.16	0.059	2.33	0.342	0.250
Cumene	<0.2	<0.002	0.047	0.019	0.015
Naphthalene	0.37	0.004	0.14	0.029	0.020
MTBE	4.39	0.032	0.040	0.021	0.007

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Parameter	1st Qtr	3rd Qtr	3rd Qtr	2nd Qtr	2nd Qtr
(mg/L)	2006	2007	2008	2010	2011
Benzene	3.10	0.41	6.50	0.583	0.010
Toluene	2.98	98.0	11.07	0.633	0.012
Ethylbenzene	99.0	0.15	1.55	0.132	0.003
Xylene	2.48	2.02	12.79	1.15	0.025
Cumene	<0.2	0.01	0.132	0.014	<0.002
Naphthalene	0.23	60.0	0.23	0.048	<0.002
MTBE	7.44	0.14	0.39	0.010	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Parameter	1st Qtr	3rd Qtr	3rd Qtr	2nd Qtr	2nd Qtr
(mg/L)	2006	2007	2008	2010	2011
Benzene	0.48	0.12	0.402	2.48	0.028
Toluene	0.94	0.26	0.701	3.72	0.087
Ethylbenzene	0.03	0.07	0.019	0.219	0.003
Xylene	1.61	0.31	0.450	2.48	0.082
Cumene	0.02	<0.01	<0.002	0.014	<0.002
Naphthalene	0.03	0.13	0.004	0.049	<0.002
MTBE	0.14	0.13	0.004	0.030	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Parameter	1st Qtr	3rd Qtr	3rd Qtr	2nd Qtr	2nd Qtr
Benzene	0.34	0.22	1.30	0.341	0.544
Toluene	0.12	0.003	0.045	<0.010	0.145
Ethylbenzene	0.27	0.114	0.44	0.144	0.218
Xylene	0.65	0.050	1.09	0.204	1.330
Cumene	0.02	0.022	0.011	<0.010	0.018
Naphthalene	0.11	0.030	0.046	0.013	0.067
MTBE	0.95	0.32	0.26	0.043	0.037

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd Qt	ь	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Otr	4th Otr
(mg/L)	2002	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
Benzene	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

4th Qtr 2011	0.0010	<0.0020	<0.0020	<0.0020	0.0020	<0.0020	00000
rd Qtr 40 2011	<0.001 <	<0.002 <	<0.002 <	<0.002 <	<0.002 <	<0.002 <(0000
2011	< 100.0>	<0.002 <	< 0.002	< 20.002	<0.002 <	< 20.002	0000
st Qtr 2n 2011	<0.001	<0.002 <	<0.002 <	<0.002 <	<0.002 <	<0.002 <	0000
4th Qtr 1 2010	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	0000
3rd Qtr 2010	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	CUU 0/
2nd Qtr 2010	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	CUU 0/
1st Qtr 2010	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	CUU 0/
4th Qtr 2009	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	COO 02
2nd Qtr 2009	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	COO 02
1st Qtr 2009	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	COO 02
Parameter	Benzene	Toluene	Ethylbenzene	Xylene	Cumene	Naphthalene	MTRE

Parameter	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Otr	1st Otr
(mg/L)	2012	2012	2012	2012	2013	2013	2013	2013	2014
Benzene	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	<0.0020	0.012	<0.0020	<0.002	<0.002	<0.002	<0.002	0.005	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-002

Sample Name:

Monitoring Well MW#7 Groundwater Sample

Sample Date:

3/24/2014 11:45:00 AM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/01/14 21:52	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd Q	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qfr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
(mg/L)	2002	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
Benzene	<0.001	0.021	0.007	<0.001	<0.001	<0.001	0.015	<0.001	<0.001	<0.001	<0.001	0.002
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.002	0.012	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.002	900.0	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	1.48	0.158	0.074	0.049	0.013	0.014	0.052	<0.002	0.032	0.040	0.027	<0.002

Parameter 1st Qtr 2nd Qtr 3rd Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
(mg/L)	2009	2009	2009	2009	2010	2010	2010	2010	2011	2011	2011	2011
Benzene	<0.001	<0.001	<0.001	<0.001	0.007	<0.001	0.165	<0.001	<0.001	0.002	<0.001	<0.0010
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.0020
Ethylbenzene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.014	<0.002	<0.002	<0.002	<0.002	<0.0020
Xylene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.0020
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.015	<0.002	<0.002	<0.002	<0.002	<0.0020
Naphthalene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.005	<0.002	<0.002	<0.002	<0.002	<0.0020
MTBE	0.007	0.014	0.025	0.027	0.038	0.040	0.138	0.025	0.005	0.023	0.035	0.033

Parameter	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Otr	1st Qtr
(mg/L)	2012	2012	2012	2012	2013	2013	2013	2013	2014
Benzene	<0.0010	<0.0010	0.20	0.226	0.573	<0.001	<0.001	<0.001	<0.001
Toluene	<0.0020	<0.0020	<0.0020	<0.002	0.009	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.0020	<0.0020	0.0040	0.008	0.093	<0.002	<0.002	<0.002	<0.002
Xylene	<0.0020	<0.0020	0.0080	0.002	0.053	<0.002	<0.002	<0.002	<0.002
Cumene	<0.0020	<0.0020	090000	0.008	0.078	<0.002	0.011	<0.002	<0.002
Naphthalene	<0.0020	<0.0020	0.0040	0.01	0.046	<0.002	0.019	<0.002	<0.002
MTBE	0.013	<0.0020	0.018	0.023	0.010	<0.002	<0.002	0.003	0.017

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-003

Sample Name:

Monitoring Well MW#8 Groundwater Sample

Sample Date:

3/24/2014 12:00:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	<0.001	0.001	EPA 8260B	04/01/14 22:21	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
MTBE, mg/L	0.017	0.002	EPA 8260B	04/01/14 22:21	MGW
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter		1st Qtr 2nd Qtr 3rd Q	=	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
(mg/L)	2002	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
Benzene	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.002	<0.002	0.007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.002	<0.002	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	0.213	0.030	0.021	0.030	0.003	900.0	0.004	<0.002	0.002	<0.002	0.007	0.028

Parameter 1st Qtr 2nd Qtr 3rd (1st Qtr	2nd Qtr	Offr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Otr	4th Otr
(mg/L)	2009	2009	2009	2009	2010	2010	2010	2010	2011	2011	2011	2011
Benzene	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0010
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Ethylbenzene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Xylene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Naphthalene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
MTBE	<0.002	<0.002	0.004	<0.002	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	0.0040

Parameter	1st Qtr	2nd Otr	3rd Qtr	4th Qtr	1st Qtr	2nd Otr	3rd Qtr	4th Qtr	1st Otr
(mg/L)	2012	2012	2012	2012	2013	2013	2013	2013	2014
Benzene	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	<0.0020	<0.0020	0.0040	0.003	<0.002	<0.002	0.003	<0.002	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-004

Sample Name:

Monitoring Well MW#9 Groundwater Sample

Sample Date:

3/24/2014 12:30:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 12:11	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd Q	3rd Qtr	4th Qtr	1st Otr	2nd Qtr	3rd Qtr	4th Qtr	1st Otr	2nd Otr	3rd Otr	4th Otr
(mg/L)	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
Benzene	<0.001		0.002	0.002	0.021		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.002	-	<0.002	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.002	-	<0.002	<0.002	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.002	-	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.002	1	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.002	1	<0.002	<0.002	<0.002	1	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	0.026	1	0.005	0.017	0.072	-	<0.002	0.004	<0.002	<0.002	<0.002	<0.002

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd 0	2tr	4	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Otr	4th Otr
(mg/L)	2009	2009	2009	2009	2010	2010	2010	2010	_	2011	2011	2011
Benzene	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.125	090.0	<0.001	<0.0010
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Ethylbenzene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.003	<0.002	<0.002	<0.0020
Xylene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.0020
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.004	900.0	<0.002	<0.0020
Naphthalene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
MTBE	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.031	0.018	<0.002	<0.0020

Parameter	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Otr	1st Otr
(mg/L)	2012	2012	2012	2012	2013	2013	2013	2013	2014
Benzene	<0.0010	<0.0010	<0.0010	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	<0.0020	<0.0020	<0.0020	0.003	<0.002	<0.002	<0.002	<0.002	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-005

Sample Name:

Monitoring Well MW#10 Groundwater Sample

Sample Date:

3/24/2014 12:45:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 12:43	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd Q	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Otr	3rd Otr	4th Qtr
(mg/L)	2006	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
Benzene	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.002	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd (3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Otr	3rd Otr	4th Otr
(mg/L)	2009	2009	2009	2009	2010	2010	2010	2010	2011	2011	2011	2011
Benzene	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0010
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Ethylbenzene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Xylene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Cumene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Naphthalene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
MTBE	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020

Parameter	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr
(mg/L)	2012	2012	2012	2012	2013	2013	2013	2013	2014
Benzene	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cumene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MTBE	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-006

Sample Name:

Monitoring Well MW#11 Groundwater Sample

Sample Date:

3/24/2014 1:15:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 14:23	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter		1st Qtr 2nd Qtr 3rd Qt	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
(mg/L)	2005	2006	2006	2006	2007	2007	2007	2007	2008	2008	2008	2008
Benzene	<0.001	<0.001	0.003		<0.001	0.002	0.002	0.001	<0.001	<0.001	0.001	<0.001
Toluene	<0.002	<0.002	0.016	-	0.002	0.037	0.037	0.005	0.005	0.004	0.005	<0.002
Ethylbenzene	<0.002	<0.002	0.057	-	0.028	0.100	0.100	0.029	0.055	0.048	0.105	0.003
Xylene	<0.002	<0.002	0.386	-	0.156	0.402	0.402	0.159	0.248	0.212	0.330	800.0
Cumene	<0.002	<0.002	0.017		0.010	0.035	0.035	0.014	0.031	0.018	0.045	0.003
Naphthalene	<0.002	<0.002	0.055		0.011	0.038	0.038	0.009	0.018	0.018	0.029	0.002
MTBE	98.0	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

Parameter	1st Qtr	1st Qtr 2nd Qtr 3rd Q	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr
(mg/L)	2009	2009	2009	2009	2010	2010	2010	2010	2011	2011	2011	2011
Benzene	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0010
Toluene	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
Ethylbenzene	0.005	0.022	0.042	0.021	0.011	<0.002	<0.002	900.0	<0.002	<0.002	<0.002	<0.0020
Xylene	<0.002	0.027	0.053	0.027	0.009	<0.002	<0.002	0.014	<0.002	<0.002	<0.002	0.0070
Cumene	0.005	0.018	0.037	0.022	0.014	<0.002	0.004	0.018	<0.002	0.003	<0.002	0.0030
Naphthalene	<0.002	0.004	900.0	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020
MTBE	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0020

Larameter	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	1st Qtr
(mg/L)	2012	2012	2012	2012	2013	2013	2013	2013	2014
Benzene	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	0.213	<0.001
Toluene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	0.002	<0.002
Ethylbenzene	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	0.013	<0.002
Xylene	0.0070	<0.0020	<0.0020	<0.002	0.002	<0.002	<0.002	900.0	<0.002
Cumene	0.0030	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	0.007	<0.002
Naphthalene	<0.0020	<0.0020	0.0020	<0.002	<0.002	<0.002	<0.002	0.014	<0.002
MTBE	<0.0020	<0.0020	<0.0020	<0.002	<0.002	<0.002	<0.002	900.0	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-007

Sample Name:

Monitoring Well MW#12 Groundwater Sample

Sample Date:

3/24/2014 1:30:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 14:46	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
Cumene, mg/L	0.005	0.002	EPA 8260B	04/02/14 14:46	ALH
Naphthalene, mg/L	<0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter	3rd Ot	3rd Qtr 2013	4th Qtr	
(mg/L)	7/15/13	9/19/13	11/8/2013 4/23/2014	4/23/2014
Benzene	<0.001	<0.001	<0.001	<0.001
Toluene	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.002	<0.002	<0.002	<0.002
Xylene	<0.002	<0.002	<0.002	<0.002
Cumene	<0.002	<0.002	<0.002	<0.002
Naphthalene	<0.002	<0.002	<0.002	<0.002
MTBE	<0.002	<0.002	<0.002	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 07/24/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

7523-007

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

7/15/2013 11:30:00 AM

Date Received:

7/15/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	07/22/13 17:49	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Aqueous-phase purge-and-trap			EPA 5030B	07/22/13 17:49	ALH

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 09/30/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8113-001

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

9/19/2013 1:15:00 PM

Date Received:

9/19/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	<0.001	0.001	EPA 8260B	09/23/13 19:25	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Aqueous-phase purge-and-trap			EPA 5030B	09/23/13 19:25	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 11/18/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8491-001

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

11/8/2013 1:00:00 PM

Date Received:

11/8/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	11/15/13 20:47	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Ethylbenzene, mg/L	<0.002	0.002	EPA-8260B	11/15/13 20:47	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Cumene, mg/L	<0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Aqueous-phase purge-and-trap			EPA 5030B	11/15/13 20:47	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 04/25/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9667-001

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

4/23/2014 11:45:00 AM

Date Received:

4/23/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/24/14 18:35	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 18:35	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 18:35	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/24/14 18:35	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 18:35	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 18:35	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 18:35	MGW
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Leo's Car Wash Monitoring Well MW#19

Parameter	3rd Qt	3rd Qtr 2013	4th Qtr	
(mg/L)	7/15/13	9/19/13	9/19/13 11/8/2013 4/23/2014	4/23/2014
Benzene	0.103	0.094	0.124	0.33
Toluene	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	<0.002	0.004	0.003	900'0
Xylene	<0.002	0.002	0.002	<0.002
Cumene	0.071	0.007	0.009	0.046
Naphthalene	<0.002	0.002	0.003	0.002
MTBE	<0.002	<0.002	0.002	0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 07/24/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

7523-008

Sample Name:

Monitoring Well MW#19 Groundwater Sample

Sample Date:

7/15/2013 11:45:00 AM

Date Received:

7/15/2013

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.103	0.001	D2	EPA 8260B	07/22/13 18:36	ALH
Toluene, mg/L	<0.002	0.002		EPA 8260B	07/22/13 18:13	ALH.
Ethylbenzene, mg/L	< 0.002	0.002		EPA 8260B	07/22/13 18:13	ALH
Xylenes(Total), mg/L	< 0.002	0.002		EPA 8260B	07/22/13 18:13	ALH
Cumene, mg/L	0.071	0.002		EPA 8260B	07/22/13 18:13	ALH
Naphthalene, mg/L	< 0.002	0.002		EPA 8260B	07/22/13 18:13	ALH
MTBE, mg/L	< 0.002	0.002		EPA 8260B	07/22/13 18:13	ALH
Aqueous-phase purge-and-trap				EPA 5030B	07/22/13 18:13	ALH

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 09/30/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8113-002

Sample Name:

Monitoring Well MW#19 Groundwater Sample

Sample Date:

9/19/2013 1:30:00 PM

Date Received:

9/19/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	0.094	0.001	EPA 8260B	09/23/13 19:50	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:50	MGW
Ethylbenzene, mg/L	0.004	0.002	EPA 8260B	09/23/13 19:50	MGW
Xylenes(Total), mg/L	0.002	0.002	EPA 8260B	09/23/13 19:50	MGW
Cumene, mg/L	0.007	0.002	EPA 8260B	09/23/13 19:50	MGW
Naphthalene, mg/L	0.002	0.002	EPA 8260B	09/23/13 19:50	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:50	MGW
Aqueous-phase purge-and-trap			EPA 5030B	09/23/13 19:50	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 11/18/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8491-002

Sample Name:

Monitoring Well MW#19 Groundwater Sample

Sample Date:

11/8/2013 1:15:00 PM

Date Received:

11/8/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	0.124	0.001	EPA 8260B	11/15/13 21:43	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 21:43	MGW
Ethylbenzene, mg/L	0.003	0.002	EPA 8260B	11/15/13 21:43	MGW
Xylenes(Total), mg/L	0.002	0.002	EPA 8260B	11/15/13 21:43	MGW
Cumene, mg/L	0.009	0.002	EPA 8260B	11/15/13 21:43	MGW
Naphthalene, mg/L	0.003	0.002	EPA 8260B	11/15/13 21:43	MGW
MTBE, mg/L	0.002	0.002	EPA 8260B	11/15/13 21:43	MGW
Aqueous-phase purge-and-trap			EPA 5030B	11/15/13 21:43	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 04/25/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9667-002

Sample Name:

Monitoring Well MW#19 Groundwater Sample

Sample Date:

4/23/2014 11:50:00 AM

Date Received:

4/23/2014

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.33	0.001	D2	EPA 8260B	04/24/14 19:47	MGW
Toluene, mg/L	< 0.002	0.002		EPA 8260B	04/24/14 19:09	MGW
Ethylbenzene, mg/L	0.006	0.002		EPA 8260B	04/24/14 19:09	MGW
Xylenes(Total), mg/L	< 0.002	0.002		EPA 8260B	04/24/14 19:09	MGW
Cumene, mg/L	0.046	0.002		EPA 8260B	04/24/14 19:09	MGW
Naphthalene, mg/L	0.002	0.002		EPA 8260B	04/24/14 19:09	MGW
MTBE, mg/L	0.002	0.002		EPA 8260B	04/24/14 19:09	MGW
Aqueous-phase purge-and-trap				EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Leo's Car Wash Monitoring Well MW#20

Parameter	3rd Q	3rd Qtr 2013	4th Qtr	
(mg/L)	7/15/13	9/19/13	11/8/13	4/23/14
Benzene	0.097	0.056	0.048	0.085
Toluene	0.042	0.018	0.011	0.035
Ethylbenzene	0.329	0.345	0.183	0.27
Xylene	0.524	0.468	0.353	0.22
Cumene	0.051	0.055	0.033	0.049
Naphthalene	0.024	0.035	0.026	0.015
MTBE	0.009	0.011	0.009	0.011

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 07/24/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

7523-009

Sample Name:

Monitoring Well MW#20 Groundwater Sample

Sample Date:

7/15/2013 12:00:00 PM

Date Received:

7/15/2013

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.097	0.001	D2	EPA 8260B	07/22/13 19:24	ALH
Toluene, mg/L	0.042	0.002		EPA 8260B	07/22/13 19:00	ALH
Ethylbenzene, mg/L	0.329	0.002	D2	EPA 8260B	07/22/13 19:24	ALH
Xylenes(Total), mg/L	0.524	0.002	D2	EPA 8260B	07/22/13 19:24	ALH
Cumene, mg/L	0.051	0.002		EPA 8260B	07/22/13 19:00	ALH
Naphthalene, mg/L	0.024	0.002		EPA 8260B	07/22/13 19:00	ALH
MTBE, mg/L	0.009	0.002		EPA 8260B	07/22/13 19:00	ALH
Aqueous-phase purge-and-trap				EPA 5030B	07/22/13 19:00	ALH

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 09/30/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8113-003

Sample Name:

Monitoring Well MW#20. Groundwater Sample

Sample Date:

9/19/2013 1:45:00 PM

Date Received:

9/19/2013

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.056	0.001		EPA 8260B	09/23/13 20:17	MGW
Toluene, mg/L	0.018	0.002		EPA 8260B	09/23/13 20:17	MGW
Ethylbenzene, mg/L	0.345	0.002	D2	EPA 8260B	09/23/13 20:51	MGW
Xylenes(Total), mg/L	0.468	0.002	D2	EPA 8260B	09/23/13 20:51	MGW
Cumene, mg/L	0.055	0.002		EPA 8260B	09/23/13 20:17	MGW
Naphthalene, mg/L	0.035	0.002		EPA 8260B	09/23/13 20:17	MGW
MTBE, mg/L	0.011	0.002		EPA 8260B	09/23/13 20:17	MGW
Aqueous-phase purge-and-trap				EPA 5030B	09/23/13 20:17	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 11/18/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8491-003

Sample Name:

Monitoring Well MW#20 Groundwater Sample

Sample Date:

11/8/2013 1:30:00 PM

Date Received:

11/8/2013

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.048	0.001		EPA 8260B	11/15/13 22:07	MGW
Toluene, mg/L	0.011	0.002		EPA 8260B	11/15/13 22:07	MGW
Ethylbenzene, mg/L	0.183	0.002	D2	EPA 8260B	11/15/13 22:40	MGW
Xylenes(Total), mg/L	0.353	0.002		EPA 8260B	11/15/13 22:07	MGW
Cumene, mg/L	0.033	0.002		EPA 8260B	11/15/13 22:07	MGW
Naphthalene, mg/L	0.026	0.002		EPA 8260B	11/15/13 22:07	MGW
MTBE, mg/L	0.009	0.002		EPA 8260B	11/15/13 22:07	MGW
Aqueous-phase purge-and-trap				EPA 5030B	11/15/13 22:07	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 04/25/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9667-003

Sample Name:

Monitoring Well MW#20 Groundwater Sample

Sample Date:

4/23/2014 11:55:00 AM

Date Received:

4/23/2014

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.085	0.001		EPA 8260B	04/24/14 20:22	MGW
Toluene, mg/L	0.035	0.002		EPA 8260B	04/24/14 20:22	MGW
Ethylbenzene, mg/L	0.27	0.002	D2	EPA 8260B	04/24/14 20:58	MGW
Xylenes(Total), mg/L	0.22	0.002		EPA 8260B	04/24/14 20:22	MGW
Cumene, mg/L	0.049	0.002		EPA 8260B	04/24/14 20:22	MGW
Naphthalene, mg/L	0.015	0.002		EPA 8260B	04/24/14 20:22	MGW
MTBE, mg/L	0.011	0.002		EPA 8260B	04/24/14 20:22	MGW
Aqueous-phase purge-and-trap				EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Parameter		
(mg/L)	4/1/14	4/23/14
Benzene	<0.001	<0.001
Toluene	<0.002	<0.002
Ethylbenzene	<0.002	<0.002
Xylene	<0.002	<0.002
Cumene	<0.002	<0.002
Naphthalene	<0.002	<0.002
MTBE	<0.002	<0.002

Bolded Results exceed MCS's for Organic Regulated Substances in Groundwater for Residential Used Aquifers.

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9489-001

Sample Name:

Monitoring Well MW#21 Groundwater Sample

Sample Date:

4/1/2014 2:00:00 PM

Date Received:

4/2/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 15:10	ALH
Toluene, mg/L	<0.002	0.002	EPA 8260B	04/02/14 15:10	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 15:10	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 15:10	ALH
Cumene, mg/L	<0.002	0.002	EPA 8260B	04/02/14 15:10	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 15:10	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 15:10	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 04/25/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9667-004

Sample Name:

Monitoring Well MW#21 Groundwater Sample

Sample Date:

4/23/2014 12:00:00 PM

Date Received:

4/23/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	<0.001	0.001	EPA 8260B	04/24/14 21:34	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 21:34	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 21:34	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/24/14 21:34	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 21:34	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 21:34	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/24/14 21:34	
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

APPENDIX A: GEOLOGIC LOGS

MONITORING WELL LOG

MW#1

Surface Flevation (MSL): 99	.87 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup:		Date Drilled: 10/29/02
Borehole Diameter: 8 inches,		Drilled By: CHATFIELD DRILLING
	From To	Logged By: CHET ELEWSKI
Total Depth: 25'		County: ERIE
Depth of Ground Water:	11.35'/88.52'	Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03		Project Name: <u>LEO'S CARWASH</u>

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples_ Rec/Att	PID Meter Response	Comments	Dep (Ft
- 0 -	6" ASPHALT					MANHOLE COVER	0
	6"-3' SAND & BROWN SILTY SOIL					MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL 1' ABOVE SCREEN	
- 5 —	BROWN SILTY SAND & GRAVEL	4 4		18"	36.2	5' OF SOLID WALL	5
	BROWN GRAY SANDY SILT					2" PVC PIPE	
-10	BROWN GRAY SANDY SILT			16"	2379		1(
	BROWN GRAY SANDY SILT						
-15	GRAY SILTY SAND			16"	65		15
						SAND PACK-	
-20	GRAY SILT & SHALE					20' OF 0.010 SLOT 2" PVC SCREEN	20
-25						PVC END CAP	25
-30							30
-35					:		3:
					į		

H: RARgrp-DWGS\Ror-L\logs\America\Leos Corwash.dwg, 5/13/2014 2:07:26 PM, \\RARFS1\TOSHIBA Upstairs

MONITORING WELL LOG

MW#2

Surface Elevation (MSL): 100.85 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A	
	Drilled By: CHATFIELD DRILLING
inches, From To	Logged By: CHET ELEWSKI
Total Depth: 25'	County: ERIE
Depth of Ground Water: 10.40'/90.45'	Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03	Project Name: <u>LEO'S CARWASH</u>

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	De (F
- 0	6" ASPHALT					MANHOLE COVER	- (
	6"-3" SAND & DARK BROWN SILTY SOIL, HEAVY PRODUCT ODOR				1158	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR	
- 5 -	DARK BROWN SANDY SILT, HEAVY PRODUCT ODOR			14"	2871	BENTONITE CLAY SEAL 1' ABOVE SCREEN 5' OF SOLID WALL	5
	DARK BROWN SANDY SILT					2" PVC PIPE	
-10 —	BROWN DENSE SILTY CLAY			16"	427		10
	BROWN DENSE SILTY CLAY						
-15	BROWN GRAY SILTY SAND, WET			10"	10		1:
-20	GRAY SILT & CLAY W/SHALE LAYERS					SAND PACK 20' OF 0.010 SLOT 2" PVC SCREEN	20
-25			<u> </u>				25
		:				PVC END CAP——	
-30				:			30
-35							3
-40							<u> </u>

Surface Elevation (MSL): 101.48 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A.	
Borehole Diameter: 9 inches, From 0 To 24'9"	Drilled By: CHATFIELD DRILLING
inches, From To	Logged By: JEREMY HOUK
Total Depth: 24'9"	County: ERIE
Depth of Ground Water: 10.20'/91.28'	Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03	Project Name: N/A

Depth (Ft.)	Lithologic Discription	Strat. Symbol	No.	nples Rec/Att	PID Meter Response	Comments	De (F
- 0 - - -	2" ASPHALT DARK GRAY FINE SAND & ROCK FRAGMENTS	44 1			142	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL	
	GRAY SAND & ROCK FRAGMENTS			8"	166	BENTONITE CLAY SEAL 1' ABOVE SCREEN	
- 5 	GRAY SILT & SAND W/ROCK FRAGMENTS	4				4'-7" OF SOLID WALL 2" PVC PIPE	
	DENSE GRAY SILT			14"	22		
-10	DENSE GRAY SILT						
15	0-7" DENSE GRAY SILT 7-14" BROWN SAND & ROCK FRAGMENTS, WET	4 4		14"	8		
-20 -25 -25 -30 -354040	GRAY SHALE					SAND PACK 20' OF 0.010 SLOT 2" PVC SCREEN PVC END CAP	

Surface Elevation (MSL): 102.0 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A	
Borehole Diameter: 9 inches, From 0 To 24'8"	
inches, From To	Logged By: JEREMY HOUK
Total Depth: 24'8"	County: ERIE
Depth of Ground Water: 9.40'/92.60'	Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03	Project Name: LEO'S CARWASH

Depth (Ft.)	Lithologic Discription	Strat. Symbol	<u>Sar</u> No.	nples Rec/Att	PID Meter Response	Comments	De (F
- 0 —	4" ASPHALT FINE DARK GRAY SAND & ROCK FRAGMENTS	4		5 ·	136	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR	
- 5	BROWN & GRAY SAND, STRONG ODOR			15"	192	BENTONITE CLAY SEAL 1' ABOVE SCREEN	5
- 3	GREENISH GRAY SILT					4'-6" OF SOLID WALL 2" PVC PIPE	
-10	BROWN & GRAY SILT W/ ROCK FRAGMENTS			10"	210		1
-10	GRAY SILT & SAND, WET @12'						'
_ -15—	0-8" DENSE GRAY SILT 8-15" BROWN SAND 15-17" DENSE GRAY SILT			17"	120		1:
-20	GRAY SILT & SHALE					SAND PACK 20' OF 0.010 SLOT 2" PVC SCREEN	21
-25 						PVC END CAP-	2
-30							31
-35							3.
-40							40

Surface Elevation (MSL): 102.19 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A	Date Drilled: 10/30/02
Borehole Diameter: 9 inches, From 0 To 19.5'	Drilled By: CHATFIELD DRILLING
	Logged By: JEREMY HOUK
Total Depth: 19.5'	County: ERIE
Depth of Ground Water: 8.55'/93.64'	Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03	Project Name: <u>LEO'S CARWASH</u>

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
o	6" CONCRETE BROWN SAND & ROCK FRAGMENTS	· 4 :				MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR	0 -
5	BROWN SAND & ROCK FRAGMENTS BROWN & GRAY SAND AND ROCK FRAGMENTS	4 <u>4</u>		12"	42	BENTONITE CLAY SEAL 1' ABOVE SCREEN 4'-3" OF SOLID WALL 2" PVC PIPE	5 —
10 <i></i> _	DENSE GRAY SILT & ROCK FRAGMENTS			12"	24		10—
	DENSE GRAY SILT 0-14" DENSE GRAY SILT, WET © 15'; 14-20" BROWN SAND & ROCK FRAGMENTS			20"	5.4	SAND PACK	- - 15—
	GRAY SHALE					15' OF 0.010 SLOT 2" PVC SCREEN	- - -
20 	AUGER REFUSAL @ 19.5'					PVC END CAP	20—
_ —25		:					25— - -
							30-
_ _ _ 35							35—
<u>-</u>							- - -
40	SS\Rar—L\logs\America\Leos Carw	ash.dwg, 5/	/13/2014	2:08:18 PM	M, \\RARFS1\TC	OSHIBA Upstairs	40—

Surface Elevation (MSL): 101.66' (ARBITRARY DATU	M) Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A	Date Drilled: 10/30/02
Borehole Diameter: 9 inches, From 0 To 24'9"	Drilled By: CHATFIELD DRILLING
inches, From To	Logged By: <u>JEREMY HOUK</u>
Total Depth: 24'9"	County: ERIE
Depth of Ground Water: 11.15'/90.51'	Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03	Project Name: <u>LEO'S CARWASH</u>

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
o 	3" ASPHALT BROWN SAND & ROCK FRAGMENTS	A A	<u></u>			MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL	0 -
	GRAY SAND & ROCK FRAGMENTS	4		24"	114	BENTONITE CLAY SEAL 1' ABOVE SCREEN	5
5 - - -	GRAY-GREEN SILT					4'-7" OF SOLID WALL 2" PVC PIPE	- -
	DENSE GRAY SILT				114		10—
_ _	GRAY SILT & SAND						_ _ _
	0-4" WET GRAY SAND 4-18" DENSE BROWN SILT			18"	10.4		_ 15—
—15— - - - - - 20 - -	GRAY SHALE & SILT					SAND PACK————————————————————————————————————	20-
—25 — –						PVC END CAP—	25—
 30 							30-
 35 							35— - - -
	GS\Rar-L\logs\Americo\Leos Ca	rwosh dwo 5/	13/2014	2:08:34 PA	A. \\RARFS1\TC	SHIBA Upstoirs	- 40

Surface Flevation (MSL): 10	0.94 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup:		Date Drilled: 1/17/03
Borehole Diameter: 8 inches,		Drilled By: CHATFIELD DRILLING
inches,	From To	Logged By: CHET ELEWSKI
Total Depth: 25'		County: ERIE
Depth of Ground Water:		Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03		Project Name: LEO'S CARWASH

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
0 _ _	ASPHALT, CONCRETE, SAND & GRAVEL			_		MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR RENTONITE CLAY SEAL	0 -
_	BROWN GRAY SANDY SILT			16"	20	1' ABOVE SCREEN	5 —
5 _	BROWN GRAY SANDY SILT CLAY					5' OF SOLID WALL 4" PVC PIPE	-
_	BROWN SILTY SAND & GRAVEL	4		16"	NMR		10-
10 _	BROWN SILTY SAND & GRAVEL	4					-
_ 15 	GRAY SILT & SHALE CHIP	s		- 1			15—
_ _ _	GRAY SILT & SHALE CHIP	S				SAND PACK 20' OF 0.020 SLOT 4" PVC SCREEN	20-
25 						PVC END CAP—	
_ —30 _							30—
_ 35 							35—
40 RARGIP-DWG		rwash.dwg, 5,	/13/2014	2:08:47 PM	M. \\RARFS1\TC	DSHIBA Upstairs	40

Surface Elevation (MSL): 100.33 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A	Date Drilled: 1/17/03
Borehole Diameter: 8 inches, From 0 To 25'	Drilled By: CHATFIELD DRILLING
inches, From To	Logged By: CHET ELEWSKI
Total Depth: 25'	County: ERIE
Depth of Ground Water: 13.05/87.28	Township or Municipality: MILLCREEK TWP
Date Measured: 1/22/03	Project Name: <u>LEO'S CARWASH</u>

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	ples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
o _	ASPHALT, CONCRETE, SAND & GRAVEL			_	-	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL	0 -
_ _ 5 <i>_</i>	BROWN GRAY SANDY SILTY CLAY			4"	15	1' ABOVE SCREEN	5 —
<u> </u>	BROWN GRAY SANDY SILTY CLAY			_	-	5' OF SOLID WALL 4" PVC PIPE	
	BROWN SILTY SAND & GRAVEL	A 4	<u> </u>	16"	20		10—
	BROWN SILTY SAND & GRAVEL	4 4			_		
_ —15 <i>—</i>	GRAY SILT & SHALE CHIPS			_	-		15—
_	GRAY SILT & SHALE CHIPS					SAND PACK————————————————————————————————————	20
_						PVC END CAP	-
 30 							30
35 							35— - - -
40 RARgrp - DW	GS\Rar-L\logs\America\Leos Carv	vash.dwg, 5/	/13/2014	2:08:59 PN	M, \\RARFS1\TC	DSHIBA Upstairs	40

······ # -	
Surface Elevation (MSL): 100.48 (ARBITRARY DATU	M) Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N/A	Date Drilled: <u>1/17/03</u>
Borehole Diameter: 8 inches, From 0 To 25'	
inches, From To	
Total Depth: 25'	County: ERIE
10.45 ¹ /00.07 ¹	Township or Municipality: MILLCREEK TWP
Depth of Ground Water: 12.45'/88.03'	• • • • • • • • • • • • • • • • • • • •
Date Measured: 4/23/03	Project Name: <u>LEO'S_CARWASH</u>
Bate	-

Depth (Ft.)	Lithologic Discription	Strat. Symbol	No.	nples Rec/Att	PID Meter Response	Comments	De _l
(,,		9,					
- o 	ASPHALT, CONCRETE, SAND & GRAVEL			-	-	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR	
- 5	BROWN SANDY SILTY CLAY & GRAVEL			14"	3	BENTONITE CLAY SEAL 1' ABOVE SCREEN	5
- J —	BROWN SANDY SILTY CLAY & GRAVEL			_	_	5' OF SOLID WALL 4" PVC PIPE	
10	BROWN SANDY SILTY CLAY & GRAVEL			12"	3		1 1
-10 —	BROWN SANDY SILTY CLAY & GRAVEL			_	-		
-15	GRAY SILT & SHALE			-	-		1.
-20 -25	GRAY SILT & SHALE					SAND PACK 20' OF 0.020 SLOT 4" PVC SCREEN	2
-30						1 40 END OA	30
-35							3:
-40							4(

MW#10

Surface Elevation (MSL): 97	<u>7.47'(arbitrary datum)</u>
Casing Stickup:	
Borehole Diameter: 8_inches,	
	From To
Total Depth: 25'	
Depth of Ground Water:	6.10'/91.37'
Date Measured: 4/23/03	

Drilling Method: HOLLOW-STEM AUGER

Date Drilled: 4/8/03

Drilled By: CHATFIELD DRILLING

Logged By: PATRICK E. PRUENT

County: ERIE

Township or Municipality: MILLCREEK TWP

Project Name: LEO'S CARWASH

Depth (Ft.)	Lithologic Discription	Strat. Symbol	Sarr No.	nples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
_ 0 —		77777					— 0 —
	ASPHALT, CONCRETE, SAND & GRAVEL					MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL 1' ABOVE SCREEN	-
_ 5	BROWN SAND & GRAVEL			18"	NMR	I MOVE CONCENT	5 –
- -	BROWN SANDY SILTY CLAY & GRAVEL			_	-	5' OF SOLID WALL 4" PVC PIPE	
	0-9" BROWN SAND & GRAVEL 9-16" GRAY SAND (WET)	4.		16"	2.1		10-
	GRAY SAND TURNING TO GRAY SHALE			_	-		-
_ —15—	SOFT GRAY SHALE			21"	NMR		- 15—
L 1	GRAY SHALE			-	-	SAND PACK————————————————————————————————————	-
_ 20	GRAY SHALE			12"	NMR		- 20—
L	GRAY SHALE			-	-	20' OF 0.020 SLOT 4" PVC SCREEN	- -
25	GRAY SHALE, HARD			4"	NMR		- 25-
25 			ı			PVC END CAP——	- - -
_ 30 							30 -
_							-
_ 35							35 -
							-
- 40-							40
ARgrp-DWGS	S\Rar-L\logs\America\Leos Carwa	sh.dwg, 5/	13/2014	2:09:21 PM,	\\RARFS1\TOS	SHIBA Upstairs	

Surface Elevation (MSL): 99.06'(arbitrary datum)	Drilling Method: HOLLOW-STE
Casing Stickup: N/A	Date Drilled: 4/8/03
Borehole Diameter: 8 inches, From 0 To 25'	Drilled By: <u>CHATFIELD DRILL</u>
inches, From To	Logged By: PATRICK E. PRL
Total Depth: 25'	County: <u>ERIE</u>
Depth of Ground Water: 9.35'/89.71'	Township or Municipality: MIL
Date Measured: 4/23/03	Project Name: LEO'S CARWA

Drilling Method: HOLLOW-STEM AUGER
Date Drilled: 4/8/03
Drilled By: CHATFIELD DRILLING
Logged By: PATRICK E. PRUENT
County: ERIE
Township or Municipality: MILLCREEK TWP
Project Name: LEO'S CARWASH

Depth	Lither Disconting	Strat.	Sam	ples	PID Meter	Comments	Depth
(Ft.)	Lithologic Discription	Symbol	No.	Rec/Att	Response	Comments	(Ft.)
<u> </u>						MANHOLE COVER	- o -
	ASPHALT, CONCRETE, SAND & GRAVEL		_		_	W/ LOCKING CAP CONCRETE COLLAR	
_ 5	REDDISH BROWN SAND & GRAVEL	4		19"	1.7	BENTONITE CLAY SEAL 1' ABOVE SCREEN	5 —
	BROWN SANDY SILTY CLAY & GRAVEL			_	-	5' OF SOLID WALL 4" PVC PIPE	<u>-</u>
10	BROWN SAND & GRAVEL	4 4 4		6"	0.1		10—
	GRAY SAND TURNING TO GRAY SHALE			_	_		
_ —15—	SOFT GRAY SILTY SHALE			18"	NMR		_ 15—
	GRAY SHALE			_	-	SAND PACK—	_
	GRAY SHALE, HARD			5"	NMR		_ 20—
	GRAY SHALE			_		20' OF 0.020 SLOT 4" PVC SCREEN	-
25	GRAY SHALE, HARD			3"	NMR		25—
						PVC END CAP—	_
 30 							30—
-							
_ 35							35—
-							
_							. -
-40- RARgrp-DWC	SS\Rar-L\logs\America\Leos Corw	ash.dwg, 5/	/13/2014	2:09:49 PN	M, \\RARFS1\TC	OSHIBA Upstairs	 40

Surface Elevation (MSL): 102.	.47 (ARBITRARY DATUM)	Drilling Method: HOLLOW-STEM AUGER
Casing Stickup: N		Date Drilled: 4/9/03
Borehole Diameter: 8 inches, F	From <u> </u>	Drilled By: CHATFIELD DRILLING
	From To	Logged By: PATRICK E. PRUENT
Total Depth: 25'		County: ERIE
Depth of Ground Water:		Township or Municipality: MILLCREEK TWP
Date Measured: 4/23/03		Project Name: LEO'S CARWASH

Depth (Ft.)	Lithologic Discription	Strat. Symbol	Sar No.	nples Rec/Att	PID Meter Response	Comments	D (
(rt.)		Symbol	110.	Rec/Att	Response		
- 0			_	 			—
•	ASPHALT, CONCRETE, SAND					MANHOLE COVER W/ LOCKING CAP	ĺ
	& GRAVEL			-		W/ LOCKING CAP CONCRETE COLLAR	
		1 4			_		
	REDDISH BROWN SAND & GRAVEL			15"	NMR	BENTONITE CLAY SEAL 1' ABOVE SCREEN	
- 5 —	GRAVEL			-		5' OF SOLID WALL	1
	REDDISH BROWN SAND &	_ ≸.		_	_	4" PVC PIPE	
	GRAVEL						1
	REDDISH BROWN SILTY SAND	. 444		10"	15.4		
10	& GRAVEL, WET	4		10	13.4		
- 1 0 —	REDDISH BROWN SAND &						
	GRAVEL TURNING TO GRAY			-	_		
	SHALE						
	GRAY SILT WITH SHALE FRAGMENTS			16"	0.4		
-15 	T TAOWILLY TO						
	GRAY SHALE			_	_		
	GRAT STALL					AND DIGIT	
				4.0"	0.0	SAND PACK————————————————————————————————————	
-20-	GRAY SHALE, HARD			16"	0.2		
-20-						20' OF 0.020 SLOT 4" PVC SCREEN	
	GRAY SHALE			-	_		
				<u> </u>			
	GRAY SHALE			3"	NMR		
-25 				 			
						PVC END CAP-	
-30							
50							
-35							;
	!						
_40				<u> </u>			Ш,
-40 <u>-</u>	S\Rar-L\logs\America\Leos Carwo	osh.dwa. 5/	13/2014	2:13:20 PM	. \\RARFS1\TO	SHIBA Upstairs	

Surface Elevation (MSL):	Drilling Method: PROBE
Casing Stickup: N/A	Date Drilled: 7/10/13
Borehole Diameter: 2"_inches, From 0 To 12'	Drilled By: CHATFIELD DRILLING
inches, From To	Logged By: JEREMY HOUK
Total Depth: 12'	County: ERIE
Depth of Ground Water:	Township or Municipality: MILLCREEK TWP
Date Measured:	Project Name: LEO'S CARWASH

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
(FC)	<u> </u>	Symbol	NO.	Nec/ Att	Response		(1 4.7
- 0 - - -	6" TOPSOIL W/ SS COBBLES 6" BROWN SAND			12"	_	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL 1' ABOVE SCREEN	0 -
- 2 - - - -	BROWN & GRAY SAND W/ SOME PEBBLES			18"	_	2' OF SOLID WALL 3/4" PVC PIPE	2 —
- 4 - - - - 6	BROWN SAND			12"	-		6 —
- 6 - - - - - 8 -	BROWN SAND			12"	-	SAND PACK	8 —
	BROWN SHALE FRAGMENTS			10"	_	10' OF 0.020 SLOT 3/4" PVC SCREEN	10—
<u>-</u> -	NO SAMPLE			-	_		- - - - 12-
—12 — – –						PVC END CAP—	- -
— —14 —							14—
16—	SS\Rar—L\logs\America\Leos Carw	rash.dwg, 5/	19/2014	10:45:23 A	M. \\RARFS1\T	OSHIBA Upstairs	_ 16

MONITORING WELL LOG MW#19 Surface Elevation (MSL):____ Casing Stickup:____ Borehole Diameter: 2"_inches, From_0_ To _18' ____inches, From____ To ____ Total Depth:_____18' Depth of Ground Water:

Drilling Method: PROBE
Date Drilled: 7/11/13
Drilled By: CHATFIELD DRILLING
Logged By: JEREMY HOUK
County: ERIE
Township or Municipality: MILLCREEK TWP
Project Name: LEO'S CARWASH

Depth	Lithologia Disserties	Strat.	Sam	ples	PID Meter	Comments	Dept (Ft.)
(Ft.)	Lithologic Discription	Symbol	No.	Rec/Att	Response	Comments	(Ft.)
- o —		111111				LANDOLE CONTRA	 0-
	HAND CLEARED SOFT					MANHOLE COVER W/ LOCKING CAP	
	TOPSOIL					CONCRETE COLLAR	
						MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR RENTONITE CLAY SEAL	
		(//////	-			BENTONITE CLAY SEAL 1' ABOVE SCREEN	
_	BROWN SAND W/ SANDSTONE COBBLES			_	_	2' OF SOLID WALL	
	SANDSTONE COBBLES					3/4" PVC PIPE	İ
							İ
	BROWN SAND			_]	_		_ ا
- 5							5
							,
-							
		2.5.245					
	BROWN SAND, WET @ 10',			_	_	CAND DACK	
	DRY @ 11-12'			•		SAND PACK	
							10
-10		V.V.C.				15' OF 0.020 SLOT	10
						3/4 PVC SCREEN	
		100					
-	BROWN TO GRAY SAND, WET @ 15'-6"			_	_		
	WEI 9 13 -0						

1 E							15
-15							'
	DENSE GRAY SILT W/ SHALE FRAGS, DRY			-	_		
_	J. J. C. J. J. W. C. J. C. W. C.						
							<u> </u>
						PVC END CAP	
						110 010	
-20							L_20
ZU DW	VGS\Rar—L\logs\America\Leos Car	wash dwa 5	/19/2014	10.41.42	M \\RARES1\T	OSHIBA Hostoics	20

N/A

Date Measured:

Surface Elevation (MSL):	Drilling Method: PROBE
Casing Stickup: N/A	Date Drilled: 7/11/13
Borehole Diameter: 2"_inches, From 0_ To 17.5'	Drilled By: CHATFIELD DRILLING
inches, From To	Logged By: JEREMY HOUK
Total Depth: 17.5'	County: ERIE
Depth of Ground Water:	Township or Municipality: MILLCREEK TWP
•	Project Name: LEO'S CARWASH
Date Measured:	

Depth	Lithologic Discription	Strat.		nples	PID Meter	Comments	Depth (Ft.)
(Ft.)	Etthologic blocklytion	Symbol	No.	Rec/Att	Response		(11.)
0 - -	2" ASPHALT BROWN FILL			_	_	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL 1' AROUE SCREEN	0 -
_ _ _ _	BROWN FILL TO BROWN SAND			_	-	BENTONITE CLAY SEAL 1' ABOVE SCREEN 2' OF SOLID WALL 3/4" PVC PIPE	- - -
5 5 	FINE BROWN SAND			36"	317		5 — - - - - -
- - - - - - -	0-12" FINE SILT W/ SS COBBLES 12-15" FINE BROWN SAND			48"	516	SAND PACK————————————————————————————————————	10-
	WET GRAY SAND W/ GRAY SILT/SHALE			-	-		15-
- - -	GRAY WET SILTY SHALE			_	-		-
	GS\Rar-L\logs\Americo\Leos Carv					PVC END CAP	

Surface Elevation (MSL):	Drilling Method: PROBE
	N/A	Date Drilled: 3/27/14
	<u>2"</u> inches, From 0 To <u>12'</u>	Drilled By: ALL PROBE
	inches, From To	Logged By: <u>JEREMY HOUK</u>
	12'	County: ERIE
· ·	/ater:	Township or Municipality: MILLCREEK TWP
Date Measured:		Project Name: LEO'S CARWASH
Date Medadied.		•

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	Dep (Ft
- 0 —	TOPSOIL & BROWN SAND			_	_	MANHOLE COVER W/ LOCKING CAP CONCRETE COLLAR BENTONITE CLAY SEAL	0
– 2 –	BROWN SAND		_		_	1' ABOVE SCREEN 2' OF SOLID WALL 3/4" PVC PIPE	2
- 4	BROWN SAND			_	_		4
- 6 	BROWN SANDY SHALE & SILT LAYERS			-	_	SAND PACK-	6
- 8	BROWN & GRAY SILT W/ SAND SHALE FRAGS			_	_	10' OF 0.020 SLOT	8
10	BROWN SILT & GRAY SHALE FRAGS, MOIST @ 10						10
-10 	BROWN COARSE SAND, WET © 10'			_	-		
-12		Section 1				PVC END CAP	 1 2
-14							14
				}			1
-16-	GS\Rar—L\logs\America\Leos Carw	ash.dwg, 5/	19/2014	10:45:31 A	M, \\RARFS1\T	OSHIBA Upstairs	' 16

••••
VAPOR POINT LOG
VP-A (1)
Surface Elevation (MSL):
Casing Stickup: N/A
Borehole Diameter: 2"_inches, From 0 To 8'_

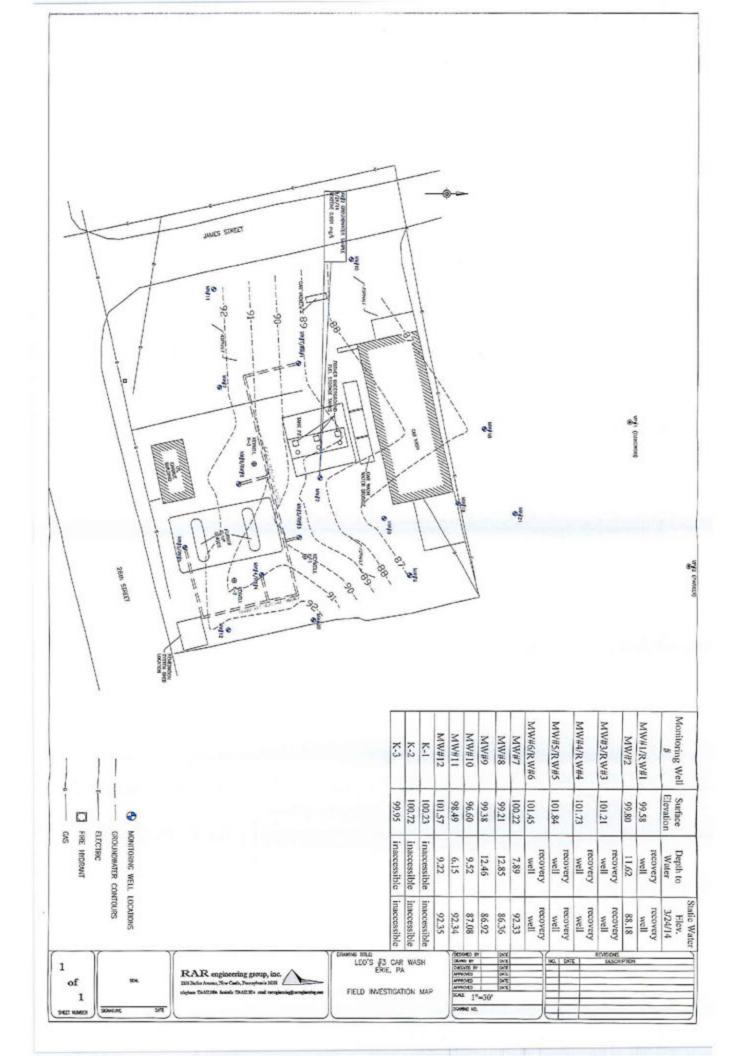
Total Depth: 8'

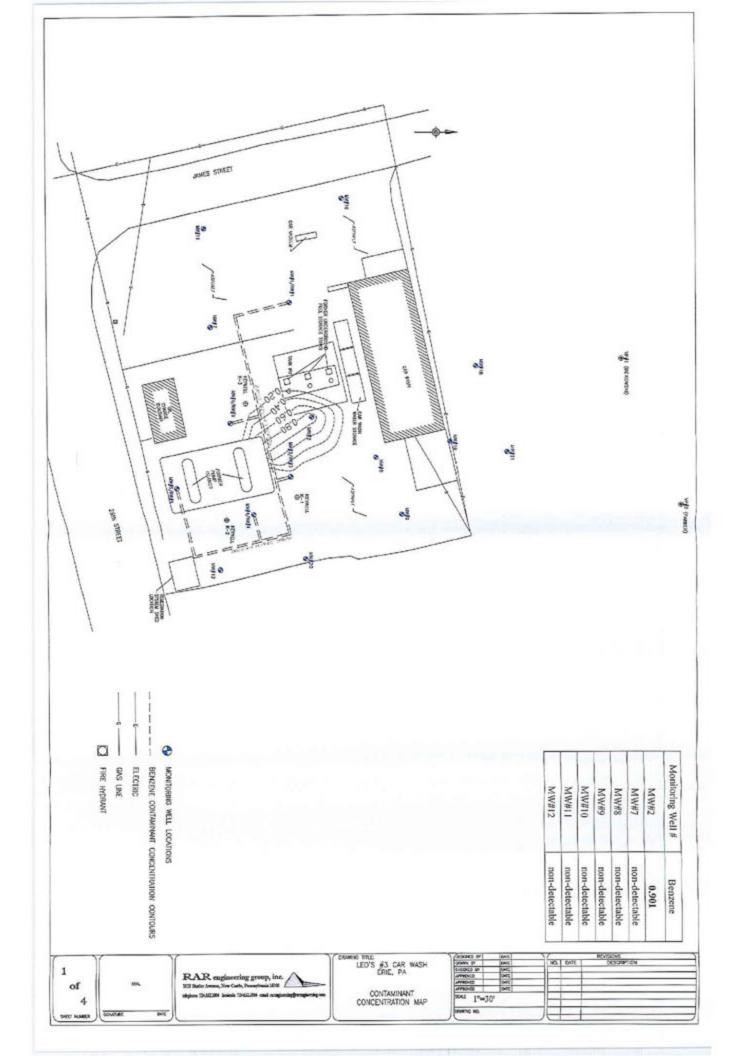
Drilling Method: HAND AUGER
Date Drilled: 3/27/14
Drilled By: ALL PROBE
Logged By: JEREMY HOUK
County: ERIE
Township or Municipality: MILLCREEK TWP

Project Name: LEO'S CARWASH

Depth (Ft.)	Lithologic Discription	Strat. Symbol	San No.	nples Rec/Att	PID Meter Response	Comments	Depth (Ft.)
— 0 —				,			
	BROWN SAND & SMALL GRAVEL WHOLE LENGTH	. 4.		_	_		_
-	ONAVEE MIGEL ELICOTT	4 . 4					
_ — 2		4 4 4					2 —
<u> </u>		.4				•	_
_							_
 4		44					4 —
-		4 4 4					_
_		4 4					_
— 6 -		a .4 . 4					6
<u> </u>		4.					. –
_ 8		A A					- 8
-							
_							-
— —10							10-
_							_
_							-
—12 —							12
							_
_ 14	,						- 14
_							
- -							_
_ 16 <i></i> _	SS\Rar-L\logs\America\Leos Car		10/001	10.46.05	N	JIRA Hasteire	—16—

____inches, From____ To ____


Depth of Ground Water:


Date Measured:

Borehole	Stickup:inche	N/A s, From_	0	To <u>8'</u>	_ Drilled	l By: <u>ALL</u>		
	inche	s, From_		То	_ Logge		REMY HOUK	<u></u>
Total De	epth:8'				_ Count	y: <u>ERIE</u>	nicipality: MILLCREE	K TWD
	f Ground Water: asured:						LEO'S CARWASH	
Date Me	dsured.	<u> </u>				_		
Depth (Ft.)	Lithologic Discription	Strat. Symbol	Sam No.	ples Rec/Att	PID Meter Response		Comments	Depth (Ft.)
L 0 -								0 _
L	BROWN SAND & SMALL	4			_			-
_	GRAVEL WHOLE LENGTH	4		_	_			
		4						_
<u> </u>								2 —
		.44						
		4						-
-								4 —
<u></u> 4		44						-
_		4 4						-
 		4 4						_
- 6								6 —
		4.4						_
		4						-
<u> </u>		4						
<u> </u>								
								-
H								
<u> </u>								10-
F								-
F								-
F								-
12								12-
								-
								-
								14-
<u>14</u>								' -
-								-
_	1			1 1				-

RARgrp-DWGS\Rar-L\logs\Americo\Leos Carwash.dwg, 5/19/2014 10:46:30 AM, \\RARFS1\TOSHIBA Upstairs

APPENDIX B: GROUNDWATER ELEVATION CONTOUR & SITE MAP

APPENDIX C: VAPOR INTRUSION DATA

LEO'S CAR WASH Vapor Intrusion Results 4/1/2014 & 4/25/14

Sample	Benzene	Cumene	Ethyl Benzene	MTBE	Naphthalene	Toluene	m/p-Xylene	o-Xylene
VP #1 (A)								
4/1/2014	2.40	N.D.	14	N.D.	48	36	38	17
4/25/2014	3.3	3.9	12	N.D.	3.4	35	42	12
VP #2 (B)								
4/1/2014	2.0	N.D.	8.6	N.D.	8.4	24	23	11
4/25/2014	6.0	3.5	17	N.D.	6.0	47	61	18
Analytical Limits	270	54,000	1,900	8,100	420	56,000	14,000	14,000

All Units are in ug/m3 Bolded Results Exceed Limits N.D. - Non Detect

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2000 • Fax: 717-658-2691 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

R.A.R. Engineering Group, Inc 1135 Bufler Avenue New Castle PA 16101

April 14, 2014

Project: Leo's

Submittal Date: 04/03/2014 Group Number: 1464286 PO Number: RAR09-082

Client Sample Description
VP-A Air (1)
VP-B Air (2)
VP-B Air (2)
Field Blank Air

State of Sample Origin: PA

The specific methodologies used in obtaining the enclosed analytical results are indicated on the

Laboratory Sample Analysis Record.

Lancaster Labs (LL) # 7418137 7418138 7418139

Attn: Kyle Griffith

ELECTRONIC COPY TO

R.A.R. Engineering Group, Inc

Respectfully Submitted,

Angela M. Miller
Specialist

(717) 556-7260

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VP-A Air(/)

Leo's

LL Sample # AQ 7418137 LL Group # 1464286 Account # 12840

Project Name: Leo's

through 04/01/2014 14:50 Submitted: 04/03/2014 06:15 Reported: 04/14/2014 17:44 Collected: 04/01/2014 10:50 by PK

> 1135 Butler Avenue New Castle PA 16101 R.A.R. Engineering Group, Inc

CAT No. Analysis Name		CAS Number	As Received Final Result	ADL	As Received Final Result	MDL	D F
Volatiles in Air 10341 Helium as Tracer Gas	ASTM D1946 Gas	7440-59-7	ppm(v) N.D.	ppm(v) 30,000	mg/m3 N.D.	mg/m3 4,900	2/
Voletiles in Air	EPA TO-15		ρ ρδ (ν)	ppb (v)	ug/m3	ug/m3	
05298 Benzene		71-43-2	0.76 J	0.20	32.4 J	0.54	Н
05298 Cumene		99-87-8	N.D.	0.20	N.D.	0.98	н
05298 Ethylbenzene		100-41-4	ω ω	0.20	14	0.87	ц
Methyl t-Butyl	Ether	1534-04-4	N.D.	0.20	N.D.	0.72	ч
05298 Naphilalene		91-26-3	9.2	0.40	48	2.1	₽
05298 Toluene		108-88-3	9.4	0.20	36	0.75	ч
05298 m/p-Xylene		179601-23-1	09 09	0.30	38	0.87	l-r
ı		4 1 4	1.9 9	0.20	17	0.87	Ы

General Sample Comments

PA DEF Lab Certification ID 30-00037, Expiration Date: 1/31/15

All QC is compliant unless otherwise noted. Please rafer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Trial# Batch#	Analysis Date and Time	9	Analyst	Dilution Factor
10341	Helium as Tracer Gas	ASTM D1946	۲	14100HE01	04/10/2014	16:17	Florida A Cimino	_
05298	TO 15 VOA Ext. List	EPA TO-15	ب	D1409830AA	04/00/001	14-61	Jeffrey B Smith	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VP-B Air (2) SC# 922

Leo's

LL Sample # AQ 7418138 LL Group # 1464286 Account # 12840

Project Name: Leo's

Submitted: 04/03/2014 08:15 Reported: 04/14/2014 17:44 Collected: 04/01/2014 11:20 through 04/01/2014 15:20

by PK

New Castle PA 16101 1135 Butler Avenue R.A.R. Engineering Group, Inc

No. Analysis Name	CAS Number	As Received Final Regult	MDL	As Received Final Result	MDL	ΣF
Volatiles in Air ASTM D1946	46	ppm(v)	ppm(v)	mg/m3	mg/m3	
acer Gas	744C-59-7	N.D.	30,000	N.D.	4,900	ō
Volatiles in Air EPA TO-15	U.A	ppb (v)	(ਪ) ਬੁਕੋਬੋ	ug/m3	ug/m3	
		0.64 3	0.20	2.0 J	0.64	_
	98-82-8	N.D.	0.20	N.D.	0.98	_
	100-41-4	2.0	0.20	3.6	0.87	۲
_	1634-04-4	N U	0.20	и.в.	0.72	_
	91-20-3	1.6	0.40	8.4	κ. □	_
05298 Toluene	108-88-3	6,3	0.20	24	0.75	ب
05298 m/p Xylena	179601-23-1	5.3	0.20	23	0.87	
	95-47-6	2,5	0.20	11	0.87	۲

General Sample Comments

PA DEP Lab Certification 1D 36-00037, Expiration Date: 1/31/15

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Mathod	Trial#	Trial# Batch#	Analysis Date and Time	Ð	
10341	Helium as Tracer Gas	ASTM D1946	<u>, , , , , , , , , , , , , , , , , , , </u>	141008601	04/10/2014	_	16:26
05298	TO 15 VON Ext. List	EPA TO-15	_	D1409830AA	04/09/20	14	14 15:29

Analysis Report

2425 New Holland Pike, Lancaster, PA 17801 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Field Blank Air SC# 1031

Leo's

LL Sample # AQ 7418139 LL Group # 1464286 Account # 12840

Project Name: Leo's

through 04/01/2014 14:55 Submitted: 04/03/2014 08:15 Collected: 04/01/2014 10:55 ьу рк

Reported: 04/14/2014 17:44

R.A.R. Engineering Group, Inc 1135 Butler Avenue New Castle PA 16101

As received Final Regult MDL	As Received Final Regult	TOT.	Đ
ppm(v)	mg/m3	mg/m3	
10,000	N.D.	1,600	2
ρ ρ b (ν)	ug/m3	ug/m3	
0.20	1.3 J	0.64	r
0.20	N.D.	0.98	₽
0,20	3.6 J	0.87	_
0.20	ダ. し.	0.72	L
0.40	5.4	2.1	1
0.20	2.6 J	0.75	Ľ
0.20	11	0.87	P
0.20	7.0	0.87	μ
	er i	ppm (v) 10,000 10,000 ppb (v) 0.20 0.20 0.40 0.40 0.20 0.20 0.20 0.20	ppm(v) mg/m3 10,000 N.D. ppb(v) ug/m3 0.20 1.3 J 0.20 N.D. 0.20 N.D. 0.40 9.4 0.20 9.4 0.20 2.6 J 0.20 7.0

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

No.					Date and Time			Factor
	Helium as Tracer Gas	ASTM D1946	ш	141.00HR01	04/10/2014 16	s:33 Florida A Cimin	C.	v
	TO 15 100 500 500 5 1100	275 TO-15	_	D1409830AA	04/09/2014 16		mith	۳

2425 New Holland Pike, Lancaster, PA 17601 • 717-856-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page | of I

Quality Control Summary

Group Number: 1464286

Client Name: R.A.R. Engineering Group, Inc Reported: 04/14/14 at 05:44 PM

Watrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

lene lene	Ethylbenzene N. Ethylbenzene N. Methyl t-Butyl Ether N. Nephthalene N.	number: 14100HE01 as Tracer Gas number: D1409830AA e	Analysis Name Ro
		н н	Blank Result
00.20	00000 2224 20000	iumber(s): 7418137-7418139 5,000. ppm(v) 5,000. ppm(v) iumber(s): 7418137-7418139 0.20 ppb(v) 98	Blank MDL
	(v)	7418137-7418139 ppm(v) 7418137-7418139 7256(v) 98	Report
100	1892	98 139 139	82EC ECB
90	90 70 90	œ 6	FCSD %REC
70-130 70-130	70-130 52-129 26-191	70-130	rcs/rcsp Fimits
113	13 23 3	10	RPU
53 K3 K 511 UH 0	សសស ១២២២	ស	RPD Max

^{*-} Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Summa Canister Field Test Data/Chain of Custody 🌣 eurofins For Eurofins Lancaster Laboratories Environmental use only Group # 1464286 Sample # 241843 7 - 3 9 Instructions on reverse side currespond with circled numbers. Acct. #_ 12840 153645 Lancaster Laboratories Bottle Order (SCR) #_ Environmental Client Information 3) Turnaround Time Requested (TAT) (circle one) 6) Analyses Requested Standard Rush (specify) Engineering Hehivin Data Package Required? (5) EDD Required? MTBE P.O. # No 図 (select range below) Temperature (F) Pressure ("Hg) Quote # Start Start Ìg BTEX Stop Ambient Maximum Helium as tracer Minimum EPA TO - 15-7 Search Canister Canister Interior Interior Start Stop EPA 26 Pressure in Pressure in Temp. Temp. Can Controller ibrary Date/Time Date/Time Field ("Hg) Field ("Hg) (F) (F) Size Flowrate Sample Identification (24-hour clock) (24-hour clock) (Start) (Stop) Start (Stop Flow Reg. ID (mL/min) 11114 10:50 4/1/14 VP-A 27 4.5 45 55 339183 930 X 3=166 VP-B 11:20 27 \mathcal{S} ૩*૩*ાજેટ5 922 3.68 411/14,0:55 Field Blank 30 336708 14:44 10381 21,0 7) Instructions/QC Requirements & Comments EPA 25 (check one) C1 - C4 C2 - C10 ☐ C1 - C10 ☐ C4 - C10 (GRO) ☐ C2 - C4 Canisters Received by: elinquished by (8) Date/Time: リル1州 タルは1 Received by: Date/Time Date/⊺ime: Received by

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300. The white copy should accompany samples to Eurofins Lancaster Laboratories Programmental. The value copy should accompany samples to Eurofins Lancaster Laboratories Programmental.

elinquished by:

Date/Time:

4/3/14

Received by:

Lancaster Laboratories

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

_	_	_	g gram(s)	_	_	_	IU Intern			RL Repo
oubic meter(s)	er(s)	nicrogram(s)	(s)	milliequivalents	degrees Celsius	nicromhos/cm	nternational Units	Too Numerous To Count	detected	Reporting Limit
pg/L µL	_	Вш	κg	₽	711	ng	UTN	CP Units	MPN	BMQL

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than

mdd weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas. parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a

ppb parts per billion

Dry weight basis on an as-received basis. Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported

Data Qualifiers:

C – result confirmed by reanalysis.

estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ) - estimated

U.S. EPA CLP Data Qualifiers:

.≨c øz≧mœ	Value is <crdl, but="">IDL Estimated due to interference Duplicate injection precision not met Spike sample not within control limits Method of standard additions (MSA) used for calculation Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits</crdl,>
	+ *\$C OZZMW

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analysed is truly representative of the bulk of material involved, the staff. This report shall not be reproduced except in full, without the written approval of the laboratory test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact

performed within 15 minutes. Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, WRE DISCLAIM ANY OTHER WARRANTY. IN NO EVENT SHALL EUROPINS LANCASTER LABORATORIES ENVIRONMENTAL, LIC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLEGENCE (BITHER SOLE OR CONCURRENT) OF EUROPINS LANCASTER LABORATORIES ENVIRONMENTAL AND (8) WHETHER EUROPINS LANCASTER LABORATORIES ENVIRONMENTAL AND (8) WHETHER EUROPINS LANCASTER LABORATORIES ENVIRONMENTAL AND (8) WHETHER EUROPINS LANCASTER LABORATORIES ENVIRONMENTAL AND (8) WHETHER EUROPINS LANCASTER LABORATORIES ENVIRONMENTAL AND GES, We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Euroffirs Lancaster Laboratories Environmental which includes any conditions that very from the Standard Terms and Conditions, and Euroffirs Laboratories Environmental which includes any conditions that very from the Standard Terms and Conditions, and Euroffirs Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client

2423 New Hoffand Pike, Lencaster, PA 17601 • 717-656-2300 • Fax: 717-656-2881 • www.t.ancaster.Lebs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurolins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

American Env. Assoc., Inc. 1135 Burler Avenue New Castle PA 16101

May 06, 2014

Project: Leo's Car Wash

Submittal Date: 04/29/2014 Group Number: 147/0330 State of Sample Origin: PA

Client Sample Description
VP-B Air (2)
VP-A Air (1)

<u>Lancaster Labs (LL.)</u> # 7445692 7445693

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO

RAR Engineering Group

Attn: Kyle Griffith

Respectfully Submitted,

UMGAWATAHUM Angela M. Miller Specialist

(717) 556-7260

Analysis Report

2425 Now Holland Pike, Loncaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancastorLabs.com

Sample Description: VP-B Air(2)
SC# 851
Leo's Car Wash

LL Sample # AQ 7445692 LL Group # 1470330 Account # 12835

Project Name: Leo's Car Wash

through 04/25/2014 14:30 Submitted: 04/29/2014 07:55 Reported: 05/06/2014 15:59

Collected: 04/25/2014 10:30 by PK

1135 Butler Avenue New Castle PA 16101 American Env. Assoc., Inc.

CAT No. Aualysis Name	CAS Number	As Received Final Result	TOT.	As Received Final Result	МДГ	DF
ᄄ		ppm(v)	ppm(v)	mg/m3	mg/m3	
10341 Helium as Tracer Gas	7440~59~7	N.D.	10,000	N.D.	1,600	N
Volatiles in Air EPA TO-15	•	ppb (v)	(v) qād	ug/m3	ug/m3	
05298 Benzene		1.9	0.20	6.0	0.64	_
05298 Cumene	98 82-8	ن 0.72	0.20	3.5 U	0.98	_
05298 Rthylbenzene	100-41-4	3.9	0.20	17	0.87	_
05290 Methyl t-Butyl Ether	1634-04-4	N.D.	0.20	א.ט.	0.72	Ļ
05298 Naphthalene	91-20-3	1,1	0.40	6.0	2.1	_
05298 Toluene	108-88-3	12	0.20	47	0.75	r
05298 m/p-xylene	17960:-23-1	14	0.20	61	0.87	_
05298 o-Xylene	95-47-6	4,3	0.20	18	0.87	_

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.

All QC is complisht unless otherwise noted. Please rater to the Quality Control Summary for overall QC performance data and associated manples.

No.	error A my o rection		Trial# Baccoff	Analysis Date and Time	Analyst
10341	Holium as Tracer Gas	ASTM D1946	1 14125HEC1	05/05/2014 15:20	Florida A Cimino
95298	TO 15 VOA Ext. List	куд ТО-15	· 1 D1.41203CAA	04/30/2C14 22:58	Mickael A Ziecle

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VP-A Air(1) SC# 823

Leo's Car Wash

LL Sample # AQ 7445693 LL Group # 1470330 Account # 12835

through 04/25/2014 14:15 Submitted: 04/29/2014 07:55 Collected: 04/25/2014 10:15 by PK

Reported: 05/06/2014 15:59

Project Name: Leo's Car Nash

1135 Butler Avenue New Castle PA 16101 American Env. Assoc., Inc.

CAT Analysis Name		CAS Number	As Received Final Result	TOM	As Received Final Result	ADF.	DF
Volatiles in Air	ASTM D1946		(v) wđđ	(v) mqq	mg/m3	mg/m3	
10341 Helium as Tracer Gas	cer Gas	7440-59-7	N.D.	10,000	N.D.	1,600	и
Volatiles in Air	EPA TO-15		ppb (v)	ppb (v)	ug/m3	ug/m3	
05298 Benzene		71-43-2	1.0	0.20	س <u>ا</u>	0.64	ы
05298 Cumene		98-82-8	0.79 J	0.20	3,9 J	0.93	н.
05298 Ethylbenzene		100-41-4	2.7	0.20	12	0.87	Ľ
05798 Methyl t-Butyl	Echer	1634-04-4	N.D.	0.20	N.D.	0.72	۲
05298 Naphthalene		91-20-3	0.64 J	0.40	3.4 J	2.1	Д
		108-86-3	9.3	0.20	35	0.75	1
05298 m/p-Xylene		179601-23-1	9.6	0.20	42	0.87	P
		95-47-6	2.9	0.20	12	0	-

General Sample Comments PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.

All QC is compliant unless otherwise moted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial# Batch	-111	Analysis Date and Time	Ħ	Analyst	Dilution Factor
	Helium as Tracer Gas	ASTM 31946	L		05/05/2014	25:34	Florida A Cimino	N
	TO 15 VOA Ext. List	EFA TO-15	۳	D141203ርሕአ	1106/01/20	02 . AA		_

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 1

Quality Control Summary

Group Number: 1470330

Client Name: American Env. Assoc., Inc. Reported: 05/06/14 at 03:59 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Roport.

Laboratory Compliance Quality Control

o-Xylene	roluene	Naphthalene	Methyl t-Butyl Ether		Cumene	Benzene	Datch number: D1412030AA	Batch number: 14125HE01 Hellum as Tracer Gas	Analysis Name
22. 0.	; z	N.D.	И. D.	N.D.	M.D.	N. D.	Sample	Sample :	Blank Regult
0.20 p	0.20	0.40	0.20	0.20	0.20	0.20	number(s): 7	number(s): 7445692-7445693 5,000. ppm(v)	Blank MDL
(v) qđđ	(v) ddd	(v) ਰਹੇਰੋ	(v) dgg	(v) dag	(v) dqq	(v) ddd	7445692-7448	1445692-7445 ppm(v)	Report Units
(3) (5)	00 1 Un	8D	108	87		80	693	5693	SKEC FC8
မှာ အ မ	85	75	104	85		90			FCSD
70-130 70-130	70-130	36-191	52-129	70-130		70-130			LCS/LCSD
_เ ก	1	Đ	w	N		51			RPD
N 25	25	25	25	25		25			RPD Max

^{*-} Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Summa Canister Field Test Data/Chain of Custody 🔆 eurofins Acct.#_/2835 Bottle Order (SCR) # ___ Lancaster Laboratories Environmental MM ylzdiu Client Information Turnaround Time Requested (TAT) (circle one) Analyses Requested Rush (specify) Per Lyle Account # Amorroan Environmental MTBE Data Package Required? EDD Required? Leos No Yes P.O. # 蚁 (select range below) Temperature (F) Pressure ("Hg) Quote # Start Stop Start Stop **PETEX** Ambient Maximum elium as tracer ibrary Search Minimum Canister Canister Interior Interior Start Stop Pressure in Pressure in Temp. Temp. Controller Field ("Hg) Field ("Hg) (F) Date/Time Date/Time (F) Size Flowrate Sample Identification Flow Reg. ID (24-hour clock) (24-hour clock) (Start) (Stop) (Start) (Stop) (m∐min) 4(25) (710 236813 20.9 シャーB 68 412514 10:30 19:30 -30.0 -8.0 851 6 4135/14 14:15 339239 **V23** VP - A4125/14 10:15 6.30 710 -26.5 21.1 7) Instructions/QC Requirements & Comments EPA 25 (check one) ☐ C1 - C4 C2 - C10 □ C1 - C10 ☐ C4 - C10 (GRQ) □ C2 - C4

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. Page 5 of 6

4/29/14

Lancaster Laboratories
Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

	m3	Ħ	- Dig	ß	meq	c	umhos/cm		TNTC	Z	7
	cubic meter(s)	milliiter(s)	microgram(s)	gram(s)	milliequivalents	degrees Celsius	micromhos/cm	International Units	Too Numerous To Count	none detected	Reporting Limit
pg/L	F	_	рm	kg	ll	_	⊒.	UTN UTN	CP Units	MPX	BMQL
					•		œ	<u>_</u>	Q)	_	-

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than

mdd weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas. equeous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For

ppb parts per billion

Dry weight basis concentration to approximate the value present in a similar sample without moisture. All other results are reported Results printed under this heading have been adjusted for moisture content. This increases the analyte weight on an as-received basis,

Data Qualifiers:

C – result confirmed by reanalysis.

J - estimated value - The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ)

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Þ	TIC is a possible aldol-condensation product	Φ	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
w	Analyte was also detected in the blank	ш	Estimated due to interference
ი	Pesticide result confirmed by GC/MS	Z	Duplicate injection precision not met
0	Compound quantitated on a diluted sample	z	Spike sample not within control limits
ш	Concentration exceeds the calibration range of	(A)	Method of standard additions (MSA) used
	the instrument		for calculation
z	Presumptive evidence of a compound (TICs only)	_	Compound was not detected
7	Concentration difference between primary and	٤	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
-	Compound was not detected	+	Correlation coefficient for MSA < 0.995
ς,Υ,Z	Defined in case narrative		

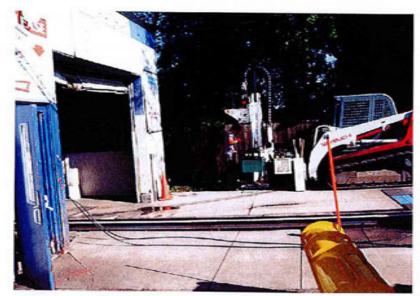
Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

staff. This report shall not be reproduced except in full, without the written approval of the laboratory. us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological

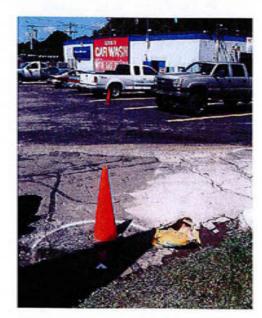
performed within 15 minutes. Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABLETY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LIC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (BITHER SOLE OR CONCURRENT) OF BUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no logal Laboratories Environmental which Includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client. responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster


APPENDIX D: SITE PHOTOGRAPHS

Advancing Off-Site Monitoring Well #18 on Dzikowski

Completed Monitoring Well #18 on Dzikowski


Location of Monitoring Well #19 on Lco's Site

Finishing Cement Around MW #19 on Leo's Site

Location of Monitoring Well #20

Completed Monitoring Well #20 on Leo's Site

Setting-Up to Advance Off-Site MW #21 on Parker Property

Vapor Point on Parker Property

Vapor Point on Dzikowski Property

Photo Depicting Off-Site Properties Down-Gradient of Leo's Car Wash

APPENDIX E: UST CLOSURE REPORT

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

			· 🗵	Closur								
	Change-In-Service	Closure-In-Place	Removal	Closure Method (Check all that apply):						Milloreek Township		
				ly);	.0	Leo's (If Ap	Doug <u>Doleski</u> Name of Person Submitting Report (Please Print)	11 Date	Municipality	ownship	Fac	ר
				Site /	Owner Title	Leo's Car Wash Company Name (If Applicable)	Doug <u>Doleski</u> erson Submitti (Please Print)	11/30/06 Date Prepared	. [ग इ.	Eacility I.D.	>>>
Obvious, Localized Contamination - Sample Results Do Not Meet Standards/Levels	Obvious, Localized Contamination - Sample Results Meet Standards/Levels	No Obvious Contamination - Sample Results Do Not Meet Standards/Levels	No Obvious Contamination - Sample Results Meet Standards/Levels	Site Assessment Results (Check all that apply):		Φ <u></u>	ing Report		County			

_		
	п	
	$\overline{}$	
	7	
	Ш	
	=	
	匝	
1		

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

Owners who are permanently closing underground storage tanks may use this form to demonstrate that an underground storage tank closure was performed in accordance with the "Closure Requirements for Underground Storage Tank Systems" document. PLEASE PRINT OR TYPE. COMPLETE ALL QUESTIONS.

SECTION I. Owner/Facility/Tank/Waste Management and Disposal Information

א תאפווגרס אווייירטע סט			· ·	•	
-			Facility Name Leo's Car yyash	isn	
3. Facility County Erie		Facility Mur	Facility Municipality Millcreek Township	k Township	
5. Facility Address 2938 West 26th Street.	st 26th Street, Erie, PA 16506				
6. Facility Contact Person Doug Doleski		Facility Tel	Facility Telephone Number (814) 833 - 7813	(814)833-7	813
Owner Name Doug Doleski	iki.			i E	
9. Owner Mailing Address 2	Owner Mailing Address <u>2938 West 26th Street, Erie, PA 16506</u>	16506			
10. Description of Undergrou	Description of Underground Storage Tanks (Complete for each tank closed)	for each tank cl	sed)		
DATE OF TANK CLOSURE (Month/Day/Year)	E (Month/Day/Year)	10-10-2006	10- 10 -2006	10- 10 -2006	, -
Tank Registration Number	,	-	2	ω	
Estimated Total Capacity (Gallons)	Sallons)	8000	8000	8000	
Substance(s) Stored	a. Petroleum				
Throughout Operating Life of Tank	Unleaded Gasoline				
(Check All That Apply)	Aviation Gasoline][
	Kerosene				
	Jet Fuel][]_][]][
	Fuel Oil No. 1			⊒L] [
	Fuel Oil No. 2				□ ί
	Fuel Oil No. 4][][]□
	Fuel Oil No. 5][][][
	New Motor Oil				⊐⊏
	Used Motor Oil				
	Other, Please Specify				
NOTE: If Hazardous	b. Hazardous Substance				
Attach Material Safety Data	CERCLA Substance				
Sheets (MSDS)	AND				
	Chemical Abstract Service (CAS) No.				
	c. Unknown				
	a. Removal	×	M	M	
(Check Only One)][]	
Partial System Closure (Vo	c. change-in-service	5 [śΓ	5 🗆	
Fartial System Closure (Yes or No)	s or No)	NO	NO	8	

S

Date: _	⊠ ∏ 15 If a or o	Cons Date:	⊠ 14 An a	⊠ 13. Orig	⊠ 12. Asit		sta	The	11. Brie faci	Yes N/A	Partial System Closure (Yes or No)	(Check Only One)	Classic Mathael	Olegia (MOLO)	Attach Material Safety Data	Substance Block is Checked									(Check All That Apply)	Throughout Operating	Substance(s) Stored	Estimated Total Capacity (Gallons)	Tank Registration Number	DATE OF TANK CI
e: 01 - 23 - 2002	If a reportable release was confirmed, the appropriate regional office of DEP was notified by the owner or operator.	Conservation, Division of Storage Tanks, P.O.	An amended "Registration of Storage Tanks" form was submitted to the DEP, Bureau of Watershed	Original, color photographs of the closure process are attached (i.e., inside of excavation/piping runs pit water, tanks showing condition).	A site location and sampling map of the site, drawn to scale, is attached. See page 11 of 11		station.	The site is a car wash and oil change facility and the tanks were used	Briefly describe the storage tank facility and the nature of the operations which were conducted at the facility (both historical and present) including use of tanks:		ure (Yes or No)	a. Removalb. Closure-in-Placec. Change-in-Service	!	Chemical Abstract Service (CAS) No.	1	b. Hazardous Substance Name of Principal		Used Motor Oil	New Motor Oil	Fuel Oil No. 5	Fuel Oil No. 4	Fuel Oil No. 2	Fuel Oil No. 1	Jet Fuel		ing Unleaded Gasoline	d a. Petroleum	pacity (Gallons)	lumber	DATE OF TANK CLOSURE (Month/Day/Year)
Office: P.	appropriate region	P.O. Box 8762, H	nks" form was si	process are atta	te, drawn to scale			ge facility and t	and the nature of																					-
Office: PADEP's Meadville Office	onal office of Di	Box 8762, Harrisburg, PA 17105-8762	Jbmitted to the	ached (i.e., insi	, is attached. §			the tanks wer	the operations																					
ille Office	EP was notified	17105-8762	DEP, Bureau	de of excavatio	see page 11 of			as a	which were cor] [<u>_</u>]						
	1 by the owner		of Watershed	າກ/piping runs,	1			retail service	nducted at the]]]['

							⊠ ¥es
	\boxtimes			. 🖂			□NA
	19,	18		17.			16.
o	<u>ه</u> ج	. US Brie	à	23 α, 13 α,	ò	,	.a. =£
If contaminated soil is determined/deemed to be hazardous waste, provide: (1) Generator ID Number: (2) Licensed Hazardous Waste Transporter Name and ID Number:	If contaminated soil is excavated: a. Briefly describe the disposition and amount (tons) of contaminated soil. Provide the name and permit number of the processing, treatment, storage or disposal facility. (Attach documentation of proper disposal):	Briefly describe the disposition of tanks/piping (Attach documentation of proper disposal): UST's and related piping were cut for scrap.	If tank contents were d determined/deemed to be hazardous waste, provide: (1) Generator ID Number: (2) Licensed Hazardous Waste Transporter Name and ID Number:	If tanks were removed from the site for cleaning: a. Provide the name and permit number of the processing, treatment, storage or disposal facility performing the tank cleaning:	If tank contents were determined/deemed to be hazardous waste, provide: (1) Generator ID Number: N/A (2) Licensed Hazardous Waste Transporter Name and ID Number:	Briefly describe the disposal of unusable product, sludges, sediments, and wastewater generated during cleaning. Provide the name and permit number of the processing, treatment, storage or disposal facility. (Attach documentation of proper disposal): Unusable_material from tanks were placed in metal 55 gallon drums on site and disposed of properly.	If tanks were cleaned on-site: a. Briefly describe the disposition of usable product: The tanks contained no usable product at the time of removal.

	I, <u>Doug D</u> (relating to information	□ Yes
	I, <u>Doug Doleski</u> (relating to uns information pro and belief.	□ N/A
	nswoi rovid	20.
Signature of Tank Owner	hereby certify, under (Print Name) n falsification to authorities) that I am the owner of the first of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner of the country many that I am the owner owner of the country many that I am the owner	20. Briefly describe the disposition of and amount <u>N/A</u> (tons) of uncontaminated soil (attach analyses):
// 3= 0% Date	, <u>Doug Doleski</u> (Print Name) , hereby certify, under penalty of law as provided in 18 Pa. C.S. §4904 (relating to unsworn falsification to authorities) that I am the owner of the above referenced storage tank(s) and that the information provided by me in this closure report (Section I) is true, accurate and complete to the best of my knowledge and belief.	(tons) of uncontaminated soil (attach analyses):

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION II. Tank Handling Information

Facility ID Number 25 - 90615

\boxtimes		\boxtimes				Үвз
	\boxtimes					N/A
7.	Ó	Çri	4.	ယ	ю	 `
If contamination was suspected or observed, the "Notification of Contamination" form was submitted.	If tanks were closed-in-place, briefly describe the tank fill material:	If tanks were cleaned on-site: a. Briefly describe the tank cleaning process: _The tanks were entered and physically cleaned with. band tools and absorbant pads. b. If subcontracted, name and address of company that performed the tank cleaning:	Briefly describe the method used to purge the tanks of and monitor for explosive vapors: An inductive diffuser was utilized to purge explosive vapors from the storage tanks. During the activities a LEL meter was used to monitor tanks for explosive vapors.	Briefly describe the condition of the tanks and any problems encountered during tank removal: The tanks were in relatively good shape at the time of removal.	were placed back into the pit. Briefly describe the method of piping system closure and the closure of the piping systems including the quantity and condition of the piping: The piping was removed and disposed of as scrap.	Briefly describe the excavation and initial on-site staging of uncontaminated/contaminated soil: The site has had a site characterization performed and a remedial action plan developed. There is presently a remediation system in place and working at the subject site. Soils from the excavation

UNDERGROUND STORAGE TANK **CLOSURE REPORT FORM**

SECTION III. Site Assessment Information

Tank Registration # _001_ (complete one sheet for EACH tank system and attach ALL laboratory sheets pertaining to that system)

Facility ID Number 25 - 90615

	The second of th
≯	Provide depth of $BEDROCK$ and $WATER$ IF encountered during excavation or soil boring (write "N/A: if NOT encountered).
	Bedrock N/A feet below land surface Water 8 feet below land surface
	Provide Length of <i>PIPING</i> <u>IF</u> piping was closed-in-place (write "N/A" if NOT closed-in-place). Length of piping <u>N/A</u> feet
ဂ	TANK SYSTEM REMOVED FROM THE GROUND 1). Was obvious contamination observed while excavating?
	 NO> Conduct confirmatory sampling> See end of this section for options on submission and maintenance of closure records> Do not complete item C.2. below. ✓ YES> Report release to DEP within 2 hours> Describe contamination observed and likely source(s) tank, piping, dispenser, spills, overfills): Contamination was from previous leaking system in this tank pit prior to removal of tanks during this
	excavation→ Complete item C.2. below.
	2). Was contamination localized (within three feet of the tank system in every direction with no obvious water contamination)? If YES
Ġ.	submission and maintenance of closure records
	Was <u>obvious contamination</u> observed during sampling, boring or assessing water depths? ☐ NO ———————————————————————————————————
	YES→ Report release to DEP within 2 hours→ Describe contamination observed and likely source(s) tank, piping, dispenser, spills, overfills):
	Continue with corrective action

ĹШ If the answer to C.1. is "no", the answer to C.2. if "yes" or the answer to D. is "no", confirmatory samples are required. Use the sample/analysis information sheet on page 10 of 11 to provide the information on confirmatory sampling and complete the diagram on Page 11 of 11.

Options for Submission and Maintenance of Closure Site Assessment Records

change-in-service in one of the following ways: Records of the site assessment must be maintained for at least three years after completion of permanent closure or

By the owners and operators who took the UST system out of service;
By the current owners and operators of the UST system site; or
By mailing these records to the implementing agency if they cannot be maintained at the closed facility.

At least one option must be chosen. If option (c) is chosen, the closure report form should be sent to the DEP regional office responsible for the county in which the tank is located.

Where the results of the site assessment indicate that obvious, localized soil contamination was encountered and the analytical results of the confirmatory sampling show levels below the statewide standard/action levels, this closure report form (Sections I, II, and III) or some other acceptable site characterization report must be received by the Department within 180 days of verbally reporting the release.

encountered, but the analytical results of the confirmatory sampling show levels above the statewide standard/action levels, or where there is obvious, extensive contamination, Section 245.310(a)(8) of the CAP regulation requires that details of removal from service be included in the site characterization report. A copy of the completed dosure report form should be submitted as part of the site characterization report to satisfy the requirements of Section 245.310(a)(8) of the Where the results of the site assessment indicate that no obvious contamination or obvious, localized contamination was

I, Patrick E. Pruent

, hereby certify, under penalty of law as provided in 18 Pa. C.S. §4904 (relating

Professional Geologist Title of Person Performing Site Assessment	Signature of Person Performing Site Assessment	(Print Name) (P
American EnvironmentalAssociates, Inc. Name of Company Performing Site Assessment	// / 30/ 06 Date	rformed the site assessment activities associated with information provided by me in this closure reportinge and belief.

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

Sample/Analysis Information (Attachment for Section III.)

Facility ID Number 25 - 90615

1 1	1							
10 / 11 / 06	10/10/06	0.2 mg/kg	<0.2 mg/kg	Soll	т	5035/8260B	МТВЕ	
10 / 11 / 06	10 / 10 / 06	0.2 mg/kg	0.25 mg/kg	Soil	п	5035/8260B	Naphth- alene	
10 / 11 / 06	10 / 10 / 06	0.2 mg/kg	<0.2 mg/kg	Soil	—	5035/82608	Cumene	
10/11/06	10 / 10 / 06	0.2 mg/kg	<0.2 mg/kg	Soll	Ш	5035/8260B	Xylenes	
10/11/06	10 / 10 / 06	0.2 mg/kg	<0.2 mg/kg	Soil	m	5035/8260B	Ethyl Benzene	
10/11/06	10 / 10 / 06	0.2 mg/kg	<0.2 mg/kg	Soil	ш	5035/8260B	Toluene	
10/11/06	10 / 10 / 06	0.1 mg/kg	<0.1 mg/kg	Soil	ш	5035/8260B	Benzene	HW60545
1 1	1 1							
10 / 11 / 06	10 / 10 / 06	0.2 mg/kg	0.23 mg/kg	Soil	ш	5035/8260B	MTBE	
10/11/06	10/10/06	0.2 mg/kg	<0.2 mg/kg	Soil	E	5035/8260B	Naphth- alene	
10/11/06	10/10/06	0.2 mg/kg	<0.2 mg/kg	Soil	וון	5035/8260B	Cumene	
10/11/08	10/10/06	0.2 mg/kg	<0.2 mg/kg	Soil	[TI	5035/8260B	Xylenes	
10/11/06	10 / 10 / 06	0.2 mg/kg	<0.2 mg/kg	Soil	Е	5035/8260B	Ethyl Benzene	
10 / 11 / 08	10/10/06	0.2 mg/kg	<0.2 mg/kg	Soil	m	5035/8260B	Toluene	
10 / 11 / 06	10 / 10 / 06	0.1 mg/kg	<0.1 mg/kg	Soil	m	5035/8260B	Benzene	HW60544
Date Sample Analyzed	Date Sample Taken	Detection Limit (units)	Result (units)	Media		Analytical Method ¹	Parameter	(See diagram)

Facility ID Number 25 - 90615

Sample I.D. (See diagram)	Parameter	Analytical Method ¹		Media	Result (units)	Detection Limit (units)	Date Sample Taken	Date Sample Analyzed
HW60546	Benzene	5035/8260B	ш	Soil	3.57 mg/kg		10/10/06	10 / 11 / 06
	Toluene	5035/8260B	т	Soil	7.32 mg/kg	0.2 mg/kg	10/10/06	10 / 11 / 06
	Ethyl Benzene	5035/8260B	т	Soll	0.84 mg/kg	0.2 mg/kg	10 / 10 / 06	10 / 11 / 06
	Xylenes	5035/8260B	П	Soil	3.35 mg/kg	0.2 mg/kg	10 / 10 / 06	10 / 11 / 06
	Cumene	5035/8260B	т.	Soil	<0.2 mg/kg	0.2 mg/kg	10 / 10 / 06	10 / 11 / 06
	Naphtha- lene	5035/8260B	m	Soll	0.43 mg/kg	0.2 mg/kg	10 / 10 / 06	10/11/06
	BBTM	5035/8260B	ш	Soil	<0.2 mg/kg	0.2 mg/kg	10 / 10 / 06	10/11/06
							1	, ,
HW60547	Benzene	5035/8260B	ш	Soil	0.10 mg/kg	0.1 mg/kg	10 / 10 / 06	10 / 11 / 06
:	Toluene	5035/8260B	π	Soil	1.13 mg/kg	0.2 mg/kg	10 / 10 / 06	10 / 11 / 06
	Ethyl Benzene	5035/8260B	m	Soil	1.18 mg/kg	0.2 mg/kg	10 / 10 / 06	10 / 11 / 06
	Xylenes	5035/8260B	rn	Soil	8.60 mg/kg	0.2 mg/kg	10 / 10 / 06	10 / 11 / 06
	Cumene	5035/8260B	ш	Soil	0.35 mg/kg	0.2 mg/kg	10 / 10 / 06	10/11/06
	Naphtha- lene	5035/8260B	m	Soil	1.41 mg/kg	0.2 mg/kg	10 / 10 / 06	10/11/06
	MTBE	5035/8260B	т	Soli	<0.2 mg/kg	0.2 mg/kg	10/10/06	10/11/06
							1 1	1 1
							1 1	1 1
	:						1 1	1 1

¹ Where EPA Method 5035 is required, indicate sample collection option in the right hand box of this column using the following codes:

P - Samples placed in a soil sample vial with a preservative present.

E - Samples collected and stored in a soil collection device which is airtight and affords little to no headspace.

N - Samples placed in soil sample vial without a preservative present.

Site Location and Sampling Map - Use this page or suitable facsimile to provide a large scale map of the site where tanks were closed. Scales between 1" = 10 and 1" = 100 feet frequently work out well. Include the following information as each applies to the site: facility name and I.D., countly, township or borough, property boundaries or area of interest, buildings, roads and streets with names or route numbers, utilities, location and ID number of storage tanks removed including piping and dispensers, soil stockpile locations, excavations or other locations of product recovery, north arrow, approximate map scale and legend. Also show depth and location of samples with sample ID numbers cross-referenced to the same ID numbers shown on Page 10 of 11.

		Township/Borough: Millcreek Township	County: Erie	Facility Name and ID: 25 - 90615

APPENDIX F: REMEDIAL ACTION PLAN

UNDERGROUND STORAGE TANK FACILITY REVISED REMEDIAL ACTION PLAN

LEO'S 3 CAR WASH 2938 WEST 26TH STREET ERIE, PENNSYLVANIA 16506

FACILITY ID# 25-90615

CITY OF ERIE ERIE COUNTY, PENNSYLVANIA

PREPARED: May 2014

1135 Butler Avenue • New Castle, PA 16101 Phone: (724) 652-1004 • Fax: (724) 652-3814

LEO'S 3 CAR WASH 2938 WEST 26TH STREET ERIE, PENNSYLVANIA 16506

FACILITY ID# 25-90615

REVISED REMEDIAL ACTION PLAN

CITY OF ERIE ERIE COUNTY, PENNSYLVANIA

PREPARED FOR:

LEO'S CAR WASH 2938 WEST 26TH STREET ERIE, PENNSYLVANIA

PREPARED BY:

AMERICAN ENVIRONMENTAL ASSOCIATES, INC. 1135 BUTLER AVENUE NEW CASTLE, PENNSYLVANIA 16101

TABLE OF CONTENTS

(1)	SUMMARY OF SITE CHARACTERIZATION REPORT CONCLUSIONS 1thru4
(2)	PLANS RELATING TO WORKER HEALTH AND SAFETY4
(3)	FEDERAL, STATE & LOCAL PERMITS AND APPROVALS NEEDED TO
	CONDUCT REMEDIAL ACTIONS4
(4)	DISCUSSION OF HOW THE REMEDIAL ACTION WILL ATTAIN THE SELECTED
	REMEDIATION STANDARD FOR THE SITE5 and 6
(5)	RESULTS OF PILOT STUDY - REMEDIAL FEASIBILITY
	Remedial Feasibility Testing
	Vapor Recovery Data7 & 8
	Hydraulic / Pneumatic Influence
(6)	DESIGN AND CONSTRUCTION DETAILS9
(7)	OPERATION AND MAINTENANCE9
(8)	SITE MAP DEPICTING BUILDINGS, ROADS, PROPERTY BOUNDARIES AND
	OTHER PERTINENT9
(9)	DESCRIPTION OF THE MEDIA AND PARAMETERS TO BE MONITORED AND
	SAMPLED9&10
(10)	DESCRIPTION OF ANALYTICAL METHODS TO BE UTILIZED
(11)	DESCRIPTION OF THE METHODOLOGY THAT WILL BE UTILIZED TO
	DEMONSTRATE ATTAINMENT OF THE SELECTED STANDARD10 thru 12
(12)	DESCRIPTION OF PROPOSED POSTREMEDIATION CARE REQUIRMENTS 12
(13)	DESCRIPTION OF ADDITIONAL ITEMS NECESSARY TO DEVELOP THE
	REMEDIAL ACTION PLAN
	APPROVIDEGUE
	APPENDICES
Appe	endix A: Plans Relating to Worker Health and Safety
Appe	endix B: Field Tests - Charts, Graphs and Tables
Appe	endix C: Design and Construction Detail
Appe	endix D: Site Map Depicting Buildings, Roads, Property Boundaries and Other Pertinent Information

REVISED REMEDIAL ACTION PLAN LEO'S CAR WASH FACILITY I.D. #25-90615

(1) Summary of Site Characterization Report Conclusions

American Environmental Associates, Inc. (AEA) has been contracted by Leo's 3 Car Wash to provide environmental services pursuant to Underground Storage Tank (UST) corrective action and Land Recycling and Environmental Remediation Standards Act (Act 2) regulations at the subject site. The site is an oil change service and automated car wash located at 2938 West 26th Street, Millcreek Township, Erie County, Pennsylvania.

Corrective actions were initiated in response to a release that was discovered during construction of a new canopy on January 23, 2002. The release was eventually found to be associated with a loose swing joint in the regular unleaded line for the middle dispenser. A minor amount of contaminated soil was removed; approximately five tons, and then the new canopy footers were poured. The swing joint lead was repaired at this time. Clean soil conditions were never obtained and over excavation was not performed at this time due to site restraints. A Notification of Contamination was submitted to the PADEP's Meadville Office on January 23, 2002.

An Initial Site Characterization report was prepared and dated November 27, 2002 documenting the installation of monitoring wells MW#1 through MW#6. These wells were installed to delineate subsurface impacts.

In October of 2002 monitoring wells MW#1 through MW#6 were installed to delineate subsurface impacts. Soils samples were collected on October 29, 2002 and October 30, 2002. Soil sample results showed exceedances of Benzene and of MTBE. Groundwater exhibited levels of benzene, tolucne, ethylbenzene, naphthalene and MTBE that exceeded Statewide Health Standards.

An Interim Site Characterization Report was prepared and dated February 13, 2003 documenting the installation of Monitoring Wells MW #7, MW# 8, and MW #9. These wells were installed to further delineate sub-surface contamination. Monitoring well soil samples were collected on January 17, 2003 for MW #7, MW# 8, and MW #9. The analytical results for soil were within the PADEP's Statewide Health Standards for Used Aquifers in Soil. Groundwater impacts were still present.

During April of 2003, AEA installed monitoring wells MW#10, MW# 11, and MW #12. Monitoring wells soil samples were collected on April 8, 2003 from MW#10, MW#11 and MW#12. The analytical results were within the PADEP's Statewide Health Standards for Used Aquifers in Soil. Groundwater analytical results indicated that monitoring wells MW#1, MW#2, MW#5, MW#6, MW#8, MW#9, MW#10 and MW#12 exceed Statewide Health Standard of Used Aquifers for one or more of the required parameters for unleaded gasoline.

In May of 2003, AEA submitted an overall Site Characterization Report for the facility. The report summarized site characterization activities including the drilling and installation of twelve groundwater monitoring wells and the collection of twelve soil samples and twelve groundwater samples.

A Remedial Action Plan was submitted to the PADEP on July 18, 2003. This plan recommended that American Environmental Associates, Inc. install a system to remediate the dissolved gasoline contaminates in the groundwater at the site. In a letter dated July 28, 2003, the DEP approved the Plan. The system is a dual phase high vacuum extraction (DPE). Monitoring wells MW#1, MW#3, MW#4, MW#5 and MW#6 were utilized as recovery wells.

Site preparation included the installation of below grade recovery piping (2-inch diameter, schedule 40 PVC) and modification of the recovery well heads. Trenching was done for electric, vapor extraction, groundwater recovery piping and a discharge line to the groundwater discharge location.

The remediation system consists of a 7.5 Hp oil sealed liquid ring pump (LRP) to recover liquid and vapor phase fluids. The pump consists of a shrouded rotor which rotates freely within an eccentric casing. There is no metal to metal contact between the rotor and casing. Centrifugal force acting on liquids within the pump causes the liquids to form a ring inside the casing. A fixed port cylinder, concentric with the rotor, directs the gas into the suction ports. Gas is trapped between the blades by the liquid pistons formed by centrifugal force as the liquid recedes from the port cylinder. It is trapped at the point of maximum eccentricity and is then compressed by the liquid ring as it is forced radially inward toward the central port cylinder. After each revolution, the compressed gas and accompanying liquid are discharged. During the pumping cycle, the gas is in intimate contact with the sealing liquid and compression is nearly isothermal. When handling saturated vapor-gas mixtures, the liquid ring acts as a condenser, greatly increasing the effective capacity of the pump. Seal liquid will be oil supplied via a reservoir mounted on the LRP skid.

The recovered fluids are pumped through a vapor/liquid knockout tank. Liquids are then directed, via transfer pump, through liquid phase granular activated carbon absorbers (GACA) to municipal sewage. Vapors are drawn from the knockout tank through the LRP and vapor phase GACA's and discharged to the atmosphere. Treatment of the vapors are conducted through two carbon units.

The system was put into operation in the first quarter of 2005 in order to obtain results to prepare a pay for performance proposal for the Underground Storage Tank Insurance Fund. The contract was executed and the system was put into operation permanently in January 4, 2006.

In July of 2012, AEA submitted a revised RAP to PADEP for the installation of five additional groundwater recovery wells. In November of 2012, PADEP requested the installation of additional P.O.C. wells before they would approve the revised RAP. In November of 2012, AEA submitted a proposal to the PADEP for the additional P.O.C.

wells they had requested. In May of 2013, PADEP approved the installation of additional P.O.C. wells. In July of 2013, P.O.C. wells MW#18, MW#19, and MW#20 were installed.

In November of 2013, the DEP directed the installation of one additional off-site monitoring well to be located downgradient of monitoring well MW#19. On March 27, 2014 monitoring well MW#21 was installed. Two vapor points were also installed on March 27, 2014 next to the homes located on two off-site properties; VP-A was installed at the Dzikowski property and VP-B was installed at the Parker property (Analytical analyses are attached in this report).

Groundwater delineation has been completed at the subject site.

AEA is now proposing the installation of five additional recovery wells. RW #13, RW #14, RW #15, RW #16 and RW #17 as illustrated on the attached Field Investigation Map. This is in order to help expedite achievement of the proposed Statewide Health Standard.

(2) Plans Relating to Worker Health and Safety

Attached in Appendix A

(3) Federal, State & Local Permits and Approvals Needed to Conduct Remedial Actions

Permit No. GRP #09-01 for groundwater discharge to City of Erie Wastewater Treatment Facility.

A Request for Determination of Requirement for Plan Approval/Operating Permit (RFD) was submitted to the PADEP Bureau of Air Quality.

(4) Discussion of How the Remedial Action Will Attain the Selected Remediation Standard for the Site

A Remedial Action Plan was submitted to the PADEP in July of 2003. The plan recommended that American Environmental Associates, Inc. install a system to remediate the dissolved gasoline contaminates in the groundwater at the site. The system is a dual phase high vacuum extraction (DPE). Monitoring wells MW#1, MW#3, MW#4, MW#5 and MW#6 are utilized as recovery wells.

Site preparation included the installation of below grade recovery piping (2-inch diameter, schedule 40 PVC) and modification of the recovery well heads. Trenching was done for electric, vapor extraction, groundwater recovery piping and a discharge line to the groundwater discharge location.

The remediation system consists of a 7.5 Hp oil sealed liquid ring pump (LRP) to recover liquid and vapor phase fluids. The pump consists of a shrouded rotor which rotates freely within an eccentric casing. There is no metal to metal contact between the rotor and casing. Centrifugal force acting on liquids within the pump causes the liquids to form a ring inside the casing. A fixed port cylinder, concentric with the rotor, directs the gas into the suction ports. Gas is trapped between the blades by the liquid pistons formed by centrifugal force as the liquid recedes from the port cylinder. It is trapped at the point of maximum eccentricity and is then compressed by the liquid ring as it is forced radially inward toward the central port cylinder. After each revolution, the compressed gas and accompanying liquid are discharged. During the pumping cycle, the gas is in intimate contact with the sealing liquid and compression is nearly isothermal. When handling saturated vapor-gas mixtures, the liquid ring acts as a condenser, greatly increasing the effective capacity of the pump. Seal liquid will be oil supplied via a reservoir mounted on the LRP skid.

The recovered fluids are pumped through a vapor/liquid knockout tank. Liquids are then directed, via transfer pump, through liquid phase granular activated carbon absorbers (GACA) to municipal sewage. Vapors are drawn from the knockout tank

through the LRP and vapor phase GACA's and discharged to the atmosphere. Treatment of the vapors is conducted through two carbon units.

The system was put into operation in the first quarter of 2005 in order to obtain results to prepare a pay for performance proposal for the Underground Storage Tank Insurance Fund. The contract was executed and the system was put into operation permanently in January 4, 2006. The system operates under the City of Erie Wastewater Groundwater Remediation Permit No. GRP 09-01. Quarterly reports are submitted to the City of Erie documenting analytical results and approximate volume of discharge.

The system was operational throughout the first quarter of 2014. The treatment system pumped approximately 22,097 gallons of water in the first quarter of 2014 and approximately 4,242,057 gallons of water since the system was put into operation.

AEA is now proposing the installation of five additional recovery wells. RW #13, RW #14, RW #15, RW #16 and RW #17 as illustrated on the attached Field Investigation Map. This is in order to help expedite achievement of the proposed Statewide Health Standard.

A Residential Used Aquifer Statewide Health Standard was chosen for this site.

(5) Results of Pilot Study - Remedial Feasibility Testing

On June 24, 2003, a dual phase vacuum enhanced extraction test was performed on monitoring well MW-3. The purpose of the test was to characterize the hydraulic and pneumatic properties of the shallow aquifer and vadose zone and to evaluate high vacuum soil vapor extraction (SVE) as a remedial alternative.

During the test vapor and water were extracted, separated and monitored. An Atlantic Fluidies A-20 (3 Hp) Liquid Ring Pump (LRP) was employed to extract vapors. In order to facilitate fluid extraction, the recovery well (MW#2) was fitted with an

airtight scal. A one-inch diameter drop tube was inserted through the scal, approximately 7.5 feet into the water table. Vapors and groundwater were extracted through the drop tube. After separation, groundwater was discharged through a 200-pound carbon vessel.

Remedial Feasibility Testing

The following data was recorded from the extraction well during the test: applied vacuum, water flow rates, vapor flow rate, lower explosive limit (% LEL), photo ionization detector (PID) readings and oxygen (% O₂). Depth to water was recorded in all monitoring wells prior to and after aquifer testing. Vapor and groundwater recovery was performed simultaneously. Magnahelic gauges were mounted on select monitoring wells and monitored for vacuum response during the test.

Vapor Recovery Data

Testing was initiated by applying a wellhead vacuum of 25 inches of mercury. Airflow was measured through a rotometer mounted on the exhaust port of the LRP. An airflow of 4.0 to 6.0 standard feet per cubic minute (SCFM) was obtained.

Vapor effluent samples were collected and field screened periodically throughout the test. PID readings ranged from 30 to 266 parts per million (ppm). Per cent LEL and O_2 readings were taken in conjunction with the PID. LEL readings ranged from 5 to 28%. O_2 readings ranged from 20.0 to 20.9 %. Table 1 contains a summary of the field screening data.

Hydrocarbon removal rates were calculated using %LEL and airflow obtained from the field measurements. Hydrocarbon removal rates are summarized in Table 1. Vapor recovery rates ranged from 0.05 to 0.27 lbs./hr. Removal rates were calculated using equations developed by the American Petroleum Institute (API). A sample equation is provided below Table 1.

A time-series plot (%LEL, %O₂ and hydrocarbon recovery vs. time) is presented as Chart 1.

A vapor sample was collected at the end of testing. The sample was submitted to Environmental Laboratory Services, Inc. and analyzed for Benzene, Toluene, Ethylbenzene, Xylenes, Methyl-t-butyl ether (MTBE) and Gasoline Range Organics (GRO). The results are summarized below and indicate that appreciable hydrocarbon recovery was still occurring at the end of remedial testing.

Benzene	Tolucne	Ethylbenzene	Xylenes	MTBE	GRO
25.8	2.83	3.74	3.78	<0,1	300

Results are reported in ppm.

Hydraulic / Pneumatic Influence

Groundwater was recovered at an average of 1.22 gallons per minute (gpm) following stabilization. Monitoring wells MW#1, MW#2, MW#3, MW#4, MW#5, MW-6, MW#7, and MW#8 were gauged prior to and after testing. Drawdown at recovery well MW#2 corresponds to the bottom of the drop tube. Drawdown ranged from -0.04 (MW#4) to -2.91° (MW#3) feet. Groundwater drawdown data is summarized in Table 2.

Magnahelic gauges were mounted on adjacent monitoring wells (MW#1, MW#3, MW#4, MW#6, MW#7 and MW#8) to measure resultant formation vacuums. A maximum vacuum response of 1.5 inches of water was obtained in MW#1. An induced vacuum of 0.1 inches of water was observed in monitoring well MW#8. Vacuum response data is summarized on Table 3. Vacuum response data from select wells is graphed on Chart 2.

Groundwater drawdown data generated during remedial testing indicates that a cone of depression of approximately 57 feet was created while pumping MW#2 at a relatively low flow rate of 1.2 gpm. Trends in the data suggest the cone of depression will be further expanded with long term pumping. Vacuum response data indicates a zone of influence of approximately 57 feet was achieved during testing. This data suggests that an applied vacuum of at least 23 inches of mercury is more than adequate to

create an SVE radius of influence. Charts, graphs and tables of the field tests are attached in Appendix B.

(6) Design and Construction Details

Attached in Appendix C.

(7) Operation and Maintenance Details

The remediation system will be checked twice per month to assure proper working conditions. It is anticipated that effluent water will be sampled once a month as per local sewage authority permit requirements. Flow meter measurements from the effluent water will also be taken monthly. Both water and air activated carbon units will be sampled monthly before and between activated carbon units to determine the effectiveness of the units. Groundwater samples will be obtained quarterly from monitoring wells MW #2, MW #7, MW #8, MW #9, MW #10, MW #11, MW #12, MW #17 and MW #18 to determine the effectiveness of the remediation system. Static water levels will be obtained quarterly from all non-pumping monitoring wells. Results of the above referenced sampling will be summarized in a quarterly remedial action status report.

(8) Site Map Depicting Buildings, Roads, Property Boundaries And Other Pertinent Information

The Site Map is attached in Appendix D.

(9) Description of the Media and Parameters to be Monitored & Sampled

The remediation system will be inspected at least once a month to assure proper working condition. Static water levels will be taken from all monitoring wells. Quarterly groundwater samples will be taken for monitoring wells MW#2, MW#7, MW#8, MW#9, MW#10, MW#11, MW#12, MW #17, MW #18 & MW #21 and analyzed for unleaded gasoline parameters (EPA 5030B/8260B).

Before, between and after activated carbon treatment water samples will be obtained monthly and analyzed for Benzone, Toluene, Ethylbenzene, Xylene, Cumene, Naphthalene, and MTBE. Air samples will be taken monthly before, between, and after activated carbon treatment and analyzed for Benzene, Toluene, Ethylbenzene, Xylene, MTBE, and Gasoline Range Organics.

The result of analytical testing during each quarter will be summarized in a Quarterly Remedial Action Progress Report and submitted to the Pennsylvania Department of Environmental Protection.

(10) Description of Analytical Methods to be Utilized

Analyzed for unleaded gasoline parameters (EPA 5030B/8260B).

(11) Description of the Methodology That Will be Utilized to Demonstrate Attainment of the Selected Standard

AEA installed two (3) downgradient monitoring wells (MW #18, MW #19 and MW #21) as depicted on the attached field investigation map. These wells are located downgradient on the Leo's Car Wash northern property boundary. The wells are constructed of ¾ inch PVC installed to a depth of approximately 12 feet. The wells will have 10 feet of slotted screen with a 2 foot riser. The depth of the wells was determined by the seasonal low water table prior to the installation of the remediation system. The reason for the ¾ inch wells are site constrictions and are being advanced utilizing a geoprobe rig per site and off-site constraints. AEA believes this will address the RAP that was approved by the Department in 2003 that stated further downgradient groundwater characterization was needed. Monitoring wells MW #18 & MW #21 confirms that no off-property contamination has occurred (Analytical results are attached in this report).

AEA proposed in the RRAP of July 25, 2012 to expand the remediation system to include recovery wells #13, #14, #15, and #16. AEA is now proposing an additional recovery well #17 (depicted on attached field investigation map) to include the area of

soil impact noted in the UST Closure Report that was submitted to the Department in December of 2006.

It was noted in the disapproval letter that vapor intrusion has not been addressed at the site. AEA proposes to install two (2) vapor points at the locations illustrated on the attached field investigation map. The vapor points will be constructed using a manufactured vapor point consisting of a 1" PVC pipe that has a 1 foot sand packed screen interval and risers that are sealed with bentonite to the surface. Samples will be collected using SUMMA canisters in accordance with standard operating procedures described in PADEP's guidance and sent to Lancaster Laboratories, in Lancaster, PA for analysis.

Additionally, random sampling will be conducted during field activities in order to address soil attainment at the site. Random sample locations are shown on the attached map. The depths of the samples are also included. The Department's Systematic Random Sampling Workbook Program was used in order to choose the locations and depths for the samples.

The current remediation system consists of a 7.5 Hp oil sealed liquid ring pump (LRP) to recover liquid and vapor phase fluids. The pump consists of a shrouded rotor which rotates freely within an eccentric casing. There is no metal to metal contact between the rotor and casing. Centrifugal force acting on liquids within the pump causes the liquids to form a ring inside the casing. A fixed port cylinder, concentric with the rotor, directs the gas into the suction ports. Gas is trapped between the blades by the liquid pistons formed by centrifugal force as the liquid recedes from the port cylinder. It is trapped at the point of maximum eccentricity and is then compressed by the liquid ring as it is forced radially inward toward the central port cylinder. After each revolution, the compressed gas and accompanying liquid are discharged. During the pumping cycle, the gas is in intimate contact with the sealing liquid and compression is nearly isothermal. When handling saturated vapor-gas mixtures, the liquid ring acts as a condenser, greatly

increasing the effective capacity of the pump. Seal liquid will be oil supplied via a reservoir mounted on the LRP skid.

The recovered fluids are pumped through a vapor/liquid knockout tank. Liquids are then directed, via transfer pump, through liquid phase granular activated carbon absorbers (GACA) to municipal sewage. Vapors are drawn from the knockout tank through the LRP and vapor phase GACA's and discharged to the atmosphere. Treatment of the vapors is conducted through two carbon units.

The remediation system will be checked twice per month to assure proper working conditions. It is anticipated that effluent water will be sampled once a month as per local sewage authority permit requirements. Flow meter measurements from the effluent water will also be taken monthly. Both water and air activated carbon units will be sampled monthly before and between activated carbon units to determine the effectiveness of the units. Groundwater samples will be obtained quarterly from monitoring wells MW#2, MW#7, MW#8, MW#9, MW#12, MW #18 and MW #19 to determine the effectiveness of the remediation system. Static water levels will be obtained quarterly from all non-pumping monitoring wells. Results of the above referenced sampling will be summarized in a quarterly remedial action status report.

The current remediation system will continue to run until such a time that groundwater is within limits. Then the system will be shut down and attainment sampling will commence for eight quarters.

As previously mentioned, soil and vapor studies will be conducted in order to achieve attainment for those media.

- (12) Description of Proposed Postremediation Care Requirements N/A
- (13) Description of Additional Items Necessary to Develop the Remedial Action Plan
 N/A

APPENDIX A: PLANS RELATING TO WORKER HEALTH & SAFETY

R.A.R. Engineering Group, Inc.

Safety Program

Employee Handbook

Prepared by: R.A.R. Engineering Group, Inc. in association with: U.S. Compliance Systems, Inc. Disclaimer: This Employee Handbook is not all inclusive. It does reflect selected portlons of the safety program belonging to:

R.A.R. Engineering Group, Inc. 1135 Sutler Avenue New Castle, PA 16101

To the best of our knowledge, the information contained herein is accurate. U.S. Compliance Systems, Inc. accepts no responsibility for errors or omissions.

R.A.R. Engineering Group, Inc.

TABLE OF CONTENTS

<u>Page</u>	<u>Topic</u>
1	SAFETY COMMITMENT
2	SAFETY CONSIDERATIONS
2	Housekeeping
2	Emergency Medical Response
3	Fire Prevention
4	Portable Fire Extinguishers
4	Fire Protection
5	First Aid & First Aid Kits
6	Fluids
6	Personal Protective Equipment
7	Lifting, Pushing & Pulling
8	Slips, Trips, & Falls
9	Basic Tools
9	Powered Tools
10	Ground Fault Circuit Interrupters
10	Signs & Tags
11	Adequate Lighting
11	Appropriate Clothing
11	Personal Hygiene
11	Drugs & Alcohol
11	Accident Investigation
11	Postings
12	Safety Meetings
12	Enforcement
14	HAZARDOUS JOB SITE MATERIALS
14	Asbestos
14	Lead
15	Crystalline Silica
16	SPECIFIC OSHA COMPLIANCE PROGRAMS
16 17	Control of Hazardous Energy - Lockout/Tagout
18	Exposure Control for Bloodborne Pathogens & Other Infectious Materials
19	Fall Protection Forklifts
19	
20	Hazard Communication
20	Hearing Conservation
21	Permit-Required Confined Space
22	Personal Protective Equipment Respiratory Protection
23	Scaffolds & Ladders
20	Coditolida iz Eduliala

R.A.R. Engineering Group, Inc.

SAFETY COMMITMENT

We are committed to ensuring that you do not work in an environment that is unsanitary, hazardous, or dangerous to your health or safety. You will be instructed on the recognition and avoidance of unsafe conditions and the regulations applicable to your work environment to control or eliminate any hazards or other exposure to illness or injury.

Using the safety and health training programs provided by the Occupational Safety and Health Administration (OSHA), as well as other reference materials, company safety training, policies, and procedures will be developed and implemented as needed.

Frequent and regular inspections of our facilities, materials, and equipment will be made by the Safety Program Administrator or designated persons.

You may operate equipment or machinery only if you are qualified by training or experience. Machinery, tools, material, or equipment that you find either not in compliance with a particular OSHA standard or that you determine is unsafe will be identified as such by tagging; locking the controls; or physically removing it from its place of operation.

Safety takes a commitment from all persons from senior management to the newest hire. It is expected that you will actively participate in safety training and perform your work in a safe manner.

The primary beneficiary of maintaining a safe work environment is you. You are the person who will not sustain an occupational injury or illness. A safe work site, additionally, protects fellow employees and those with whom we work. Performing tasks in a safe manner allows us to work more efficiently, reduces the possibility of equipment damage, eliminates costly citations, and enhances our opportunities to procure more work. Working safely has nothing but positive benefits to you and the company.

If confronted with a new task for which you do not know the proper safety procedures, ask for instruction from your supervisor before proceeding.

Do not hesitate to point out observed safety deficiencies to your supervisor — you may prevent an injury to yourself or a fellow employee.

OSHA standards that are applicable to the work you do are readily accessible.

SAFETY CONSIDERATIONS

You should have a working understanding of the below safety principles/ topics as they apply in all workplace situations. Safety procedures for specific tasks will be addressed through formal or on-the-job training depending on the task.

On every project, there will be a competent person with the knowledge and authority to stop work should a hazardous condition develop that cannot be immediately resolved.

Regular and frequent inspections will be made to ensure that established safety procedures are being followed.

HOUSEKEEPING

You are to maintain a neat and orderly work area as far as practical. Housekeeping and general cleanliness have a direct effect on safety and health. Proper housekeeping can prevent slips and falls, allow unhampered egress in the event of an emergency, prevent falling object injuries, enhance fire safety, and prevent the infestation of vermin. Listed below are general housekeeping rules:

- a. All walking/working surfaces shall be kept clean and dry.
- b. Do not allow debris to accumulate.
- c. All stored materials will be neatly stacked.
- d. All containers, when not in use, will be sealed.
- e. No objects will be left unattended on stairways.
- f. Entrances and exits will be properly marked and not blocked.

EMERGENCY MEDICAL RESPONSE

DO NOT PROVIDE ANY MEDICAL ASSISTANCE FOR WHICH YOU ARE NOT QUALIFIED BY CERTIFIED TRAINING

Should an injury occur that requires an emergency medical responder, the below listed actions will be taken in the order given:

- 1. Call the posted emergency response number.
- Provide any medical assistance you are trained and certified to do. DO NOT provide any medical assistance you are not trained to do.

- 3. Designate an individual to direct the emergency responders to the injured party and provide Material Safety Data Sheets if applicable.
- 4. Notify your supervisor who, in turn, will notify the office.

FIRE PREVENTION

Fire prevention deals not with handling a fire emergency, but rather preventing a fire in the first place. To reduce the likelihood of a fire, you must adhere to the following rules:

- There shall be no smoking except in designated smoking areas. Smoking materials will be totally extinguished and placed in appropriate receptacles. Under no circumstances will there be smoking during refueling of vehicles or within 50 feet of flammable materials.
- 2. All chemical products will be handled and stored in accordance with the procedures noted on their individual MSDS.
- Heat producing equipment will be properly maintained and operated per the manufacturer's instructions to prevent accidental ignition of combustible materials.
- Precautions will be taken when working with an open flame and those areas will be made fire safe by removing or protecting combustibles from ignition.
- 5. Combustible liquids must be stored in approved containers.
- Chemical spills -- particularly combustible and reactive liquids -- must be cleaned up immediately. Damaged chemical containers and cleanup materials must be properly disposed.

[Note: Exercise care! Information on appropriate personal protective equipment; proper disposal; proper cleanup procedures; required ventilation; etc. is found on the product's MSDS.]

- 7. Combustible liquids and trash must be segregated and kept from ignition sources.
- 8. Keep clear access to fire hydrants as well as portable fire extinguishers.
- 9. Practice good housekeeping!

PORTABLE FIRE EXTINGUISHERS

Know the location of fire extinguishers, what class of fire extinguisher is appropriate for what type of fire, and how to safely use a fire extinguisher.

Portable fire extinguishers will be located allowing for ease of accessibility.

Portable fire extinguishers will be distributed as indicated below:

<u>CLASS</u>	<u>DISTRIBUTION</u>	NOTES
A "A" on a green triangle	75 feet or less travel distance between yourself and the extinguisher	Use on wood, paper, trash.
B "B" on a red square	50 feet or less travel distance between the hazard area and yourself	Use on flammable liquid, gas.
C "C" on a blue circle	Based on the appropriate pat- tern for the existing Class A or Class B hazards	Use on electrical fires.
D "D" on a yellow star	75 feet or less travel distance between the combustible metal working area and the extinguisher or other containers of Class D extinguishing agent.	Use on combustible metals.

Using the wrong fire extinguisher on some fires can actually spread the fire. Portable fire extinguishers suitable for ABC class fires will be available on all job sites – at least one extinguisher will be on each floor of a project, near the stairway.

FIRE PROTECTION

The phone number of the local fire department as well as our facility address will be posted or readily accessible.

If a fire should occur, all personnel and the local fire department will be notified. In all emergency situations, you should:

- a. Remain calm.
- b. Speak clearly and slowly.
- Give the exact location.
- Describe the situation.
- e. Give the phone number from where you are calling.
- f. Do not hang up until told to do so.

FIRST AID & FIRST AID KITS

Should a medical emergency occur, call 911 or, if 911 service is not available, call the emergency medical response phone number posted at the job site. Explain the situation clearly and follow the emergency response team's instructions.

If an emergency vehicle is being sent to the job site, establish easy access and keep on-lookers away.

Unless trained and licensed in CPR/first aid and a designated first aid provider as an additional job as part of the company bloodborne pathogen program, employees will not expose themselves to blood or other bodily fluids of other employees at any time.

Per OSHA, first aid is limited to:

- a. Using a non-prescription medication, such as aspirin, at non-prescription strength.
- b. Cleaning, flushing or soaking wounds on the surface of the skin;
- c. Using wound coverings such as bandages, Band-Aids™, gauze pads, etc.; or using butterfly bandages or Steri-Strips™.
- d. Using hot or cold therapy.
- e. Using any **non-rigid** means of support, such as elastic bandages, wraps, non-rigid back belts, etc..
- f. Using temporary immobilization devices while transporting an accident victim (e.g., splints, slings, neck collars, back boards, etc.).
- g. Drilling of a fingernail or toenail to relieve pressure, or draining fluid from a blister.
- h. Using eye patches.
- Removing foreign bodies from the eye using only irrigation or a cotton swab.
- Removing splinters or foreign material from areas other than the eye by irrigation, tweezers, cotton swabs or other simple means.
- k. Using finger guards.
- I. Using massages.
- m. Drinking fluids for relief of heat stress.

You must know the location and contents of first aid kits. These kits are worthless if not readily accessible. First aid kits will **not** be locked up.

First aid supplies generally include: adhesive bandages, bandage compresses, scissors, tweezers, triangular bandages, antiseptic soap or pads, eye dressing, and other items that are appropriate for the work we do.

First aid kits will be replenished as items are used. Sterile items will be wrapped and sealed and used only once. Other items such as tape or scissors can be reused and should be kept clean. In the absence of plentiful amounts of clean water, eye flush will be available.

FLUIDS

From a safety standpoint, you must not neglect your need for potable (drinkable) fluids.

On job sites, exertion and heat dictate the need for plenty of water.

From a life process standpoint, what fluid intake is doing is keeping you healthy by allowing your body to maintain its core body temperature at its appropriate level as well as transporting, within your body, nourishment, gases, and waste.

Imagine your body as a water based chemical factory that functions only within a narrow temperature range. Sweating (water loss) cools your body and this fluid must be replaced.

Drink plenty of water!

PERSONAL PROTECTIVE EQUIPMENT

A hazard assessment will be to determine what types of personal protective equipment (PPE) are appropriate. A major part of this hazard assessment will be determining what PPE needs can be eliminated through feasible engineering controls or work procedures.

Types of hazard categories that are considered are: impact; penetration; compression; chemical; heat; harmful dust; and light radiation.

The focus of PPE is to eliminate eye, hand, foot, limb, and head injury. Visitors exposed to the identified hazards will be loaned appropriate PPE (and given instruction in its use) prior to hazard exposure.

You must understand the limitations of your PPE; the correct procedure for putting on, adjusting, and removing the PPE; and the proper care, maintenance, and useful life of the PPE.

Cleanliness of PPE is of importance particularly when dealing with eye protection where fogging, scratches, or dirt can render the PPE a hazard rather than protection from a hazard.

An inexpensive pair of safety glasses could save your priceless eyesight.

Unique PPE required for job performance such as respirators, ear plugs, safety goggles, etc. will be supplied to you. You are responsible for maintenance of the equipment issued to you. Items of PPE that are damaged or non-functioning should be turned in to the supervisor for repair or replacement.

Normal PPE generally protects you from an *instant* injury such as a projectile in the eye. Respiratory and hearing protection, while PPE, fall under more stringent standards than hard hats, for example. Respiratory and hearing hazards can take years to present themselves. Hearing protection and respirator selection are more complicated, procedurally, than ordinary PPE (i.e., hard hats, safety glasses, gloves, steel toed boots, etc.). Their uses are governed by specific standards that require in depth training based on objective scientific data.

For personal comfort and to eliminate nuisance noises and nuisance respiratory conditions that are not at or above the threshold level for required protection, dust masks and ear plugs may be used at any time.

LIFTING, PUSHING & PULLING

Back injuries are often caused by the obvious -- putting excessive strain on the lower back by lifting an object that is too heavy or awkward, or by bending and/or twisting while lifting.

However, lifting injuries are also caused by less obvious reasons:

- a. poor physical condition
- b. poor posture
- poor judgment (lifting, pulling, pushing an object that is obviously too heavy or awkward without seeking assistance or a mechanical lifting device.)
- d. lack of exercise
- e. excessive body weight

Proper lifting techniques are important for employee safety. Below are lifting techniques that will reduce the likelihood of injury:

- a. lift objects comfortably, not necessarily the quickest or easiest way.
- b. lift, push, and pull with your legs, not your arms or back.
- 7 R.A.R. Engineering Group, Inc.

- c. when changing direction while moving an object, turn with your feet, not by twisting at the waist.
- d. avoid lifting higher than your shoulder height.
- e. when standing while working, stand straight.
- f. when walking, maintain an erect posture; wear slip-resistant, supportive shoes.
- g. when carrying heavy objects, carry them close to the body and avoid carrying them in one hand.
- h. when heavy or bulky objects need to be moved, obtain help or use a mechanical aid such as a dolly, hand truck, forklift, etc..
- i. when stepping down from a height of more than eight inches, step down backwards, not forward.
- j. handle heavy objects close to the body -- avoid reaching out.
- k. lift gradually and smoothly. Avoid jerky motions.
- maintain a clear line of vision.

SLIPS, TRIPS & FALLS

Slips, trips, and falls are among the most common job site accidents and they are easily preventable. Below are some of the causes of slips, trips, and falls:

- a. running on the job site.
- b. engaging in horseplay.
- c. working off a ladder that is not firmly positioned.
- d. carrying an object that blocks line of vision.
- e. work boots not laced or buckled.
- f. working off a scaffold without safety rails.
- g. using ladders that have oil and grease on the rungs.
- h. not using a handrail on steps.
- i. messy work areas with debris strewn about.
- j. not paying attention to what one is doing.

This list can go on and on, but all the above are easily preventable by adherence to common safety procedures, common sense, and awareness of potential hazards on the job site.

BASIC TOOLS

Much is written about powered tools and the importance of guards and other safety related topics. Seldom addressed are the hazards associated with simple, non-powered tools. Every tool is potentially dangerous if not properly used. Basic tools would include, but not be limited to: hammers, screwdrivers, shovels, shears, utility knives, and wrenches.

Below are five guidelines for basic tool use.

 Never use a tool for a purpose other than that for which it was designed!

Improper use of a tool will certainly damage it and may result in injury if the tool slips or breaks.

2. Never exceed a tool's design limits.

If a tool cannot do the job being properly used, you've got the wrong tool. Exceeding a tool's design limits will certainly damage the tool and, of course, expose yourself to injury if it slips or breaks.

Inspect tools before use.

Cracked or splintered handles, loose heads, "mushroomed" striking surfaces, dull chisels/blades, bent shafts, worn or deformed ends -- all are potentially dangerous conditions for tool use. Either repair or replace damaged tools -- do not use them!

Clean tools after use.

It is much easier to clean and/or lubricate tools immediate after use than waiting until the tools becomes rusty or encrusted with gunk.

Store tools properly.

If tools are properly stored automatically, you, over time, save hours not having to look for tools. From a safety standpoint, you will have the right tool at the right time. Additionally, by having tools properly stored, you'll prevent the possibility of rummaging around in a tool box and cutting yourself on an exposed sharp object.

POWERED TOOLS

You may operate powered tools only if authorized. This authorization will be granted after it has been demonstrated that you have the ability to safely operate these items through training or experience.

Seemingly simple powered tools, misused, can cause serious injury. Understand the operator's manual and never bypass any guards.

GROUND FAULT CIRCUIT INTERRUPTERS (GFCI)

When you are using temporary wiring -- extension cords are a form of temporary wiring -- ground fault circuit interrupters must be used. A GFCI is designed to prevent you from receiving a dangerous electrical shock.

Because 115V at 15A is so common, its safety is often taken for granted. The danger is not the voltage, it is the Amps (current). 0.015 Amps is enough current to cause a painful shock. The table below was prepared by the National Safety Council and the Pacific Telegraph Company:

Safe Current Values

	Amps	
0.001A	(1mA)	Cannot be felt
0.001 - 0.008A	(1 - 8 mA)	Felt, but not painful: muscle control is not lost.

Unsafe Current Values

Amps	
0.015 - 0.02A (15 - 20mA)	Painful shock: muscular control lost; cannot let go; not harmful to body organs
0.02 - 0.09A (20 - 90mA)	Burns; breathing extremely difficult; sore muscles
0.1 - 0.2A (100mA - 200mA)	*Ventricular Fibrillation (a fatal heart condition)
0.2 - 2A (200mA - 2A)	Burns; paralysis of the lungs; nerve damaged if above 600V
2A and up frying currents; severe burns of two types:	External - caused by arching on contact Internal - cooking of the organs and flesh. Results in: amputation or destruction of vital organs

[&]quot;Ventricular Fibrillation is essentially a fluttering of the heart which is useless in circulating blood.

If you do receive a severe shock, you should seek medical evaluation even if there is no apparent damage.

GFCI's are required by all 120-volt, 15-, 20-, and 30-ampere receptacle outlets that are not a part of the permanent wiring of a building. GFCI's provide employee safety by detecting lost current resulting from a short, overheating, and/or ground fault and "tripping" or cutting off the current within as little as 1/40th of a second.

A GFCI will not protect one who comes in contact with two hot wires or a hot wire and a neutral wire. A GFCI will provide protection against fires, overheating, damage to insulation, and, the most common form of electrical shock hazard -- the ground fault. Always test a GFCI before use.

SIGNS & TAGS

You must pay heed to the various signs and tags found throughout our facility. Color coding assists in determining the level of danger:

red = danger
yellow = caution
orange = warning
white = safety instruction
fluorescent orange = biological hazard

ADEQUATE LIGHTING

You must see what you are doing. A simple guideline for adequate lighting is this: if you are not sure if you have enough light for your work, you don't!

APPROPRIATE CLOTHING

Wear clothing that is appropriate for your work. You may be exposed to heat, cold, rain, or snow. Wear clothing that provides comfort, yet be sure that it cannot snag on equipment.

PERSONAL HYGIENE

You will have access to restroom facilities as needed. Do not take job site chemicals home with you on your skin or clothing.

DRUGS AND ALCOHOL

With the exception of over the counter drugs such as aspirin or drugs prescribed by a physician, you may have no drugs or alcohol within our facility. Alcohol and drug abuse cause an unacceptable level of safety hazard. If you are found to be under the influence of drugs and/or alcohol, you will be immediately removed from your work assignment by your supervisor and further disciplinary action will be taken by the Safety Director.

If you are taking prescription medication that reduces motor skills, you should report this to your supervisor for appropriate work assignment.

ACCIDENT INVESTIGATION

The purpose of Accident Investigation is to prevent the same type of accident from reoccurring. An accident investigation will begin immediately after the medical crisis is resolved.

Near-miss mishaps, events which result in no injury or damage, will be investigated because, even though the outcomes are different, the causes are the same.

Your responsibility, should you be involved as a witness in an accident investigation, is to fully answer questions that may be asked of you so that future accidents may be prevented.

POSTINGS

There will be a prominently displayed bulletin board or area for postings. You must be aware of the location of the following posted items:

- a. OSHA Form 3165, It's the law!.
- b. Emergency phone numbers & facility address for emergency response.

c. During the period from 1 February through to April 30, OSHA Form 300A, <u>Summary of Work-Related Injuries and Illnesses</u>, must be posted for work-related injuries and illnesses which have occurred during the previous year.

If appropriate, the following will be posted:

- a. OSHA citations.
- b. Notice of informal hearing conference.
- c. Names and location of assigned first aid providers.
- d. Air or wipe sampling results.
- e. Emergency action plan.

SAFETY MEETINGS

Depending on the work at hand, safety meetings may be held during the work shift. Successful safety meetings demand interactive participation by the presenter as well as those attending. Pay attention, feel free to ask questions, and ensure that, at the completion of a safety meeting, you have no unanswered safety questions.

ENFORCEMENT

It is expected that all employees will abide by our safety rules and guidelines not only to protect themselves, but also to protect their fellow workers from harm. Should a safety violation occur, the following steps will be taken by the employee's immediate supervisor:

- a. <u>Minor Safety Violations</u>: Violations which would <u>not</u> reasonably be expected to result in serious injury.
 - 1. The hazardous situation will be corrected.
 - 2. The employee will be informed of the correct procedures to follow and the supervisor will ensure that these procedures are understood.
 - The supervisor will make a written report of the occurrence using our Enforcement Documentation Form and inform the employee that this documentation will be forwarded to the Safety Director for a retention period of one year.
 - 4. A repeat occurrence of the same minor safety violation is considered substantially more serious than the first.

b. Major Safety Violations:

Violations which would reasonably be expected to result in serious injury or death.

- 1. The hazardous situation will be corrected.
- 2. The employee will be informed of the correct procedures to follow and will impress upon the individual the severity of the violation and the likely consequences should this type of violation be repeated. The supervisor will ensure that the individual understands the correct procedures and will be cautioned that a reoccurrence could result in disciplinary action up to and including discharge.
- The supervisor will make a written report of the occurrence using our Enforcement Documentation Form and inform the employee that this documentation will be forwarded to the Safety Director for a retention period of one year.
- c. Willful Major Safety Violations: Intentional violation of a safety rule which would reasonably be expected to result in serious injury to the employee or a fellow worker.
 - 1. The hazardous situation will be corrected.
 - The employee will be removed from the job site, the event will be documented and forwarded to the Safety Director, and the employee will be discharged.

Employees are to understand that the primary purpose of documenting safety violations is to ensure that the important business of employee safety is taken seriously and that the potential for injury is reduced to the lowest possible level.

Schedule of Enforcement Actions for Violations within a 1 Year Period
Minor Violation

Offense	Action	Repeat of Same Offense	Action
1st	Written Notice	1st	1 Day Off
2nd	Written Notice	2nd	3 Days Off
3rd	1 Day Off	3rd	Dismissal
4th	2 Days Off		Distrissar
5th	3 Days Off		
6th	Dismissal		

Major Violation

Offense	Action	Repeat of Same Offense	Action
1st	Written Notice	1st	4 Days Off
2nd	2 Days Off	2nd	Dismissal
3rd	4 Days Off		
	Dismissal		

HAZARDOUS JOB SITE MATERIALS

When working in or around older structures, potential asbestos and lead hazards **may** exist. On many job sites, the potential for crystalline silica exposure **may** exist. The presence of these hazards, and the appropriate PPE and respiratory protection requirements, will be disclosed before any work begins.

Should these materials be "discovered" as work progresses, we will protect our employees from these hazards by:

- a. identification of these items by the competent person.
- b. informing the owner, project designer, or engineer of the hazards.
- c. securing the areas in question until testing proves samples to be negative.

Asbestos can be found in pipe, wall, and boiler insulation; exterior sheeting; and flooring. Friable or crumbling asbestos presents the most hazard as it can float in the air and be inhaled into the respiratory system. Without respiratory protection, the microscopic asbestos fibers can enter the deepest portion of the lung, causing scar tissue to develop and stiffen the lung. The net result is a reduction of gas exchange -- a condition called asbestosis.

Lead can be found in water pipes, soldering, and paint. Lead is a heavy, toxic metal which can be absorbed into your body by ingestion and/or inhalation. It is a cumulative poison which can stay in your body for decades.

While massive doses of lead can kill in a matter of days, the more likely scenario on a job site is moderate exposure to asbestos or lead which probably would not create any health problems for years -- if at all.

Crystalline Silica can be readily found on many job sites in rocks as well as many concrete and masonry products. Crystalline Silica can be released in the air when employees are performing such tasks as:

- a. chipping, hammering, drilling, crushing, or hauling rock.
- b. abrasive blasting.
- c. sawing, hammering, drilling, or sweeping concrete or masonry.

Unprotected respiratory exposure to crystalline silica may cause a lung disease called silicosis.

Because of the chronic (long term) nature of these hazards, detrimental health effects due to exposure would not be immediately noticed.

The competent person on site will prevent exposures to these materials. Areas that contain the above materials will be cordoned off and protected with appropriate warning signs. Do not enter any restricted area unless dictated by job assignment and only after specific training for dealing with these hazards. The training would include PPE, respiratory protection, work procedures, medical surveillance, containment, hygiene, handling, testing, and labeling.

SPECIFIC OSHA COMPLIANCE PROGRAMS

When you are confronted by situations listed below, you must perform your tasks in accordance with our written programs which comply with specific OSHA standards. Below is an overview of each program.

Control of Hazardous Energy - Lockout/Tagout

Applicable: to servicing and maintenance of machines and equipment where the unexpected energization, start up or release of

stored energy could occur and cause injury.

Not

to routine, repetitive, integral procedures such as minor Applicable:

adjustments & tool changes. Work on cord and plug connected equipment where unplugging negates the hazard and the plug is in the control of the person doing the work.

Hazard:

possibility of being crushed, dismembered, mangled, paralyzed, electrocuted, sliced, or punctured by the sudden release of energy such as the following sources: capacitor, chemical, counter weight, electrical, engine, flywheel, hydraulic, pneumatic, spring, thermal, or gravity.

Procedures

Preparation for Shutdown: Using the Energy Source Evaluation, all

isolating devices must be located.

Equipment Shutdown: Inform the affected person and use normal shut

down procedures.

Equipment Isolation: Physically isolate the equipment from its

energy source(s) -- there may be more than one.

Device application: Apply color coded locks and/or tags to hold the

isolating devices in a "Neutral" or "Off" position.

Release of Stored Energy: Dissipate stored energy.

Verification of Isolation: Prior to work, operate machine controls and

ensure the machine will not operate.

Release from

Lockout/Tagout: The person who applied the devices is the one

who removes them after ensuring the area is clear and affected employees are informed.

Exposure Control Plan

(for bloodborne pathogens or other infectious materials)

An exposure control plan is required when emergency medical response is not available within a reasonable time frame and personnel are assigned as first aid providers as an additional duty.

The primary hazard relates to the possibility of infection resulting from exposure to blood-borne pathogens or other infectious materials while providing first aid to a trauma victim or cleaning up bodily fluids after an incident.

As a statement of policy, should an exposure control plan be required, Universal Precautions will be used. Essentially, this means that each trauma victim's blood, bodily fluids, and other potentially infectious materials will be treated as if they are know to be infectious.

First aid providers must understand:

- a. the hazards of bloodborne pathogens and other infectious materials.
- engineering & work practice controls designed to minimize possible exposure such as:
 - 1. handwashing equipment & procedures.
 - 2. eating; drinking & smoking prohibitions.
 - 3. the containment of contaminated sharps.
 - 4. the containment of other regulated waste.
 - 5. the disposal of contaminated sharps & regulated waste
 - 6. controlling splashing/spraying of potentially infectious materials.
 - 7. the prohibition of mouth pipetting (the mouth suction of blood through a tube).
- c. the need to place an impermeable barrier between potential infectious materials and the provider's work clothes, street clothes, undergarments, skin, eyes, mouth, or other mucous membranes using:
 - disposable gloves
 - 2. utility gloves
 - 3. eye & respiratory protection
 - 4. protective body clothing
- d. hepatitis B epidemiology and how bloodborne pathogens are transmitted.

- e. the importance of hepatitis B vaccination within 24 hours of possible exposure.
- f. the procedure for incident report preparation and the importance of completing them, in writing, before the end of the work shift.

Fall Protection

Fall protection is required for employees working six feet or more above walking/working surface, when there is a potential for objects to fall on them, or when they are working around covers.

The obvious hazard is falling or being hit by a falling object.

A fall protection plan is required when conventional fall protection systems are infeasible.

Through training, employees must know where conventional fall protection systems are required such as when working on or around:

- 1. unprotected sides and edges
- 2. leading edges
- 3. hoist areas
- 4. holes
- 5. formwork & reinforcing steel
- 6. ramps, runways & other walkways.
- 7. excavations
- 8. dangerous equipment
- 9. overhand bricklaying & related work
- 10. roofing work on low-sloped roofs
- 11. steep roofs
- 12. precast concrete erection
- 13. residential construction
- 14. wall openings

Additionally, employees must understand:

- a. the selection, use, and maintenance of fall protection system(s).
- b. the types of fall protection systems:
 - 1. guardrail system
 - 2. personal fall arrest system
 - 3. safety net system

- 4. warning line system
- 5. safety monitoring system
- 6. positioning device system
- 7. controlled access zone (CAZ)
- 8. covers
- 9. protection from falling objects.

Forklifts

Forklifts include: fork trucks; tractors; platform lift trucks; motorized hand trucks; and other specialized industrial trucks powered by electric motors or internal combustion engines.

The primary hazards involved in truck operation are:

- 1. physically hitting a person/object with the truck or load.
- 2. having a load fall and hit the operator or other person.
- 3. having the truck tip and crush the operator or other person.
- 4. fire or explosion during refueling/recharging.

Supervisors should ensure that truck operators are authorized by the Program Administrator. Authority to operate a truck will be revoked if unsafe acts are observed or it is apparent that the operator has not retained the knowledge and job skills necessary to safely perform truck operations.

Supervisors should caution employees not involved with truck operations to stay clear of them due to limited visibility of the operator and the size and weight of the vehicle and load.

Hazard Communication

Practically all chemical products have physical or health hazards if they are inadvertently spilled or improperly used. Our Hazard Communication Plan details the methods used to keep our employees informed of these potential hazards.

The Program Administrator will ensure that all personnel understand:

- a. the importance and use of labels; material safety data sheets (MSDS); and the ready accessibility of MSDS.
- b. the physical & health hazards of chemicals used in the workplace.
- c. the methods used to detect the release of a hazardous chemical.

- d. the methods to protect oneself from chemical hazards including PPE; work practices; & emergency procedures.
- e. the need to share product information with other contractors.

Hearing Conservation

Supervisors are to ensure that employees are not exposed to occupational noises that exceed the levels listed below. Excessive noise may cause permanent hearing loss. Supervisors should be aware that hearing loss is often painless and unnoticeable.

Permissible Noise Exposures

Sound level	•
<u>Duration per day, hours</u>	dBA slow response
8	90
6	92
4	95
3	97
2	100
1 1/2	102
1	105
1/2	110
1/4 or less	115

The Program Administrator will ensure that applicable standards are posted, medical surveillance and noise monitoring are instituted, and that all affected personnel understand the process of hearing and the importance of preventing hearing loss.

Permit-Required Confined Space

Permit-required confined spaces may present a very hazardous environment if specific procedures, testing, and training are not implemented prior to entry. As a reminder:

A confined space is a space that:

is large enough and so configured that an employee can bodily enter and perform assigned work; and

has limited or restricted means for entry or exit. These spaces may include: ventilation or exhaust ducts, bins and tanks, boilers, sewers, tunnels and open top spaces more that 4 feet in depth such as pits, tubs, and vessels: and

is not designed for continuous employee occupancy.

A permit-required confined space is:

a confined space that contains any recognized serious safety or health hazards. These hazards may be: engulfment by materials; entrapment by space shape; inhalation of hazardous (possibly fatal) atmospheres.

Supervisors should ensure that employees understand:

- 1. the need to identify and evaluate permit space hazards before entry.
- 2. the need to test conditions before entry and monitor conditions during entry.
- 3. how to prevent unauthorized entry.
- 4. how to eliminated or control hazards for safe permit-space entry operations.
- the need to ensure that at least one attendant is stationed outside the permit-required space for the duration of the entry operations.
- how to coordinate and monitor entry operations when we are working with employees of another contractor or client within a permit-required confined space.
- 7. our procedures for emergency rescue.
- 8. the establishment of a written procedure for preparation, issuance, use, and cancellation of entry permits.

Personal Protective Equipment

A hazard assessment will be made on all job sites to determine what types of personal protective equipment (PPE) are appropriate. A major part of this hazard assessment will be determining what PPE needs can be eliminated through feasible engineering controls or work procedures.

Types of hazard categories that are considered are: impact; penetration; compression; chemical; heat; harmful dust; and light radiation.

The focus of PPE is to eliminate eye, hand, foot, limb, and head injury. Visitors exposed to the identified hazards will be loaned appropriate PPE (and given instruction in its use) prior to hazard exposure.

You must understand the limitations of your PPE; the correct procedure for putting on, adjusting, and removing the PPE; and the proper care, maintenance, and useful life of the PPE.

Cleanliness of PPE is of importance particularly when dealing with eye protection where fogging, scratches, or dirt can render the PPE a hazard rather than protection from a hazard.

Unique PPE required for job performance such as hard hats, respirators, ear plugs, safety goggles, etc. will be supplied to the employees. They are responsible for maintenance of the equipment issued to them. Items of PPE that are damaged or non-functioning should be turned in for repair or replacement.

For personal comfort and to eliminate nuisance noises and nuisance respiratory conditions that are not at or above the threshold level for required protection, dust masks and ear plugs may be used at any time.

Respiratory Protection

As a supervisor, it is extremely important that you do not allow employees to be exposed to atmospheres that do not contain clean, breathable air free from contaminants that exceed permissible exposure limits.

Respiratory hazards can range from mildly irritating to fatal.

Because of the serious consequences of improperly using respiratory protection, those for whom it applies, must understand:

- 1. the importance of medical approval for respiratory use.
- 2. the respirator selection process.
- 3. how to determine the service life of particulate filters.
- 4. fit testing.
- 5. user seal tests.
- 6. the importance of work area surveillance.
- 7. cleaning, inspection & maintenance of respirators.

Of course, job sites often contain nuisance dusts that do not exceed permissible exposure limits. In these cases, employees may wear dust masks for personal comfort. Supervisors should caution those wearing dust masks that they do not offer true respiratory protection.

Of course, job sites often contain nuisance dusts that do not exceed permissible exposure limits. In these cases, employees may wear dust masks for personal comfort.

OSHA standards require that if an employer provides respirators for employee voluntary use or if you provide your own respirator, you must be

provided Appendix D of 29 CFR 1910.134. This appendix is printed below and all employees must read it.

Standard Number: 1910.134 App D

Standard Title: (Mandatory) Information for Employees Using Respirators When not Required Under Standard.

Respirators are an effective method of protection against designated hazards when properly selected and worn. Respirator use is encouraged, even when exposures are below the exposure limit, to provide an additional level of comfort and protection for workers. However, if a respirator is used improperly or not kept clean, the respirator itself can become a hazard to the worker. Sometimes, workers may wear respirators to avoid exposures to hazards, even if the amount of hazardous substance does not exceed the limits set by OSHA standards. If your employer provides respirators for your voluntary use, of if you provide your own respirator, you need to take certain precautions to be sure that the respirator itself does not present a hazard. You should do the following: 1. Read and heed all instructions provided by the manufacturer on use, maintenance, cleaning and care, and warnings regarding the respirators limitations. 2. Choose respirators certified for use to protect against the contaminant of concern. NIOSH, the National Institute for Occupational Safety and Health of the U.S. Department of Health and Human Services, certifies respirators. A label or statement of certification should appear on the respirator or respirator packaging. It will tell you what the respirator is designed for and how much it will protect you. 3. Do not wear your respirator into atmospheres containing contaminants for which your respirator is not designed to protect against. For example, a respirator designed to filter dust particles will not protect you against gases, vapors, or very small solid particles of furnes or smoke. 4. Keep track of your respirator so that you do not mistakenly use someone else's respirator.

[63 FR 1152, Jan. 8, 1998; 63 FR 20098, April 23, 1998]

Scaffolds & Ladders

Applicable: when you are required to install, use, or dismantle a scaffold

or ladder.

Not

Applicable: to fall protection required on a walking/working surface six

feet above a lower level -- this is addressed in a Fall

Protection Program.

Hazards:

fall, electrical, and falling objects.

23 R.A.R. Engineering Group, Inc.

EMPLOYEE HANDBOOK

The Program Administrator will ensure that employees understand:

- 1. the procedures for dealing with the above hazards.
- 2. the proper use of scaffolds & ladders
- 3. the load and the load-carrying capacities of the scaffold.

During routine job site inspections, supervisors should be constantly vigilant for violations of the below ladder safety rules and take immediate corrective action to ensure the safety of our employees:

- a. a stairway or a ladder will be provided at all personnel points of access where there is a break in elevation of 19 inches or more.
- b. ladders will never be overloaded.
- c. ladder rungs, cleats, and steps must be parallel, level, and uniformly spaced when a ladder is in position for use.
- d. ladders will not be tied or fastened together unless they are so designed.
- e. portable ladders used for gaining access to an upper level will extend at least 3 feet above the upper landing surface or the ladder will be secured at its top.
- f. ladders must be free of oil, grease, or other slipping hazards.
- g. ladders must be used for the purpose for which they were designed.
- h. non-self supporting ladders will be used at an angle that the horizontal distance from the top support to the foot of the ladder is approximately ¼ of the working length of the ladder.
- i. ladders will only be used on stable and level surfaces unless secured to prevent displacement.
- j. ladders shall not be used on slippery surfaces unless secured or provided with slip-resistant feet to prevent accidental displacement.
- k. ladders placed in any location where they can be displaced by workplace activities or traffic will be secured to prevent accidental displacement, or a barricade will be used to keep the activities or traffic away from the ladder.
- I. the area around the top and bottom of the ladder shall be kept clear.
- m. ladders shall not be moved, shifted, or extended while occupied.
- n. the top step of a stepladder shall not be used as a step.
- portable ladders with structural defects will be immediately marked in a manner that readily identifies them as defective and removed from service.
- p. when ascending or descending a ladder, one must face the ladder.

- q. employees must use at least one hand to grasp the ladder when progressing up and/or down the ladder.
- r. employees are not to carry any object or load that could cause loss of balance and a resultant fall.

R.A.R. Engineering Group, Inc.

EMPLOYEE ACKNOWLEDGMENT

PLEASE READ, SIGN, & RETURN THIS FORM TO THE JOB SITE SUPERVISOR OR THE SAFETY PROGRAM ADMINISTRATOR.

I have read and understand the contents of this Employee Handbook.

I will, to the best of my ability, work in a safe manner and follow established work rules and procedures.

I will ask for clarification of safety procedures of which I am not sure **prior** to performing a task.

I will report to the job site supervisor or competent person any unsafe acts or procedures and will ensure they are addressed and resolved before continuing work.

I understand that the complete safety program is located at:

1135 Butler Avenue New Castle, PA 16101

and is available for my review.

(Employee Name)	 	
(Signature)	 	
(Date)	 ····	

APPENDIX B: FIELD TESTS - CHARTS, GRAPHS & TABLES

TABLE 1: HYDROCARBON RECOVERY DATA

TABLE 1 MW-2 HYDROCARBON RECOVERY DATA

LEO'S #3 CAR WASH ERIE, PENNSYLVANIA

Data Collected: June 23, 2003

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					Recovery data	В
Data	Applied				The second second		ı
Collection	Vacuum	OI4	%02	% 	SC-1	Lbs/Hr.	Callons
The said and	(the Feelber)	(шоо)		1	1		perminute
Illuctura:	30	80	20.4	2	6.00	90.0	1.10
Octo	3 8	3 2	20.2	2	5.00	0.05	06.0
Oeso.	4 6	210	90.9	18	4.00	0.14	1.30
7550	8 8	208	20.1	56	5.00	0.25	1.50
200	3 8	P30	20.1	58	5.00	0,25	1.50
Can	3 8	250	20.4	8	5.00	0.21	1.30
(3:00)	8 8	244	202	25	9.00	0.24	1.00
350	3 8	27/2	202	Ŋ	5.00	0.21	1.60
200	3 8	Ę	Q	28	5.00	0.27	1.00
4:50	3 8	202	20.2	81	5.00	0.21	1.00
2000							

Sample Calculation:

*Ibs/hr=(%LEL)140(SCFM)(1.36E-5) Adapted from <u>Subsurface Ventino from an Underground</u> <u>Aguifer,</u> API Publication #4410, September 1985. TABLE 2: GROUNDWATER DRAWDOWN DATA

TABLE 2 GROUNDWATER DRAWDOWN DATA

LEO'S #3 CAR WASH

ERIE, PENNSYLVANIA

Data Collected: June 23, 2003

	-MHra-	-			
Montodiodivell		WI C	<u></u>	MIC	Aith
	DIM.	N.O.		19.30	0,86'
	2	11.46	ND		1
		U C 7	GN GN	18,02	1.47
TOTAL NATIONAL	2	10.33		1,40	201
	72.0	10.94	9.68	13.13	
	40.0		1000	10.28	.,†0.0
	9 04,	10,24	9.00		1000
		77 30		1.39	0.00
STANTE		8.		1010	.000
	2	8.13		0.15	100
Z WATE		100 07		13.62	0.70
- BARK-B	QN	12.92			
Total Control of the					

ND - No LPH detected Δ h - Groundwater Drawdown DTP - Depth to product (feet) DTW - Depth to water (feet)

TABLE 3: VACUUM RESPONSE DATA

TABLE 3 VACUUM RESPONSE DATA

LEO'S #3 CAR WASH

ERIE, PENNSYLVANIA

Data Collected: June 24, 2003

	1				4		oroning.	A'E Hre	40 Hrs	4.5 Hrs.	50Hrs.
	# CE	0.5 Firs	22H0	#SHIS	2.0 Hrs.	SIL CZ	0				
	-				T		4.5	0.8	9.0	0.6	9.0
Z.W.		0.0	0.3	R.O	C;-	3	2		3	c	c
The state of the s		١	۶	00	0.0	0.0	0.0	0.0	0.0	0.0	3
31 31			200			6	00	0.0	0.0	0:0	0.0
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-	0	0.0	0.0	7	2.5	200			٤	5
A A A			1		00	0.0	0:0	0.0	0.0	0.0	3
(6E 9-MW)		0.0	O.O	200			ç	0.0	0.0	0.0	0.0
34.		00	0.0	0.0	0.0	0,0	2	2 4		+ 0	5
CANADA CONTRACTOR OF THE PARTY	-		٤	CO	0.0	0:0	0.0	0.0	2.0	- -	3
MW-8		0.0	200								

Vacuum response data expressed in inches of water

CHART 1: RECOVERY DATA (MW#2)

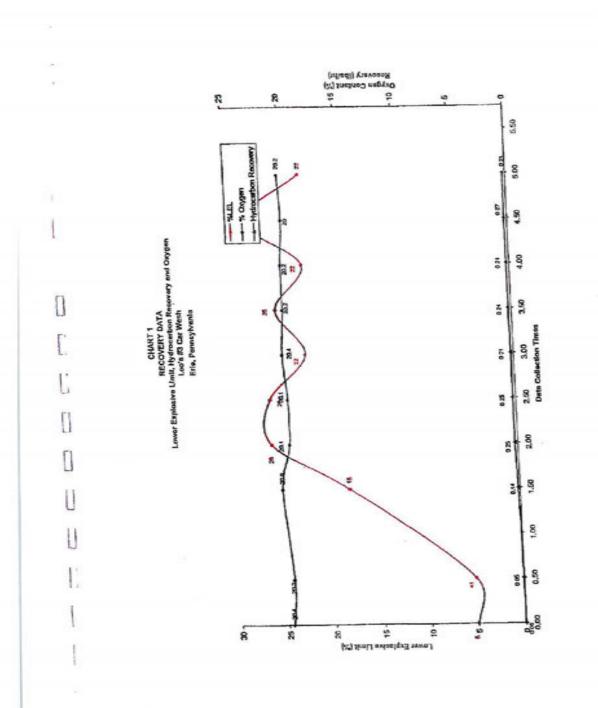
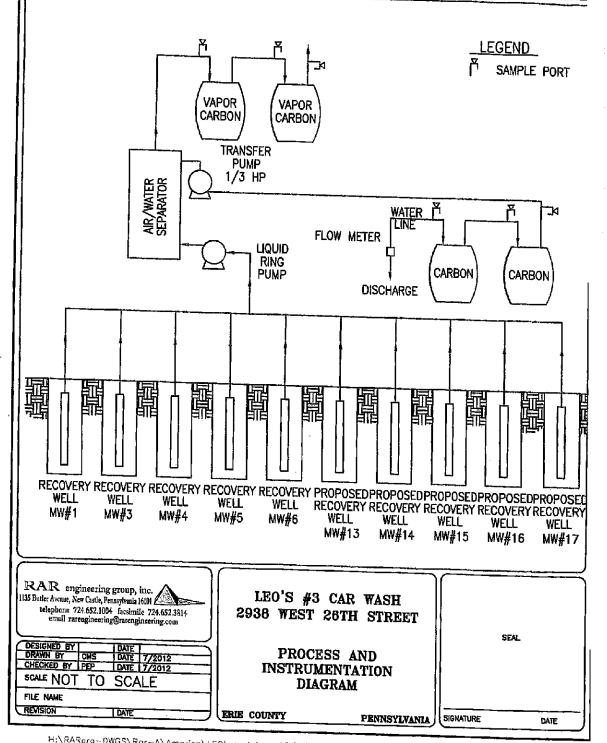



CHART 2: VACUUM RESPONSE DATA (MW#2)

-*- MW-1 # 0.1 5.0 Hrs. 4.5 Hrs. 4.0 Hrs. 3.5 Hrs. 0.0 Chart 2
Vacuum Response Data
LEO'S #3 CAR WASH ERIE, PA Testing Elapsed Time (Hours) 3.0 Hrs. 1.5 2.5 Hrs. 9:1 2.0 Hrs. 9.1 1.5 Hrs. 0.0 1.0 Hrs. 0.3 0.5 Hrs. Vacuum Response (Inches of Water) 0.0 1.6 0.2 4.

APPENDIX C: DESIGN & CONSTRUCTION DETAIL

SPEC. 1: CARBON ADSORBERS SPECIFICATIONS

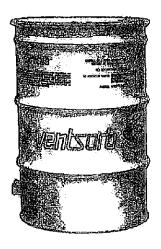
GENERAL DESCRIPTION

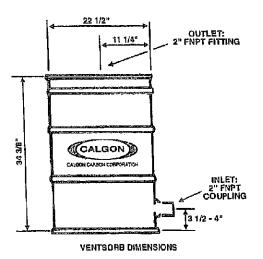
VentSorb canisters - each containing 180 pounds of activated carbon - are ideal for low-flow air purification applications at industrial and municipal facilities. These economical adsorption systems control small volume organic contaminant and/or odorous gas emissions from:

- Storage tank vents
- Reactor vents
- API separator vents
- · Sludge thickener tanks at waste treatment plants
- Sewer gas vents, wet stations and weir boxes at chemical and municipal waste treatment plants
- · Chemical plant wastewater holding tanks
- · Laboratory hood exhausts
- Landlills
- Altstripper off-gases

The 55-gallon VentSorb conisters contain all the elements found in a full-scale adsorption system vessel; activated carbon, inlet connection and distributor, and an outlet connection for the purified air stream. Air is distributed across the carbon bed with a corresion-resistant stainless steel

FEATURES AND BENEFITS


VentSorb canisters offer industrial and municipal users several important features and benefits, including:


- · Effective treatment to remove a variety of vapor phase organic contaminants and odor-causing compounds.

 Continuous treatment at varying flow rates and
- concentrations.
- Simple installation and operation.
- · Flexibility to be installed in series or multiple units in
- Supplied with the type of activated carbon selected specifically for the application.
- Practical disposal option, as pre-approved spent carbon canisters may be returned to Calgon Carbon Corporation for safe carbon reactivation.
- · Low cost per unit makes carbon treatment economical.

VENTSORB SPECIFICATIONS

Vessel: , Open head 16 gauge steel canister
Max Operating Pressure: 4 psig
Cover:
12 gauge bolt ring with polycord gasket
Internal Coating: Heat cured 100% phenolic
External Coating: High solids enamel
Temperature:350°F (intermittent) (176.7°C)
Inlet: 2° FNPT: 304 stainless steel screen distributor
Outlet: 2" FNPT
Max Flow: 100 cfm (2.83m²min)
Carbon: 180 pounds Pellei BG or BPL 4x10 or VPR
Ship Weight:
Identification:VentSorbs sequentially
numbered for reference

TYPICAL VENTSORB APPLICATIONS

Chemical, petrochemical, food, pulp and paper, and many other industrial plants — along with municipal sewage treatment facilities — are frequent users of VentSorbs for continuous control of vented emissions. Here are a few examples of user applications:

Storage Tank Vents – VentSorbs are widely used to control evaporative losses vented from storage tanks. Typically, these vapors are emitted during tank filling and emptying. In one application, a glycerin manufacturer is using the canisters to purify ambient air drawn into storage tanks during product transfer. The adsorption process helps prevent contamination of the company's glycerin product. The VentSorb units provide over six months of service for this application.

Reactor Vents — A pesticide manufacturer is using multiple VentSorbs on five reactor vessels to control trace amounts of odorous methylamine and diethylamine (which are by-products of a causile scrubbing process). Each VentSorb unit handles a 30 clm air stream containing 16 ppm of amine vapors. The units provide over three months of services for this application.

API Separator Vents – A major refinery is using VentSorb units to control odorous emissions from settling basins where oil is separated from wastewater that is discharged in condensate, blowdown or drain systems. For this application, API separators are covered and vented to comply with local air pollution control regulations. The air stream is pulled through two VentSorb units, operating in parallel configuration, at 100 cfm.

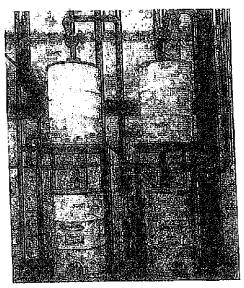
VENTSORB INSTALLATION

VentSorb cantaters are shipped ready for installation. Each cantater is self-supporting and should be placed on a level, accessible area as near as possible to the emission source. Installation is simple, regulring just a flexible hose or pipe to connect the vent to the 2-inch FNPT bottom inlet of the cantater.

If the VentSorb will be vented directly to outside air, a U-shaped outlet pipe or rain hat — such as a pipe tee — is recommended to prevent precipitation from entering the unit.

VentSorb canisters operate from a continuous suction across the vent. The suction can be produced by a blower or by using the positive pressure inside the tank or process vessel. In many cases, the pressure or surge of pressure within the tank or vessel is sufficient to overcome the pressure drop across the canister – thus eliminating the need for a blower. Please consult pressure drop data in this bulletin for more information.

Maximum recommended air flow through a VentSorb is 100 cfm. If higher flows are encountered, plant operators should install two or more canisters in parallel configuration.


When VentSorb canisters are used to control vapors from organic solvent storage tanks, the following precautions are recommended:

- A safety relief valve must be provided. This protects the storage tank should the VentSorb become plugged or blocked in any fashion. Such a vent would open in this emergency situation, thereby relieving pressure.
- · Under appropriate conditions, a tiame arrestor and/or

backflow preventer must be installed as shown in this bulletin's storage tank installation drawing. This prevents backflow of air through the VentSorb when the storage tank is empty.

 Pre-wetting the carbon helps dissipate excessive heat that may be caused by high organic compound concentration (>0.5 to 1.0 Vol. %).

Also, if VentSorb canisters are used to control organic emissions from airstrippers or other high moisture content air streams, Calgon Carbon Corporation recommends that humidity in the air stream be reduced to under 50 percent. Lower humidity optimizes adsorptive capacity of the carbon. In addition, for similar applications that generate a condensate, Calgon Carbon Corporation recommends installation of a drain on the inlet piping.

Four VentSorb units at a chemical plant are installed to operate in series and in parallel. More than 25 odorous and/or toxic vepors are controlled by 80 VentSorb units at this plant.

RETURN OF VENTSORBS

Arrangements should be made at the time of purchase regarding the future return of canisters containing spent carbon. Calgon Carbon Corporation will provide instructions on how to sample the spent carbon and arrange for carbon acceptance testing. The spent carbon is reactivated by Calgon Carbon Corporation and all of the contaminants are thermally destroyed. Calgon Carbon Corporation will not accept VentSorbs for landfill, incineration or other means of disposal.

No VentSorbs can be returned to the copmany unless the carbon acceptance procedure has been completed, an acceptance number provided, and the return labels (included with the units at the time of purchase) are attached.

VentSorbs must be drained – and inlet/outlet connections must be plugged – prior to return to Calgon Carbon Corporation.

Theoretical	Ventsorb	Capacity	Lb Ads	orbed/VentSorb*

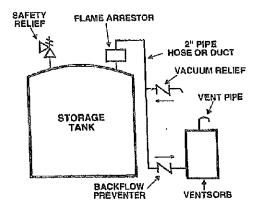
	HOUICHOU! TO	THOUSE COPERING				
	BOILING POINT/°C	MOLECULAR WEIGHT	10 <u>PPM</u>	100 <u>PPM</u>	1,066 PPM	
Acrylonitrile	77.3	53.1	6	12	24	
Benzene	80.1	78.1	14	23	36	
n-Butane	-0.5	58.1	4	8	13	
Carbon Tetrachloride	76.8	153.8	40	56	7 6	
Dichigroethylene	37.0	97.0	12	21	35	
Methylene	40.2	84.9	3	7	18	
Freon 114	3.8	170.9	11	19	33	
n-Hexane	68.7	88.2	18	25	34	
Styrene	145.2	104.1	45	57	71	
Toluene	110.6	92.1	34	44	58	
Trichloroethylene	87.2	131.4	33	50	73	

^{*} Theoretical capacity based on 70 degrees F., atmospheric pressure, less than 50 percent humidity and 180 pounds of carbon using laotherm data for Pellet BG carbon.

VENTSORB CARBON LIFE ESTIMATE

This table lists the theoretical adsorption capacities for several compounds. The adsorption capacity for nonpolar organics increases with the boiling point, molecular weight and concentration of the eir conteminant. Estimate the life of a VentSorb canister for other organic compounds by matching them with compounds of similar boiling point and molecular weight in this table. Low molecular weight (less than 50) and/or highly polar compounds such as formaldehyde, methane, ethanol, etc., will not be readily adsorbed at low concentrations.

Note: The standard VentSorb canister contains 180 pounds of Pellet 8G carbon. When removing hydrogen suifide and mercaptans from moist air vented from sawage operations, greater efficiency will be achieved by using a VentSorb canister which contains specially impregnated IVP carbon. A VentSorb containing IVP carbon can remove up to 40 pounds of hydrogen suifide and 15 pounds of methyl mercaptan.


VENTSORB SAFETY CONSIDERATIONS

While complying with recommended installation instructions, plant operators should also be aware of these additional heat-related salety considerations:

- 1. When contacting with activated carbon, some types of chemical compounds – such as those from the ketone and aldehyde lamilies and some organic acids or organic sulfur compounds – may react on the carbon surface causing severe exotherms or temperature excursions. If you are unaware or unsure of the reaction of an organic compound on activated carbon, appropriate tests should be performed before putting a VentSorb in service.
- Heat of adsorption can lead to severe temperature excursions at high concentrations of organic compounds. Heating may be controlled by diluting the inlet air, time weighting the inlet concentration to allow heat to dissipate, or pre-watting the carbon.
- 3. Do not use VentSorbs with IVP carbon in petrochemical or chemical industry applications.

4. iVP carbon can liberate heat by reacting chemically with oxygen. To prevent heat within a vessel, the carbon must not be confined without adequate air flow to dissipate the heat. In situations where there is insufficient or disrupted air flow through the vessel, the chemical reaction can be prevented by sealing the inlet and outlet connections to the vessel.

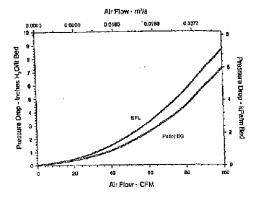
NOTE: CONTACT YOUR LOCAL CALGON CAREON COR-PORATION TECHNICAL SALES REPRESENTATIVE FOR CLARIFICATION OR TO ANSWER ANY QUESTIONS.

Typical VentSorb Installation at Storage Tank

CALGON CARBON CORPORATION AIR PURIFICATION SYSTEMS

VentSorb is a unit specifically designed for a variety of small applications. Calgon Carbon Corporation offers a wide range of carbon adsorption systems and services for a greater range of flow rates and carbon usages to meet specific applications.

WARRANTY


There are no expressed or implied warrantles – or any warrantly of merchantability or fitness – for a particular purpose associated with the sale of this product.

LIMITATION OF LIABILITY

The Purchaser's exclusive remedy for any cause of action arising out of purchase and use of the VentSorb, including but not limited to breach of warranty, negligence and/or indemnitication, is expressly limited to a maximum of the purchase price of the VentSorb unit as sold. All claims of whatsoever nature shall be deemed walved unless made in writing within forty-five (45) days of the occurrence giving rise to the claim. In no event shall Calgon Carbon Corporation for any reason be liable for incidental or consequential damages, damages in excess of the purchase price of the VentSorb unit, loss of profits or fines imposed by governmental agencies.

Application information provided in this bulletin is based upon theoretical data. Calgon Carbon Corporation assumes no responsibility for the use of the information in this product builetin.

VENTSORB PRESSURE DROP

Pressure drop through a VentSorb unit is a function of the process air flow as shown in the graph. A VentSorb canister can handle up to 100 cfm at a pressure drop of less than 15 inches water column. If higher flows or lower pressure drop is needed, multiple canisters may be installed in parallel operation. The maximum canister pressure should not exceed 4 psig.

If at any time our products or services do not meet your requirements or expectations, or if you would like to suggest any ideas for improvement, please call us at 1-800-548-1999.

For detailed information on the products described in this bulletin, please contact one of our Regional Sales Offices located nearest to you:

1-800-4-CARBON

Domestic Sales Offices

Region I Region III
Bridgewater, NJ Richmond, CA
Tel (908) 526-4646 Tal (510) 412-1010
Fax (908) 526-2467 Fax (510) 412-5660

Region il Region W
Pittsburgh, PA Houston, TX
Tel (412) 787-6700 Tel (713) 690-2000
1-800-4-CARBON Fax (412) 767-6876

International Sales Offices

Australasia/Philippines/ Southeast Asia Calgon Carbon Asia Singapore Office Tel (65) 221-3500 Fax (65) 221-3554

Canada Caigon Carbon Canada Bolton, Ontario Tei (905) 857-9915 Fax (905) 857-9984 Chine/Korea/Telwan Calgon Carbon Asia Tokyo Office Tel 81 3 3560 7505 Fax 81 3 3584 7202

Europe Chemviron Carbon B-1200 Brussels, Belgium Tel 32 2 773 02 11 Fax 32 2 770 93 94 Japan Calgon Far Bast Tokyo Office Tel: 81 3 3582 1861 Fax 81 3 3586 9266

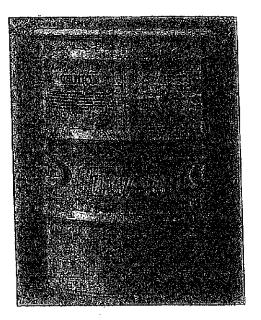
Letin America Pittsburgh, PA Tel (412) 787-4519 Fax (412) 787-4523

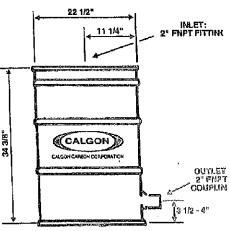
Calgon Carbon Corporation's activated carbon products are continuously being improved and changes may have taken place since this publication went to press.

GENERAL DESCRIPTION

Designed for low-flow water treatment applications, prefabricated 55-gallon Flowsorb® canisters contain all the operating elements found in a full-scale adsorption system. These small, economical treatment systems hold 165 pounds of granular activated carbon for applications including:

- Small wastewater streams
- Groundwater remediation
- Underground storage tank leaks
- Well pump tests
- · Product purification or decolorization
- Tank cleaning water treatment
- · Batch water or product treatment
- Carbon adsorption pilot testing
- · Emergency spill treatment
- · Monitoring well water treatment


FEATURES


Flowsorb offers several features and benefits to industrial, commercial and municipal users including:

- Sturdy 16 gauge steel construction
- Continuous treatment at varying flow rates and concentrations
- · Simple installation and operation
- Space above carbon bed facilitates flow distribution or backflushing
- · Flexibility to be used in series or parallel operation
- Supplied with virgin or reactivated carbon
- Practical disposal option, as pre-approved spent carbon canisters may be returned to Calgon Carbon Corporation for safe carbon reactivation
- Low cost per unit makes carbon treatment economical

FLOWSORB SPECIFICATIONS

Maximum Operating	Open head 16 gauge steel canister Pressure:
	ovable steel cover, 12 gauge bolt ring with butyl rubber sponge gasket
Internal Coating:	Heat cured phenolic epoxy
External Coating:	Baked enamel (gray)
Temperature Limit: .	150° F (65.6° C) continuous
	350°F (176.7°C) Intermittent
Inlet:	2" FNPT Nylon fitting
Outlet:	2" FNPT Galvanized steel coupling;
	stainless steel collector in nylon drum fitting
	166 pounds granular activated carbon:
	Specify Filtrasorb 300 or reactivated grade
Ship Weight:	232 pounds (105 kg)
Identification:	Sequentially numbered for traceability

FLOWSORB DIMENSIONS

THEORETICAL FLOWSORB TREATMENT CAPACITY FOR TYPICAL CASES

Benzene Toluene Xylene	Case 1 Conc. Gallons 20 ppb 1,600,000 40 ppb	Case 2 <u>Conc. Gallons</u> 200 ppb 400,000 400 ppb 400,000	Case 3 Conc. Gallons 2 ppm 4 ppm 4 ppm 4 ppm
TCE PCE	Case 4 Conc. Gallona 50 ppb 1,900,000 50 ppb 1	Case 5 <u>Conc.</u> <u>Gallons</u> 500 ppb 550,000	Case 6 <u>Cone. Gallons</u> 5 ppm } 125,000 4 ppm
Phenol Total SOC	Case 7 <u>Conc. Gallons</u> 1 ppm } 230,000 10 ppm	Case 8 <u>Conc.</u> <u>Gallons</u> 10 ppm }50,000	Case 9 <u>Conc. Gallons</u> 100 ppm } 10,000 1,000 ppm

Each case represents a groundwater or wastewater stream that contains the combination of contaminants listed. The treatment capacity indicates the total gallons of that particular water that may be treated before any of the specific contaminants are present in the treated water as noted. Theoretical capacity based on 5 gpm, water at 70°F or less and 165 pounds of Filtrasorb 300, Background TOC is less than 1 ppm except phenol cases as noted. Contaminants reduced to < 5 ppb, except phenol case which is for 95% phenol reduction.

HOW TO ESTIMATE FLOWSORB LIFE

The treatment table on this page lists the volume of water that can be purified by the Flowsorb for typical contamination situations. However, most applications involve a unique mixture of organic chemical contaminants including some chemicals that adsorb at different capacities or strengths. Please consult with your Calgon Carbon Technical Sales Représentative for more information about carbon usage rates.

RETURN OF FLOWSORBS

Arrangements should be made at the time of purchase regarding the future return of canisters containing spent carbon. Catgon Carbon will provide instructions on how to sample the spent carbon and arrange for carbon acceptance testing. The spent carbon is reactivated by Catgon Carbon and all of the contaminants are thermally destroyed. The company will not accept Flowsorbs for landfill, incineration or other means of dispose!

Flowsorbs cannot be returned to Calgon Carbon unless the carbon acceptance procedure has been completed, an acceptance number provided, and the return labels (included with the units at the time of purchase) are attached.

Flowsorbs must be drained — and intervolted connections must be plugged – prior to return to Calgon Carbon.

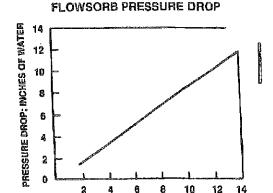
SAFETY CONSIDERATIONS

It is unlikely that a worker would be able to physically enter a Flowsorb canister. However, the following information and precautions apply to a partially closed canister or situations where carbon is to be removed from the canister and stored elsewhere.

Wet or dry activated carbon preferentially removes oxygen from air, inclosed or partially closed containers, oxygen depletion may reach hazardous levels. If workers must enter a vessel containing carbon, appropriate sampling and work procedures should be followed for potentially low-oxygen spaces — including all applicable federal and state requirements.

CALGON CARBON CORPORATION LIQUID PURIFICATION SYSTEMS

Flowsorb is a unit specifically designed for a variety of small flow applications. Calgon Carbon Corporation offers a wide range of carbon absorption systems and services for a greater range of flow rates and carbon usages to meet specific applications.


WARRANTY

There are no expressed or implied warranties – or any warranty of merchantability or fitness – for a particular purpose associated with the sale of this product.

LIMITATION OF LIABILITY

The Purchaser's exclusive remedy for any cause of action arising out of purchase and use of the Flowsorb, including but not limited to breach of warranty, negligence and/or indemnifications, is expressly limited to a maximum of the purchase price of the Flowsorb unit as sold. All claims of whatsoever nature shall be deemed walved unless made in writing within forty-five (45) days of the occurrence giving rise to the claim. Inno event shall Calgon Carbon Corporation for any reason be liable for incidental or consequential damages, in excess of the purchase price of the Flowsorb unit, loss of profits or fines imposed by governmental agencies.

For information regarding Incidents Involving human and environmental exposure, please call (412) 787-6700 and ask for the Regulatory and Trade Affairs Department.

FLOWRATE; GPM

Application information provided in this bulletin is based upon theoretical data. Calgon Carbon Corporation assumes no responsibility for the use of the information in this product bulletin.

If at any time our products or services do not meet your requirements or expectations, or if you would tike to suggest any ideas fo improvement, please call us at 1-800-548-1999. From outside the U.S. please call +1-412-787-6700.

1-800-4-CARBON

www.caigoncarbon.com

Domestic Sales Offices

East Coast Region Bridgewater, NJ Tel (908) 526-4646 Fax (908) 526-2467

Midwest Region
Pitteburgh, PA
Tel (412) 787-6700
1-800-4-CARBON
Fax (412) 787-6676

West Coast and Rockles Region Richmond, CA Tel (510) 412-1010 Fax (510) 412-5660

Gulf Coast Region

Houston, TX Tel (713) 690-2000 Fax (713) 690-7909

International Sales Offices

Australasia/Philippinesi Southeast Asia

Ceigon Carbon Asia Singapore Office Tel (65) 221-3500 Fax (65) 221-3554

Canada

Calgon Carbon Canada, Inc. Bolton, Ontario Tel (905) 857-9915 Fax (905) 857-9984

China/Korea/Talwan

Celgon Carbon Asia Tokyo Offica Tel 81 3 3550 7505 Fax 81 3 3584 7202

Europe

Chernviron Carbon B-1200 Brussels, Belgium Tel 32 2 773 02 11 Fax 32 2 770 93 94

Japan

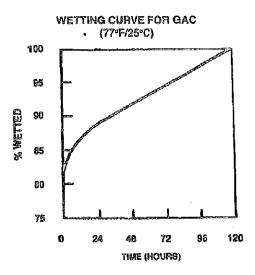
Calgon Far East Tokyo Office Tel 81 3 3592 1861 Fax 81 3 3586 9266

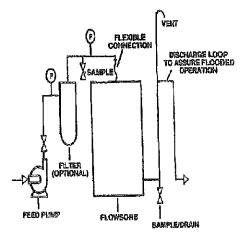
Latin America

Pittsburgh, PA Tel (412) 787-4519 Fax (412) 787-4523

Calgon Carbon Corporation's activated carbon products are continuously being improved and changes may have taken place since this publication went to press.

TYPICAL FLOWSORB OPERATING PARAMETERS


FLOWSORB INSTALLATION


Flowsorb canisters are shipped with dry activated carbon; the carbon must be wetted and dearrated prior to use. This procedure displaces air from the Internal structure of the carbon granule, thus assuring that the liquid to be treated is in contact with the parbon surface.

Prior to operation, each canister must be filled with clean water; the water should be introduced into the bottom outlet connection. The unitshould set for approximately 48 hours—this allows most of the carbon's internal surface to become wetted, as shown on the wetting curve below.

After wetting, the carbon bed can be deaerated by draining the canister and again filling the canister upflow with clean water. This procedure will eliminate any air pockets which may have formed between the carbon granules. The Flowsorb is now ready or operation.

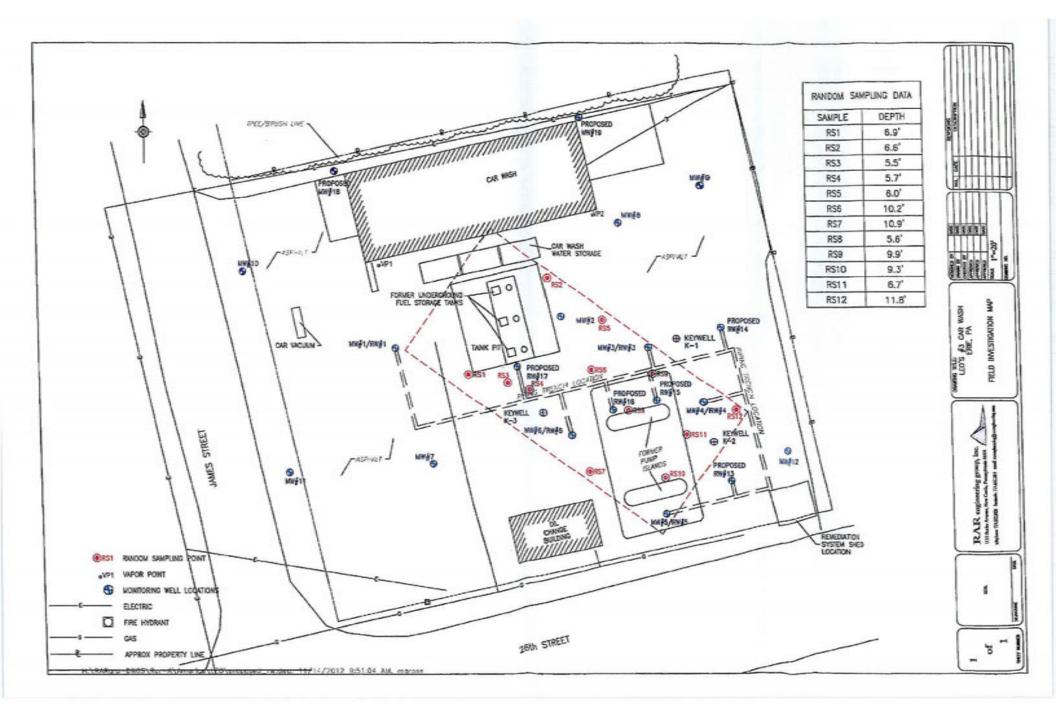
Canisters should be set on a flat, level surface and piped as recommended in the installation illustration. The influent pipe connection should be attached to the unit by using a flexible connection, as some minor deflection of the lld may occur if pressure builds due to filtration or other flow blockage downstream.

TYPICAL FLOWSORB INSTALLATION

Flowsorb discharge piping should include an elevated piping loop to assure that the cantater remains flooded with water at all times. In addition to the piping loop, a drain connection is recommended on the discharge piping; this allows drainage of the unit orior to disconnection or temporary shutdown.

A filter should be installed if the liquid to be treated contains substantial amounts of suspended solids. A simple carifidge or screen filter helps prevent pressure buildup in the carbon bed.

FLOWSORB OPERATION


Flowsorb canisters should be full of clean water before treatment begins. Flow rate to the canister should be determined based on required contact time between the liquid and the carbon media. In groundwater treatment applications, the recommended contact time is typically 8-10 minutes with a resultant flow of approximately 5 gpm. Consult your Catgon Carbon Corporation Technical Sales Representative for advice about proper contact time for your application.

Flowsorbs can be manifolded in parallel operation for higher flow rates. For series operation, two Flowsorbs can be piped together sequentially, as normal pressure drop will not exceed the recommended operating pressure.

These canisters have space for bed expansion and can be backliushed by introducing clean water or liquid at approximately 20-25 gpm to the outlet and taking backliush water from the inlet.

If the operating pressure is expected to exceed 5 psig, an application of adhesive caulk at the lid gasket is recommended to prevent leakage. With all surfaces dry, apply the adhesive caulk to the lid recess and lip of the drum per the manufacturer's procedure and set the Flowsorb gasket into the lid recess. After allowing the caulk to set, install the drum lid and tighten the bolt ring.

APPENDIX D: SITE MAP DEPICTING BUILDINGS, ROADS PROPERTY BOUNDARIES & OTHER PERTINENT INFORMATION

PA Certification Lab ID #37-00237 WV Certification Lab ID #379

Report Date: 04/25/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

CCV The Continuing Calibration Verification (CCV) recovery for this compound did not meet method acceptance criteria. The average compounds did meet method acceptance criteria as specified in EPA Method 8000 B.	ge of all
D1 Sample required dilution due to matrix interference.	
D2 Sample required dilution due to high concentration of compound.	
D3 Sample required dilution due to lack of proper sample weight or volume.	
HT3 Sample was received and analyzed past holding time:	
MB Compound detected in method blank at or above the method reporting limit,	
MS1 The laboratory fortified matrix (LFM) result for this sample is above established acceptance criteria. But since the sample result is the regulatory level, the result is valid for regulatory use.	s below
MS2 The lab fortified matrix (LFM) result for this sample is not within established acceptance criteria. The sample result is above the limit and is considered to be "estimated" because matrix interferences may be preventing accurate determination.	regulator
MS3 The laboratory fortified matrix (LFM) result for this sample is not within established acceptance criteria due to high concentration sample.	n of
MS4 The laboratory fortified matrix (LFM) result for this sample is not within established acceptance criteria. The laboratory fortified (LFB) was within the accepted criteria, therefore matrix interference is assumed.	blank
P1 Sample was not preserved properly.	
RPD Relative Percent Difference (RPD) exceeded the method acceptance limits. The sample result is to be considered "estimated".	

Report Date: 07/24/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

7523-007

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

7/15/2013 11:30:00 AM

Date Received:

7/15/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	07/22/13 17:49	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Xylenes(Total), mg/L	<0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Naphthalene, mg/L	<0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	07/22/13 17:49	ALH
Aqueous-phase purge-and-trap			EPA 5030B	07/22/13 17:49	ALH

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Report Date: 09/30/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8113-001

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

9/19/2013 1:15:00 PM

Date Received:

9/19/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	<0.001	0.001	EPA 8260B	09/23/13 19:25	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	09/23/13 19:25	MGW
Aqueous-phase purge-and-trap			EPA 5030B	09/23/13 19:25	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

PA Certification Lab ID #37-00237 WV Certification Lab ID #379

Report Date: 11/18/2013

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

8491-001

Sample Name:

Monitoring Well MW#18 Groundwater Sample

Sample Date:

11/8/2013 1:00:00 PM

Date Received:

11/8/2013

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	11/15/13 20:47	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Cumene, mg/L	<0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	11/15/13 20:47	MGW
Aqueous-phase purge-and-trap			EPA 5030B	11/15/13 20:47	MGW

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 R.A.R. Engineering Group, Inc 1135 Butler Avenue New Castle PA 16101

April 14, 2014

Project: Leo's

Submittal Date: 04/03/2014 Group Number: 1464286 PO Number: RAR09-082 State of Sample Origin: PA

Client Sample Description

VP-A Air (VP-I - DZ; KOWSK;)

VP-B Air (VP-2 - PARKER)

Field Blank Air

Lancaster Labs (LL) #

7418137 7418138 7418139

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO


R.A.R. Engineering Group, Inc

Attn: Kyle Griffith

Respectfully Submitted,

Angela M. Miller Specialist

(717) 556-7260

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 - 717-656-2300 - Fax: 717-656-2681 - www.LancasterLabs.com

Sample Description: VP-A Air

SC# 930 Leo's LL Sample # AQ 7418137 LL Group # 1464286 Account # 12840

Project Name: Leo's

Collected: 04/01/2014 10:50 by PK

through 04/01/2014 14:50 Submitted: 04/03/2014 08:15 Reported: 04/14/2014 17:44 R.A.R. Engineering Group, Inc

1135 Butler Avenue New Castle PA 16101

CAT No.	Analysis Name	CAS Number	As Received Final Result	MDL	As Received Final Result	MDL	DF
Volat	iles in Air ASTM D1946	5	ppm(v)	ppm(v)	mg/m3	mg/m3	
10341	Helium as Tracer Gas	7440-59-7	N.D.	30,000	N.D.	4,900	6
Volat	iles in Air EPA TO-15		ppb (v)	ppb(v)	ug/m3	ug/m3	
05298	Benzene	71-43-2	0.76 €	0.20	2.4 J	0.64	1
05298	Cumene	98-82-8	N.D.	0.20	N.D.	0.98	1
05298	Bthy_benzene	100-41-4	3.3	0.20	14	0.87	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.20	N.D.	0.72	1
05298	Naphthalere	91-20-3	9.2	0.10	48	2.1	1
05298	Toluene	108-88-3	9.4	0.20	36	0.75	1
05298	m/p-Xylene	179601-23-1	8.8	0.20	38	0.87	1
05298	o Xylene	95-47-6	3.9	0.20	17	0.87	1

MDL = Method Detection Limit

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Labo	ratory Sa	umple Analys	sis Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10341	Helium as Tracer Gas	ASTM D1946	1	14100UE01	04/10/2014 16:17	Florida A Cimino	6
05298	TO 15 VOA Ext. List	EPA TO-15	1	D1409830AA	04/09/2014 14:41	Jeffrey B Smith	1.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VP-B Air

SC# 922 Leo's LL Sample # AQ 7418138 LL Group # 1464286 Account # 12840

Project Name: Leo's

Collected: 04/01/2014 11:20

by PK

R.A.R. Engineering Group, Inc

1135 Butler Avenue New Castle PA 16101

through 04/01/2014 15:20 Submitted: 04/03/2014 08:15 Reported: 04/14/2014 17:44

CAT No.	Analysis Name	CAS Number	As Received Final Result	MDL	As Received Final Result	MDL	DF
Volat	iles in Air ASTM D1	946	ppm(v)	ppm(v)	mg/m3	mg/m3	
10341	Helium as Tracer Gas	7440-59-7	ν.π.	30,000	ĸ.D.	4,900	6
Volat	iles in Air EPA TO-	15	ppb(v)	ppb(v)	ug/m3	ug/m3	
05298	Benzene	71-43-2	0.64 J	0.20	2.9 J	0.64	1
05298	Cumene	98-82-3	N	0.20	N.D.	0.98	1
05298	Ethylbenzene	100-41-4	a.b	0.20	8.6	0.87	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.20	N.D.	0.72	1
05298	Naphthalene	91-20-3	1.6	0.40	8,4	2.1	1
05298	Toluene	108 88 3	6.3	0.20	24	0.75	1
05298	m/p-Xylene	179601-23-1	5.3	0.20	23	0.87	1
05298	c-Xylene	95-47-6	2.5	0.20	11	0.87	1

MDL = Method Detection Limit

General Sample Comments

PA DEP Lab Certification ID 36 00037, Expiration Date: 1/31/15

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record Method Dilution Analysis Name Trial# Batch# Analysis CAT Analyst Date and Time Factor 10341 Helium as Tracer Gas ASTM D1946 14100HEC1 04/10/2014 16:26 Florida A Cimino 05298 TO 15 VOA Ext. List EPA TO-15 D1409830AA 04/09/2014 15:29 Jeffrey B Smith

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Field Blank Air

sc# 1031 Leo's LL Sample # AQ 7418139

LL Group # 1464286 Account # 12840

Project Name: Leo's

Collected: 04/01/2014 10:55 b

by PK

R.A.R. Engineering Group, Inc

7.0

through 04/01/2014 14:55 Submitted: 04/03/2014 08:15 Reported: 04/14/2014 17:44 1135 Butler Avenue New Castle PA 16101

0.20

CAT No.	Analysis Name	CAS Number	As Received Final Result	WDL	As Received Final Result	MDL	DF
olat	iles in Air ASTM D19	4.5	ppm(v)	ppm(v)	mg/m3	mg/m3	
10341	Helium as Tracer Gas	7440-59-7	N.D.	10,000	N.D.	1,600	2
/olat	iles in Air EPA TO-1	.5	ppb(v)	ppb(v)	ug/m3	ug/m3	
05298	Benzene	71-43-2	0.41 J	0.20	1.3 J	0.64	1
05298	Cumene	98-82-8	N,D.	0.20	N.D.	0.98	1
05298	Ethylbenzene	100-41-4	0.84 J	0.20	3.6 J	0.87	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.20	N.D.	0.72	1
05298	Naphthalene	91-20-3	1.8	0.40	9.4	2.1	1
05298	Toluene	108 88 3	0.70 J	0.20	2.6 J	0.75	1
05298	m/p-Xylene	179601-23-1	2.6	0.20	11	0.87	1
	· • •					A 0.0	

1.6

MDL = Method Detection Limit

o-Xylene

General Sample Comments

PA DEP Lab Certification ID 36 00037, Expiration Date: 1/31/15

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

95-47-6

Laboratory Sample Analysis Record Method Dilution Trial# Batch# Analysis Analyst CAT Analysis Name No. Date and Time Factor Florida A Cimino 10341 Helium as Tracer Gas ASTM D1946 14100EE01 04/10/2014 16:33 05298 TC 15 VOA Ext. List EPA TO-15 D1409830AA 04/09/2014 16:17 Jeffrey B Smith

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 1

Quality Control Summary

Client Name: R.A.R. Engineering Group, Inc

Environmental

Group Number: 1464286

Reported: 04/14/14 at 05:44 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to domonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%</u> REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 14100HE01 Helium as Tracer Gas	Sample numbe	er(s): 741 5,000.	8137-7418 ppm(v)	139				
Batch number: D1409830AA	Sample number	er(s): /41	8137-7418	139				
Benzenc	N.D.	0.20	ppb(v)	98	89	70-130	10	25
Cumene	N.C.	0.20	ppb(v)					
Ethvlbenzene	N.D.	0.20	(v) dgg	101	89	70~130	13	25
Methyl t-Butyl Ether	N.D.	0.20	ppb(v)	102	90	52-129	13	25
Naphthalene	N.D.	0.40	ppb (v)	89	70	26-191	23	25
Toluene	N.D.	0.20	pph(v)	104	92	70-130	1.2	25
m/p-Xylene	N.D.	0.20	pub (v)	102	90	70-130	13	25
o-Xvlene	N.D.	0.20	ppb(v)	106	94	70-130	12	25

*- Outside of specification

(2) The unspiked result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

Summa Canister Field Test Data/Chain of Custody

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhas/cm	ng	nanogram(s)
С	degrees Celsius	Ė	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported

on an as-received basis.

Data Qualifiers:

C – result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the Individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conflicting terms contained in any acceptance or order submitted by client.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-659-2900 • Fax: 717-659-2681 • www.LancasterLabs.com

ANAI	V	CIC	λſ	DES	111	TC

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Laneaster, PA 17601

American Env. Assoc., Inc. 1135 Butler Avenue New Castle PA 16101

May 06, 2014

Project: Leo's Car Wash

Submittal Date: 04/29/2014 Group Number: 1470330 State of Sample Origin: PA

Client Sample Description

Lancaster Labs (LL) # 7445692

VP-B Air

VP-A Air

7445693

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO

RAR Engineering Group

Attn: Kyle Griffith

Respectfully Submitted,

Specialist

(717) 556-7260

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VP-A Air

SC# 823

Leo's Car Wash

LL Sample # AQ 7445693 LL Group # 1470330

Account # 12835

Project Name: Leo's Car Wash

Collected: 04/25/2014 10:15 by P.

through 04/25/2014 14:15

Submitted: 04/29/2014 07:55 Reported: 05/06/2014 15:59 American Hnv. Assoc., Inc.

1135 Butler Avenue New Castle PA 16101

CAT No.	Analysis Name	CAS Number	As Received Final Result	MDL	As Received Final Result	MDL	DF
Volat:	iles in Air ASTM D194	5	ppm(v)	ppm(v)	mg/m3	mg/m3	
10341	Helium as Tracer Gas	7440 59 7	N.D.	10,000	N.D.	1,600	2
Volat:	iles in Air EPA TO-15		ppb(v)	ppb(v)	ug/m3	ug/m3	
05298	Benzene	71-43-2	1.0	0.20	3.3	0.64	ı
05298	Cumene	98-32-8	0.79 J	0,20	3.9 J	0.98	1
05298	Ethylbenzene	100-41-4	2.7	3.20	12	0.87	1
05298	Methyl t-Butyl Ether	1634-04-4	N.D.	0.20	N.D.	0,72	1
05298	Naphthalene	91 - 20 3	0.64 J	0.40	3.4 J	2.1	1
05298	Toluene	108-38-3	9.3	0.20	35	0.75	1
05298	m/p-Xylene	179601-23-1	9.6	0.20	42	0.87	1
05298	o-Xylene	95-47-6	2.9	0.20	12	3.87	1

MDL = Method Detection Limit

General Sample Comments

PA DBP Lab Certification 1D 36-00037, Expiration Date: 1/31/15.

All QC in compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10341	Helium as Tracer Gas	ASTM D1946	1	14125HE01	05/05/2014	15:34	Florida A Cimino	2
05298	TO 15 VOA Ext. List	EPA TO 15	1	D1412030AA	04/30/2014	23:46	Michael A Ziegler	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VP-B Air

9C# 851 Lec's Car Wash LL Group # 1470330 Account # 12835

LL Sample # AQ 7445692

Project Name: Leo's Car Wash

Collected: 04/25/2014 10:30

through 04/25/2014 14:30 Submitted: 04/29/2014 07:55 Reported: 05/06/2014 15:59

American Env. Assoc., Inc.

1135 Butler Avenue New Castle PA 16101

CAT No.	Analysis Name	CAS Number	As Received Final Result	MDL	As Received Final Result	HDL	DF
Volat	iles in Air ASTM D194	6	ppm(v)	ppm(v)	mg/m3	mg/m3	
10341	Helium as Tracer Gas	7440-59-7	N.D.	10,000	N.D.	1,600	2
Volat	iles in Air EPA TO-15		ppb (v)	ppb (v)	ug/m3	ug/m3	
05298	Benzene	71-43-2	1.9	0.20	6.0	0.64	1
05298	Cumene	98-82-8	Q.72 J	0.20	3.5 J	0.98	1
05298	Ethylbenzene	100-41-4	3.9	0.20	17	0.87	1
05298	Methyl t-Butyl Ether	1634-04-1	N.D.	0.20	N.D.	0.72	1
05298	Naphthalenc	91-20-3	1.1	0.40	6.0	2,1	1
05298	Toluene	108-88-3	12	0.20	47	0.75	1
05298	m/p-Xylene	179601-23-1	14	0.20	61	0.87	1
05298	o-Xylene	95-47-6	4.3	0.20	16	0.87	1

MDL = Method Detection Limit

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/~5.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10341	Helium as Tracer Gas	ASTM D1946	1	14125FE01	05/05/2014	15:20	Florida A Cimino	2
05298	TO 15 VOA Ext. Mist	EPA TO-15	1	D1412030AA	04/30/2014	22:58	Michael A Ziegler	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 1

Quality Control Summary

Client Name: American Env. Assoc., Inc.

Group Number: 1470330

Reported: 05/06/14 at 03:59 PM

Matrix OC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD_Max	
Batch number: 14125HE01	Sample nu	mber(s): 74	45692-7445	693					
Helium as Tracer Gas	N.D.	5,000.	ppm(v)						
Batch number: D1412030AA	Sample nu	mber(s): 74	145692-7445	693					
Benzene	N.D.	0.20	ppb(v)	86	90	70 130	5	25	
Cumene	N.D.	0.20	ppb (v)						
Ethylbenzene	N.D.	0.20	ppb(v)	87	85	70-130	2	25	
Methyl t-Butyl Ether	N.D.	0.20	ppb(v)	108	104	52-129	3	25	
Naphthalene	N.D.	0.40	ppb(v)	BD	75	26-191	6	25	
Toluene	N.D.	0.20	ppb (v)	85	85	70-130	1	25	
m/p-Xylene	N.D.	0.20	ppb(v)	89	86	70-130	2	25	
o-Xvlene	N.D.	0.20	ppb (v)	95	93	70-130	2	25	

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Summa Canister Field Test Data/Chain of Custody Group # /47633\$\times\$ Sample # 74956.92 - 93\$ Bottle Order (SCR) # 59463\$\times\$ Preference on reverse sole correspond with order for minibers. Acet. # 12835 Seurofins | Lancaster Laboratories | Cardonimental

J.

Environmental										T JAAC	VI.		ľ
<u> </u>	Client Information	ition			છ Tui	тагои	Turnaround Time Requested (TAT) (circle one)	nested (TAT)	cle one)	(a)	alyses	Analyses Requested
Amortean Environmental	ental Asso.	Account #			9	czewarc		Rush (specify) (Par Lyle	<u>}</u> (3_8 (3_8	portition portition	и		
	Į.		!		₽ Dai	za Pack	Data Package Required?	<u>ن</u> 4ء	EDD	EDD Required?	ハ <i>い</i> ,		
イ その っ Project Manager		P.O.#				Xes	Š		Yes	N _o	W 家 ((マル	(
スプラのよれ						Ľ	Temperature (F)		Pressu	Pressure ("Hg)	. 5	(MOJi	-
		Quale #				ŝ	Start Stop	a	Start	Stop	X∃		
Pasi Kassinsk					Ambient						18-		
Name of state where samples were collected					Maximum	-					ונימ נימ	su to	
2					Minimum	-					9 9	paja	you
2)	Start Date/Time	Stop Date/Time	Canister Pressure in Field ("Hg)	Canister Pressure in Field ("Hg)	Interior II Temp. (F)	Interior Temp. (F)	Finw Ren ID	S S	Can	Controller Flowrate (ml /min)	12 9		ripisi) Sei OS/COS
61 - 0 / i	4/25/W 10:30	4)25/14 14230-	-30.0	-8.0	_	Ľ	23623	Ñ	٥	20.9	ダグ	-	F
4-07	21.01 m/selv		2865	01-	1	210	339239	823	2	۲:۱۶	<u>ス</u>		
`													
												7	
						-							_
												+	+
7) Instructions/QC Requiremen	ements & Comments	ts				<u> </u>	EPA 25 (check one)	(eue)		2-2	Ĭ	C2 - C10	
										□ C1-C10	ŏ	24 - C1	☐ C4 - C10 (GRO)
										□ C2-C4			
Canisters Shipped by Dales	DateTime: Canisters ソールイン	Canisters Received by:	Date/Time:		Refinquished by:		Date	Date/Time;	Received by:	/		Date/Time:	ríme: (8
which	Date/Time: 45 Received by	Ag	Date/Time:		Relinquished by:		Date	Date/Time:	Received by:	1		Date∕Time	Time:
Reinquished by: Date	Date/Time: Received 85	354	Date/Time		Refinquished by:		Date	Date/Time:	Received	M		Date/Time: - √/29/14	Date∏ime: 4/29/14 o755
The whit	Eurofins Land te copy should acc	Eurolins Lancaster Laboratories Environmental, LLC - 2425 New Holland Pike, Lancaster, PA 17601 - 777-556/2300 he white copy should accompany samples to Eurolins Lancaster Laboratories, Environmental. The yellow copy should be retained by the client. Page 5 of 6	Environmental Eurofans Lanc	LLC • 2425 N aster Laborate	tew Holland pries Enviror 5 of 6	i Pike, Lan nmental. T	icaster, P.A. 1761 The yellow copy	01 • 717-68 should be	56-2300 retained t	y the client.		-	7058 0718

7058 0713

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	Ě	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported

on an as-received basis.

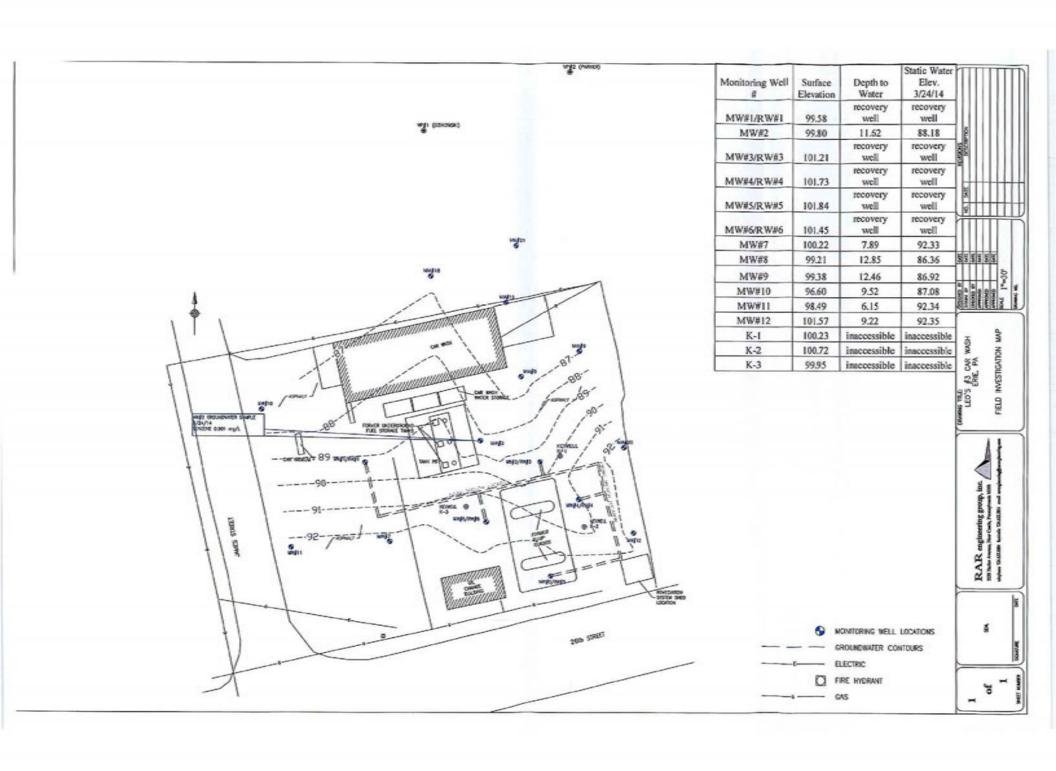
Data Qualifiers:

C – result confirmed by reanalysis.

J - estimated value - The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥ldl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	8	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		


Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submittled. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LIC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental which includes any confained in any acceptance or order submitted by client.

04/01/14 20:43 MGW

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-001

3/24/2014

Sample Name:

Monitoring Well MW#2 Groundwater Sample

Sample Date:

Aqueous-phase purge-and-trap

3/24/2014 1:00:00 PM

Date Received:

Parameter	Result	Reporting Limit	Qual.	Method	Analysis Date	Analyst
Benzene, mg/L	0.901	0.001	D2	EPA 8260B	04/01/14 21:23	MGW
Toluene, mg/L	0.015	0.002		EPA 8260B	04/01/14 20:43	MGW
Ethylbenzene, mg/L	0.290	0.002	D2	EPA 8260B	04/01/14 21:23	MGW
Xylenes(Total), mg/L	0.157	0.002		EPA 8260B	04/01/14 20:43	MGW
Cumene, mg/L	0.0.17	0.002		EPA 8260B	04/01/14 20:43	MGW
Naphthalene, mg/L	0.020	0.002		EPA 8260B	04/01/14 20:43	MGW
MTBE, mg/L	0.009	0.002		EPA 8260B	04/01/14 20:43	MGW

EPA 8260B

EPA 5030B

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey Laboratory Director

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-002

Sample Name:

Monitoring Well MW#7 Groundwater Sample

Sample Date:

3/24/2014 11:45:00 AM

Date Received: 3

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	100.0>	0.001	EPA 8260B	04/01/14 21:52	MGW
Toluene, mg/L	<0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Ethylbenzene, mg/L	<0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Xylenes(Total), mg/L	<0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 21:52	MGW
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample#:

9402-003

Sample Name:

Monitoring Well MW#8 Groundwater Sample

Sample Date:

3/24/2014 12:00:00 PM

Date Received: 3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/01/14 22:21	MGW
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
Ethylbenzene, mg/L	<0.002	0.002	EPA 8260B	04/01/14 22;21	MGW
Xylenes(Total), mg/L	<0.002	0.002	EPA 8260B	04/01/14 22;21	MGW
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/01/14 22:21	MGW
MTBE, mg/L	0.017	0.002	EPA 8260B	04/01/14 22:21	MGW
Aqueous-phase purge-and-trap			BPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey
Laboratory Director

www.elslaboratories.com

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-004

Sample Name:

Monitoring Well MW#9 Groundwater Sample

Sample Date:

3/24/2014 12:30:00 PM

Date Received: 3/24/2014

Parameter	Result	Reporting Qual, Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 12:11	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:11	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-005

Sample Name:

Monitoring Well MW#10 Groundwater Sample

Sample Date:

3/24/2014 12:45:00 PM

Date Received:

3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	<0.001	0.001	EPA 8260B	04/02/14 12:43	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Xylenes(Total), mg/L	<0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
MTBE, mg/L	<0.002	0.002	EPA 8260B	04/02/14 12:43	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey Laboratory Director

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-006

Sample Name:

Monitoring Well MW#11 Groundwater Sample

Sample Date:

3/24/2014 1:15:00 PM

Date Received: 3/24/2014

Parameter	Result	Reporting Qual, Limit	Method	Analysis Date	Analyst
Benzene, mg/I.	< 0.001	0.001	EPA 8260B	04/02/14 14:23	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Xylenes(Total), mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Cumene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:23	ALH
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

American Environmental Associates 5946 Southland Drive Erie, PA 16509

Project:

Leo's #3 Car Wash

Lab Sample #:

9402-007

Sample Name:

Monitoring Well MW#12 Groundwater Sample

Sample Date:

3/24/2014 1:30:00 PM

Date Received: 3/24/2014

Parameter	Result	Reporting Qual. Limit	Method	Analysis Date	Analyst
Benzene, mg/L	< 0.001	0.001	EPA 8260B	04/02/14 14:46	ALH
Toluene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
Ethylbenzene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
Xylenes(Total), mg/L	<0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
Cumene, mg/L	0.005	0.002	EPA 8260B	04/02/14 14:46	ALH
Naphthalene, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	ALH
MTBE, mg/L	< 0.002	0.002	EPA 8260B	04/02/14 14:46	
Aqueous-phase purge-and-trap			EPA 5030B		

If there are any questions regarding this data, please call.

Approved By: Marianne Whipkey

PA Certification Lab ID #37-00237 WV Certification Lab ID #379

Report Date: 04/03/2014

American Environmental Associates 5946 Southland Drive Erie, PA 16509

CCV	The Continuing Calibration Verification (CCV) recovery for this compound did not meet method acceptance criteria. The average of all compounds did meet method acceptance criteria as specified in EPA Method 8000 B.
Ы	Sample required dilution due to matrix interference,
D2	Sample required dilution due to high concentration of compound,
D3	Sample required dilution due to lack of proper sample weight or volume.
HT3	Sample was received and analyzed past holding time,
MB	Compound detected in method blank at or above the method reporting limit.
MS1	The laboratory fortified matrix (LFM) result for this sample is above established acceptance criteria. But since the sample result is below the regulatory level, the result is valid for regulatory use.
MS2	The lab fortified matrix (LFM) result for this sample is not within established acceptance criteria. The sample result is above the regulatory limit and is considered to be "estimated" because matrix interferences may be preventing accurate determination.
M83	The laboratory fortified matrix (LFM) result for this sample is not within established acceptance criteria due to high concentration of sample.
MS4	The laboratory fortified matrix (LFM) result for this sample is not within established acceptance criteria. The laboratory fortified blank (LFB) was within the accepted criteria, therefore matrix interference is assumed.
P1	Sample was not preserved properly.
RPD	Relative Percent Difference (RPD) exceeded the method acceptance limits. The sample result is to be considered "estimated".

	 		12* wm	MW# 20	mw#19	MW# 18	
			10.20'	9,70	12.98	9.59	LEOS CAR WASH
The state of the s			10,63	10.35	13.53°	Geometer.	
T. D.T. (中央のできない) T. C.T. (中央のでををない) T. C.T. (中央のでをない) T. C.T. (
Andreas de Campara de							23.ARC 14 (H)

.

Pat Pruent

From:

Scott Whipkey <swhipkey@rarengineering.com>

Sent:

Tuesday, March 18, 2014 9:36 AM

To: Cc: 'Ferro, James' 'Pat Pruent'

Subject:

RE: Leo's Car Wash / Erie, PA / USTIF Claim# 2002-0013(M) (RESPONSE TO

WELL/VAPOR SAMPLING REQUEST]

Jim,

We just received the signed site access agreements from the adjacent property owners and have the drilling scheduled for late next week. We have not performed the 1st quarter 2014 groundwater sampling yet. It is scheduled for the last week of March due to the piles of snow that were present at the site until the recent melt.

J. Scott Whipkey

American Environmental Associates, Inc.

1135 Butler Avenue New Castle, PA 16101 Phone # 724-652-1004 Fax # 724-652-3814

From: Ferro, James [mailto:James.Ferro@icfi.com]

Sent: Monday, March 17, 2014 6:43 PM

To: 'Scott Whipkey'

Cc: 'Scott Morgan'; 'Pat Pruent'

Subject: RE: Leo's Car Wash / Erie, PA / USTIF Claim# 2002-0013(M) (RESPONSE TO WELL/VAPOR SAMPLING

REQUEST]

Hello Scott,

Can you confirm advise on the status of the well/soil-gas point installation and sampling work? Pat already exchanged an email regarding the benzene levels at well MW-12. If you have the Q1 2014 data can you let us know if the benzene results repeated or returned to historic concentrations? Thanks.

Jim Ferro | 703.218.2546 (w) | James.Ferro@icfi.com | icfi.com

ICF INTERNATIONAL | 9300 Lee Highway, Fairfax, VA 22031 | 703.231.0501 (m)

Connect with us on social media.

From: Ferro, James

Sent: Thursday, February 13, 2014 3:08 PM

To: 'Scott Whipkey'
Co: 'Scott Morgan'

Subject: Leo's Car Wash / Erie, PA / USTIF Claim# 2002-0013(M) (RESPONSE TO WELL/VAPOR SAMPLING REQUEST)

Hi Scott,

I apologize for the delay in getting back to you on this request. I have reviewed the details of the proposed well and vapor point installations/sampling with Scott Morgan at GSC and it is agreed that an additional off-site monitoring well

beyond MW-19 is warranted as is the proposed soil gas sampling at the off-site locations. The costs also appear reasonable. Implementation of these activities based on the proposed costs will be reimbursed as out-of-scope T&M.

Also, Scott M was recently reviewing the Q4 2013 RAPR and noted that benzene levels in well MW-12 were reported at 213 ug/l whereas benzene had not been detected in that upgradient POC well since the 4th Quarter of 2007. Scott would like the chance to discuss that issue when you are available.

Jim Ferro | 703.218.2546 (w) | <u>James.Ferro@icfi.com</u> | <u>icfi.com</u> | <u>icfi.com | icfi.com </u>

From: Scott Whipkey [mailto:swhipkey@rarengineering.com]

Sent: Monday, November 25, 2013 2:27 PM

To: Ferro, James

Subject: Leo's Car Wash / Erie, PA / USTIF Claim# 2002-0013(M)

Jim,

As you recall we submitted a revised RAP in July of 2012 for the installation of 4 additional hi-vacuum extraction wells at the site. PADEP denied the revised RAP in September of 2012 and requested additional site characterization activities. After several meetings and much discussion, two additional POC wells and one off-site well were installed in July of 2013 as per the PADEP request.

Jack Ashton of the PADEP has now requested additional site characterization activities be performed at the above referenced site prior to his approval of our revised RAP. He has requested that one additional off-site groundwater monitoring well and two additional off-site vapor points be installed. Attached please find a copy of an e-mail that summarizes our additional site meeting with Jack Ashton and discusses the requested locations of the additional off-site monitoring well and vapor points requested by the PADEP. Also attached is a cost estimate for the additional site characterization work requested by the PADEP. As we discussed previously, the USTIF may consider payment of additional SCR costs because they are outside the scope of the PFP Contract for this site. Please let me know if the USTIF would consider payment of these additional SCR costs. Thank you.

J. Scott Whipkey American Environmental Associates, Inc. 1135 Butler Avenue New Castle, PA 16101 Phone # 724-652-1004 Fax # 724-652-3814