We answer to you.

REMEDIAL ACTION PLAN

HERR FOODS, INC. MANUFACTURING FACILITY 273 OLD BALTIMORE PIKE WEST NOTTINGHAM TOWNSHIP, CHESTER COUNTY, PENNSYLVANIA FACILITY ID No. 15-24418

PREPARED FOR:

Herr Foods, Inc. 20 Herr Drive Nottingham, Pennsylvania 19362

PREPARED BY:

RETTEW Associates, Inc. 3020 Columbia Avenue Lancaster, Pennsylvania 17603

Engineers · Planners · Surveyors · Landscape Architects · Environmental Consultants

REMEDIAL ACTION PLAN

HERR FOODS, INC. MANUFACTURING FACILITY 273 OLD BALTIMORE PIKE NOTTINGHAM, PENNSYLVANIA RETTEW PROJECT NO. 101722001

TABLE OF CONTENTS

1.0	INTRO	DUCTIO	N1			
2.0	SITE D	ESCRIPT	ON AND BACKGROUND1			
	2.1	SITE DI	ESCRIPTION1			
	2.2	HYDRC	DGEOLOGIC SETTING2			
	2.3	SITE CH	IARACTERIZATION SUMMARY3			
	2.4	CONCE	PTUAL SITE MODEL4			
	2.5	DATA (GAP ANALYSIS5			
3.0	ADDIT	IONAL S	ITE CHARACTERIZATION METHODS AND FINDINGS6			
	3.1	MEMB	RANE INTERFACE PROBE SURVEY, SOIL SAMPLING AND ANALYSIS6			
	3.2	FORMI	ER SUPPLY WELL PACKER TESTING8			
	3.3	GROUI	NDWATER MONITORING WELL INSTALLATION9			
	3.4	GROUI	NDWATER SAMPLING AND ANALYSIS9			
	3.5	MONIT	ORED NATURAL ATTENUATION EVALUATION10			
	3.6	SUMM	ARY AND CONCLUSIONS11			
4.0	REME	DIATION	STANDARD SELECTION11			
5.0	REME	DIAL ALT	ERNATIVES EVALUATION12			
	5.1	CONTA	MINANT SOURCE AND AFFECTED MEDIA12			
	5.2	REMED	DIATION TECHNOLOGY SCREENING13			
6.0	REMEDIAL PILOT TESTING16					
	6.1	ISCO P	ILOT TEST DESIGN AND IMPLEMENTATION16			
		6.1.1	SUBSURFACE UTILITY SURVEY17			
		6.1.2	PILOT TEST OBSERVATION AND INJECTION WELL INSTALLATION17			
		6.1.3	PRE-PILOT TEST PERFORMANCE MONITORING17			
		6.1.4	PILOT TEST INJECTION AND MONITORING18			
		6.1.5	POST-PILOT TEST PERFORMANCE MONITORING			
	6.2	ISCO P	ILOT TEST FINDINGS			
7.0	REME	DIAL ACT	TON			
	7.1	REMED	DIAL ACTION OBJECTIVES23			
		7.1.1	UPDATED FATE AND TRANSPORT ANALYSIS23			
		7.1.2	UPDATED SURFACE WATER QUALITY STANDARDS			
		7.1.3	CALCULATED REMEDIATION ENDPOINTS			
	7.2	REMED	DIAL ACTION DESCRIPTION27			
	7.3	SITE PF	REPARATION WORK ACTIVITIES27			
		7.3.1	MARK OUT OF INJECTION WELLS AND INJECTION POINTS			
		7.3.2	BURIED AND OVERHEAD UTILITY MANAGEMENT27			

		7.3.3	TEMPORARY FACILITIES	27
		7.3.4	PERMITS	28
		7.3.5	REMEDIATION HEALTH AND SAFETY PLAN	28
		7.3.6	AVAILABILITY AND USE OF UTILITY SERVICES	28
		7.3.7	PROTECTION AND MAINTENANCE OF TRAFFIC AND UNAUTHORIZED	
			PERSONNEL	29
		7.3.8	SECURITY PROVISIONS	29
		7.3.9	DISCHARGE AND SITE RUNOFF CONTROL	29
	7.4	BASEL	INE GROUNDWATER MONITORING	29
	7.5	ISCO II	MPLEMENTATION DETAILS	29
		7.5.1	RA1 DETAILS	30
		7.5.2	RA2 DETAILS	31
		7.5.3	RA3 DETAILS	33
		7.5.4	DESIGN LIMITATIONS, CONSTRAINTS, AND CONSIDERATIONS	34
	7.6	CLEAN	UP AND SITE RESTORATION	34
	7.7	WAST	E MANAGEMENT	34
	7.8	DEMO	BILIATION	34
	7.9	FIELD	MODIFICATIONS	35
	7.10	DESIG	N MODIFICATIONS	35
8.0	GROU	NDWAT	ER MONITORING	35
9.0	REPOF	RTING		36
10.0	POST	REMEDI	ATION CARE	36
11.0	SCHED	DULE		36

LIST OF FIGURES

Figure 1 Sile Location Ivia	Figure 1	Site Location Map
-----------------------------	----------	-------------------

- Figure 2 Aerial Basemap
- Figure 3 Site Plan
- Figure 4 Geology Map
- Figure 5 Conceptual Site Model
- Figure 6 Additional Site Characterization July 2016
- Figure 7 Benzene Distribution in Soil
- Figure 8 Cross Section Benzene Distribution in Soil
- Figure 9 Groundwater Elevation Contour Map July 11, 2016
- Figure 10 Regional Groundwater Elevation Contour Map July 11, 2016
- Figure 11 Groundwater Elevation Contour Map October 3, 2016
- Figure 12 Groundwater Elevation Contour Map January 16, 2017
- Figure 13 Dissolved Oxygen Map July 11, 2016
- Figure 14 Oxidation Reduction Potential Map July 11, 2016
- Figure 15 Electron Receptors Map July 11, 2016
- Figure 16 Pilot Test Injection Locations
- Figure 17 Surface Water Drainage Area Map
- Figure 18 Remediation Injection Layout Overlying Groundwater Information
- Figure 19 Remediation Injection Layout Overlying Soil Benzene Concentration Contour
- Figure 20 Remediation Injection Cross Section

LIST OF TABLES

- Table 1
 Phase II ESA Soil Sample Analytical Data Summary
- Table 2Soil Sample Analytical Data Summary
- Table 3
 Groundwater Sample Analytical Data Summary
- Table 4 Conceptual Site Model
- Table 5
 Remedial Optimization Data Soil Sample Analytical Data Summary
- Table 6
 Remedial Optimization Data Groundwater Sample Analytical Data Summary
- Table 7
 Former Supply Well Packer Testing Groundwater Sample Analytical Data Summary
- Table 8Monitored Natural Attenuation Data Summary
- Table 9Remediation Technologies Screening Matrix
- Table 10
 ISCO Pilot Test Groundwater Sample Analytical Data Summary
- Table 11 ISCO Pilot Test Injection Summary
- Table 12
 ISCO Pilot Test Field Monitoring Data Summary

LIST OF APPENDICES

- Appendix A: MIP Survey Data Plots
- Appendix B: MIP Survey Laboratory Analytical Reports
- Appendix C: Packer Testing Laboratory Analytical Reports
- Appendix D: Soil Boring and Monitoring Well Logs
- Appendix E: Waste Disposal Manifests
- Appendix F: Low Flow Groundwater Purging and Monitoring Data Sheets
- Appendix G: Groundwater Sample Laboratory Analytical Reports
- Appendix H: Pilot Test Laboratory Analytical Reports
- Appendix I: Updated Fate & Transport Model Outputs
- Appendix J: Chemical Oxidation Product Description and MSDS
- Appendix K: EPA Underground Injection Control Authorization
- Appendix L: Remediation Design Calculations

1.0 INTRODUCTION

This Remedial Action Plan (RAP) has been prepared by RETTEW Associates, Inc. (RETTEW) on behalf of Herr Foods, Inc. (Herr's), to present proposed methods to remediate a release of petroleum from a regulated underground storage tank (UST) system at Herr's manufacturing facility (the Site), located at 273 Old Baltimore Pike in West Nottingham Township, Chester County, Pennsylvania (Facility ID No. 15-24418). A Site Location Map is included as **Figure 1**.

This report was prepared in accordance with the corrective action regulations defined in Title 25 Pennsylvania Code Chapter 245 titled *Administration of the Storage Tank and Spill Prevention Program* and the requirements of the Pennsylvania Land Recycling and Remediation Standards Act (Act 2). Herr's owns the Site, which is currently operating as a snack food manufacturing facility. Remediation will focus on a release of unleaded gasoline and diesel that was discovered in 1997 during UST closure activities at the facility truck garage on the southern portion of the Site.

The proposed remedial action described herein is intended to treat the source of impacts remaining from the 1997 release, and reduce groundwater concentrations of regulated substances to attain the Act 2 Site-Specific Standard for groundwater at the groundwater/surface water interface and meet applicable surface water quality criteria.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1 SITE DESCRIPTION

Herr's manufacturing facility is a 13.8-acre parcel owned and operated by Herr's and historically used for snack food manufacturing. The truck garage is located on the southern portion of the parcel as shown on **Figure 2**. The truck garage was built in 1978 and is currently used for the maintenance of Herr's fleet vehicles. The area surrounding the truck garage is covered with impervious asphalt paving and is used for parking Herr's fleet trucks and trailers. The truck garage is connected to an off-site water supply well operated by Herr's that serves the Site and surrounding properties owned by Herr's; however, the truck garage was previously served by a decommissioned water supply well located on the Site. The former supply well is disconnected from the truck garage and is no longer used. A Site Plan showing the truck garage and the former supply well is included as **Figure 3**.

Two regulated 10,000-gallon USTs [Pennsylvania Department of Environmental Protection (PADEP) Facility ID No. 15-24418] are located at the truck garage containing gasoline and diesel used for fueling Herr's fleet vehicles. These tanks were installed in June 1997 and replaced five former USTs that were removed from service between May 28 and June 4, 1997. Current and former UST locations are shown on **Figure 3**.

A release of petroleum was discovered at the truck garage during UST system closure activities in 1997. During UST closure, holes were noted in two USTs containing diesel fuel and unleaded gasoline. Approximately 1,200 tons of petroleum impacted soil and fill material were removed and disposed; however, complete source removal was not feasible due to space constraints and concerns regarding the structural integrity of the truck garage. A UST Closure Report was prepared in July 1997, which indicated concentrations of methyl tert-butyl ether (MTBE) exceeding the unsaturated soil standard/action level in three soil samples. The current UST system was installed in the excavation following UST closure activities, and no further assessment or remediation was conducted at that time. On July 2, 1997, a Notification of Reportable Release was submitted to the PADEP. The notification indicated that contamination was confirmed at the Site and was described as product stained or product saturated soil, and free product or sheen on ponded water. It was noted that ponded water was described as runoff that collected in the UST excavation and was not characterized as groundwater. In correspondence dated November 17, 1997, PADEP indicated that they accepted the Closure Report, and that "no further action is required regarding the closure of the tanks".

Phase I and Phase II Environmental Site Assessments (ESAs) were conducted at the Site by RETTEW between April and October 2014, which identified several recognized environmental conditions (RECs) associated with both past and current land uses. The Phase I ESA identified RECs at the truck garage, and a subsequent Phase II ESA was conducted to investigate soil quality at each REC and compare results to applicable remediation standards. Soil borings located downgradient of the UST system revealed the presence of petroleum impacted soil with regulated substances (i.e., benzene and naphthalene) exceeding the Act 2 Statewide Health Standards. The release was reported to the PADEP, and corrective action was initiated by Herr's.

2.2 HYDROGEOLOGIC SETTING

According to publications of the Pennsylvania Bureau of Topographic and Geologic Survey¹, the Site is located in the Piedmont Upland Section of the Piedmont Physiographic Province of Pennsylvania, and is underlain by complexly folded and faulted schist, gneiss, quartzite and some saprolite. Local topography is characterized by broad, rounded to flat-topped hills and shallow valleys. According to the United States Geological Survey (USGS) 7.5-minute Rising Sun Quadrangle (**Figure 1**), the truck garage is situated at an approximate elevation of 510 feet above mean sea level (AMSL). Surface topography slopes gently to the southeast. The headwater of an unnamed tributary (UNT) to North East Creek is located approximately 300 feet east of the truck garage and flows generally to the southeast.

The geology mapped by the Chester County Water Resources Authority, in cooperation with the USGS², indicates that the Site is underlain by the Wissahickon Schist of the Glenarm Supergroup (see **Figure 4**). The Wissahickon Schist is described as light to medium gray schist and gneiss. The rocks of the Glenarm Supergroup surround massifs of older pre-Cambrian felsic and ultramafic gneiss basement rock. Ultramafic rock (i.e., serpentinite) associated with the Baltimore Mafic Complex is mapped approximately 1,000 feet south of the Site. Geologic strike and structural trend of the Wissahickon Formation is generally oriented to the east-northeast.

In the area of the Site, the fractured bedrock aquifers are characterized as crystalline rocks (Wissahickon Schist³). In the crystalline rocks, groundwater moves through the granular primary porosity of the weathered saprolite to a network of interconnected secondary fractures and joints in the bedrock aquifer. The groundwater flow systems are local and discharge to streams. Groundwater flows from areas of higher elevation to adjacent streams and flow paths tend to be short. Groundwater basins and surface water basins tend to coincide. Crystalline rock aquifers are generally under water-table (unconfined) conditions and the water table generally mimics surface topography; however, semi-confined conditions may be present locally.

¹ W.D. Sevon, 2000, Map 13, <u>Physiographic Provinces of Pennsylvania</u>, Pennsylvania Bureau of Topographic and Geologic Survey, Harrisburg, Pennsylvania.

² Sloto, R., 1994, <u>Geology, Hydrology, and Ground-Water Quality of Chester County, Pennsylvania</u>, Chester County Water Resources Authority, Water Resource Report 2, West Chester, Pennsylvania.

In the Piedmont Upland, the soils (regolith) are composed of granular to clayey soil, saprolite, and decomposed bedrock³. The regolith allows the infiltration of precipitation and is capable of storing large quantities of water in the intergranular pore spaces. Water is then slowly released to the underlying fractured bedrock aquifer. Generally, the porosity of the regolith exceeds the porosity of the fractured bedrock aquifer. The direction and rate of groundwater flow within the regolith can be affected by the degree of bedrock weathering, mineral composition of the parent bedrock, orientation of mineral grains (mica), the presence of shear zones, quartz veins and fractures.

The UNT to North East Creek is classified as an intermittent stream according to the USGS National Hydrography Dataset (NHD). Intermittent streams have flowing water during the wet season (i.e., winter and spring), but are normally dry during hot summer months. Intermittent streams do not have continuous flowing water year-round. The headwater of the UNT is located approximately 300 feet east of the truck garage adjacent to a railroad right-of-way (**Figure 3**) and is characterized as an area of seasonal groundwater discharge. During the wet season, standing water forms in this area and flows to a culvert under the railroad, and continues to flow as surface water to the south and southeast toward North East Creek, located 6,700 feet southeast of the Site.

2.3 SITE CHARACTERIZATION SUMMARY

Site characterization was performed in iterative phases at the truck garage between February 2015 and April 2016 to delineate soil and groundwater impacts resulting from the 1997 release. The results were presented in a Revised Site Characterization Report (SCR) dated June 9, 2016 and subsequently approved by the PADEP on September 1, 2016.

Site characterization included the installation of 25 soil borings (SB-6 through SB-30) to delineate soil quality. Soil quality data collected during Site characterization is presented in **Table 1** and **Table 2**. Thirteen groundwater monitoring wells (MW-1 through MW-13) were installed to define the hydraulic gradient. Quarterly groundwater monitoring was initiated at the truck garage in March 2015 to delineate groundwater quality. Groundwater quality data collected during site characterization is presented in **Table 3**. Site characterization has delineated the extent of soil and groundwater impacts resulting from the 1997 release as shown on **Figure 5**. Key findings of the Site characterization are summarized below.

- The truck garage is underlain by micaceous schist bedrock and approximately 60 feet of saprolite comprised of micaceous silt and sand that forms an unconsolidated, unconfined aquifer.
- The area of maximum soil impacts (benzene concentrations greater than 500 micrograms per kilogram, or μg/kg) is delineated and located directly downgradient of the UST system at depths ranging from seven to 13 feet below ground surface (bgs).
- Soil impacted by the release is below the seasonally high water table (two feet bgs) and within the zone of groundwater saturation.
- Separate phase liquid (SPL) has been observed in MW-4 within the area of maximum soil impacts. The occurrence of SPL at MW-4 coincides with the highest concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) in soil (SB-7). The SPL thickness is approximately 0.02 feet, and the recoverability of the SPL is negligible. Fingerprint analysis characterized the SPL as unweathered gasoline.
- All of the regulated substances monitored in groundwater (except isopropylbenzene) have been detected at concentrations exceeding their Act 2 non-residential Statewide Health Standards.

³ D.J. Low, D.J. Hippe and D. Yannacci, 2002, <u>Geohydrology of Southeastern Pennsylvania</u>, United States Geological Survey, Water-Resources Investigations Report 00-4166.

Groundwater quality meets the Statewide Health Standard Medium Specific Concentrations (MSCs) at the downgradient parcel boundary (point of compliance, or POC) for all of the PADEP Short List Petroleum Products for unleaded gasoline and diesel except benzene and MTBE.

- Based on local topography, regional drainage patterns and interpreted fracture traces (**Figure 4**), regional groundwater is expected to flow to the east and southeast across the Site toward the UNT to North East Creek, located 150 feet east of the parcel boundary.
- Groundwater discharges to the UNT downgradient of the Site on an adjacent, separate parcel owned by Herr's. Discharging groundwater also supports a wetland, which forms the headwater to the UNT to North East Creek.
- Benzene and MTBE have been detected above Statewide Health Standard MSCs in groundwater at the point of groundwater discharge (MW-11).
- Benzene and MTBE have been detected in surface water and sediment in the northern portion of the wetland area.

The subject Site obtains its water supply from an off-site groundwater source owned and operated by Herr's located 3,100 feet southwest (downgradient) of the truck garage. The area surrounding the Site obtains domestic water supplies from water wells. There are no downgradient water supplies threatened by the release, and Herr's owns and controls land downgradient and adjacent to the Site.

Fate and transport analysis showed that the plume is not stable for benzene in groundwater. The benzene plume is expanding and is not expected to reach steady state for approximately 13 years. The MTBE plume is currently at steady state. Groundwater monitoring data shows that there is some evidence of natural attenuation and degradation of petroleum substances in groundwater; however, fate and transport modelling of benzene and MTBE suggests that degradation rates are low.

Fate and transport modeling was performed in accordance with the procedure for impacts to surface water from diffuse flow of contaminated groundwater detailed in Section IV.A.3. of the Act 2 Technical Guidance Manual (TGM). The analysis also showed that surface water will continue to be impacted by dissolved benzene and MTBE into the future. Steady state discharge of MTBE is not expected to exceed applicable water quality based effluent limits (WQBELs); however, steady state discharge of benzene is expected to exceed the calculated Cancer Risk Level (CRL) water quality criteria for the UNT to North East Creek. Steady state discharge of benzene is expected to meet the calculated Acute Fish Criteria (AFC) and Chronic Fish Criteria (CFC) water quality criteria for fish and aquatic life in the UNT to North East Creek. An ecological risk assessment of the area of plume discharge indicated that no species of concern were identified within the study area, no evidence of stressed vegetation was observed, and no substantial ecological impacts were identified.

2.4 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) was developed as presented in the Revised SCR and further refined for this RAP. As described in **Section 2.1**, the source has been characterized as the former UST system containing gasoline and diesel that was removed in 1997. Although impacted soil and groundwater was removed during UST closure activities, the release impacted shallow groundwater and migrated downgradient with groundwater flow. Site characterization data indicates that groundwater flow and off-site groundwater discharge to surface water are the primary migration pathways for the release. **Table 4** presents a CSM identifying other potential migration and exposure pathways. The extent of soil and groundwater impacts associated with the release in relation to the parcel boundary and existing improvements are shown on **Figure 5**.

Per Act 2, the extent of petroleum impacts resulting from the release within the parcel boundaries, and all areas in close proximity to the impacts necessary for the implementation of remediation action, is defined as the "Site". At the truck garage, the Site includes the area defined by the former UST system, the benzene plume in groundwater, and the UNT to North East Creek as shown on **Figure 5**. The Site represents the area proposed for remediation and attainment of an Act 2 standard.

The media affected by the release include groundwater, saturated soil (below the seasonally-high water table), off-site surface water and indoor air; however, site characterization data collected to date has not revealed a complete exposure pathway for inhalation. Potential exposure pathways include incidental ingestion and dermal contact with groundwater, saturated soil, and off-site surface water. Site characterization data shows that the Act 2 direct contact MSCs are met for saturated soil. In addition, the source area is covered by an impervious surface (asphalt pavement), and the exposure pathway for surface soil is incomplete. It is noted that Herr's does not anticipate a change in land use at the truck garage in the foreseeable future.

Of particular concern is exposure of humans and ecological receptors to off-site surface water. Although no ecological impacts were identified during site characterization, the benzene plume has not reached steady state. Steady state discharge of benzene is expected to meet applicable water quality criteria for fish and aquatic life in the UNT to North East Creek; however, potential exposure remains for ecological receptors such as terrestrial species and habitats within the wetland.

2.5 DATA GAP ANALYSIS

Site characterization data presented in the Revised SCR revealed data gaps with respect to the evaluation of candidate remedial technologies and selection of a remediation strategy for the Site. To the extent possible, these data gaps required additional investigation to improve the evaluation of remedial technologies and the selection of an effective remediation strategy for the Site. The data gaps identified include the following:

<u>Vertical Delineation of Groundwater Quality</u>: Saturated soil contamination was observed from approximately five to 13 feet bgs. The seasonally high groundwater table occurs at approximately two feet bgs, and low permeability zones are apparent at less than eight feet bgs. The vertical delineation of groundwater impacts (i.e., where the majority of the groundwater contamination is located) was unknown.

<u>Characterization of Former Supply Well Impacts</u>: The flow path of dissolved petroleum in groundwater between the source area and the former supply well was unknown. The former supply well is known to be cased to a depth of 74 feet bgs. It is unclear if the casing is leaking, or if vertical hydraulic gradients exist in the former supply well.

<u>Monitored Natural Attenuation (MNA) Data</u>: Groundwater monitoring data shows evidence of natural attenuation and degradation of petroleum substances in groundwater; however, the processes were not clear. Groundwater geochemical parameters, such as sulfate, nitrate, and ferrous iron (MNA parameters), are needed to support an evaluation of the occurrence of natural attenuation at the Site.

The investigation of these data gaps and the findings are described in **Section 3.0**.

3.0 ADDITIONAL SITE CHARACTERIZATION METHODS AND FINDINGS

Additional Site characterization was performed by RETTEW during July and August 2016 to investigate data gaps identified by previous site characterization activities and provide the data needed to refine the recommended remedial strategy for the Site. High resolution, real-time data collection was utilized to optimize remediation design and target soil and groundwater sample locations. The methods and findings of additional Site characterization are described in the following sections.

3.1 MEMBRANE INTERFACE PROBE SURVEY, SOIL SAMPLING AND ANALYSIS

RETTEW retained Cascade Technical Services (Cascade), of Millersville, Maryland to perform a membrane interface probe (MIP) survey to provide high-resolution, real-time data to delineate volatile organic compounds (VOCs) in soil and groundwater in support of remediation design. The MIP tooling was deployed on direct-push drilling equipment and driven at a nominal rate of one foot per minute. The MIP consisted of a soil electrical conductivity (EC) sensor and a membrane that is permeable to gas but impermeable to liquid. The membrane was connected to a port containing a resistive heater coil. As the device was pushed to the required depth, it was heated, volatilizing VOC gasses, and capturing them for analysis. The gas was carried to the surface and injected directly into portable analytical equipment, including the following:

- Flame ionization detector (FID) sensitive to combustible VOCs (i.e., methane, BTEX, etc.);
- Photo ionization detector (PID) sensitive to aromatic VOCs (i.e., BTEX); and
- Electron-capture detector (ECD) and halogen specific detector (XSD), sensitive to halogenated VOCs (i.e., chlorinated solvents).

Ten MIP borings (MIP-1 through MIP-10) were completed on July 28, 2016 at depths ranging from 12 to 23 feet bgs as shown on **Figure 6**. The MIP borings in each target treatment zone were located on the centreline of the plume and on both sides to vertically and horizontally profile soil and groundwater quality. The resulting MIP profiles are included as **Appendix A** and are summarized as follows:

Boring	Maximum PID	Maximum FID	Depth
MIP-1	1.6 x 10 ⁷ microvolts (μV)	5.0 x 10 ⁷ μV	5.5 ft.
MIP-3	1.0 x 10 ⁷ μV	2.75 x 10 ⁷ μV	7.5 ft.
MIP-4	0.1 x 10 ⁷ μV	2.5 x 10 ⁷ μV	4.75 ft.
MIP-7	0.98 x 10 ⁶ μV	3.5 x 10 ⁷ μV	7.5 ft.

Maximum PID response occurred at MIP-1 in the source area, and decreased by more than an order of magnitude in the downgradient direction to MIP-7. PID response was also noted at a depth of 13 feet in MIP-1, suggesting a source thickness of 10 feet. Other MIP survey findings are summarized as follows:

- Maximum EC response indicated silty sand in the source area at shallower depths; however, EC response decreased with depth, where micaceous schist saprolite was observed at depths below seven feet, consistent with previous lithologic profiling;
- EC response varied in the downgradient groundwater and wetlands treatment areas, suggesting approximately eight feet of fill materials are present above micaceous schist saprolite; and
- Generally, ECD and XSD response did not vary significantly from the baseline in each boring.

Based on the MIP survey findings, four MIP borings (MIP-1, MIP-3, MIP-4 and MIP-7) were selected for confirmatory sampling (including two borings in the source area). Each boring was advanced using truck-

mounted direct-push drilling equipment operated by Cascade on July 29, 2016. One soil sample was collected from each boring at the depth of the highest observed PID reading during the MIP survey for laboratory analysis of total organic carbon (TOC), total petroleum hydrocarbons (TPH) and the PADEP Short List of Petroleum Products for unleaded gasoline and diesel. In addition, an undisturbed one-foot tube soil sample was collected from each boring and delivered to Jay Kay Testing, Inc. (Jay Kay) of Spring Grove, Pennsylvania, for geotechnical laboratory analysis of grain size, bulk density, void ratio and Atterberg Limits. A composite soil sample from borings MIP-1, MIP-3, MIP-4 and MIP-7 was also delivered to Jay Kay for Standard Proctor analysis.

Following soil sample collection, a temporary well was constructed in each of the four borings for the collection of groundwater samples for laboratory analysis of TOC, TPH and the PADEP Short List of Petroleum Products for unleaded gasoline and diesel. Each sample was collected with a peristaltic pump and disposable poly tubing. All samples were placed into a cooler with ice and delivered to Lancaster Laboratories Environmental (LLE) of Lancaster, Pennsylvania, following standard chain-of-custody procedures. Sample depths are summarized in the following table.

Boring	Soil Sample Depth	Tube Sample Depth	Temporary Well Depth
MIP-1	5.5 feet	6.5 to 7.5 feet	8.0 feet
MIP-3	7.5 feet	5.0 to 6.0 feet	8.0 feet
MIP-4	4.75 feet	6.0 to 7.0 feet	8.0 feet
MIP-7	7.5 feet	6.0 to 7.0 feet	8.0 feet

Upon completion of groundwater sample collection, the temporary well screens were removed and the borings were abandoned with bentonite hole plug and asphalt cold patch. Geotechnical laboratory analytical results are summarized below.

		Moisture			Dry Bulk	USCS
Boring	Depth	Content	Void Ratio	Porosity	Density	Classification
MIP-1	5.5 feet	29.2 %	0.820	0.451	92.6 PCF	Silty Sand (SM)
MIP-3	7.5 feet	35.5 %	1.040	0.510	82.6 PCF	Silty Sand (SM)
MIP-4	4.75 feet	28.4 %	1.178	0.541	77.4 PCF	Sandy Silt (ML)
MIP-7	7.5 feet	16.1 %	0.623	0.384	103.8 PCF	Silty Sand (SM)

Notes:

PCF – Pounds per cubic foot USCS – Unified Soil Classification System Porosity = e/(1+e), where *e* is Void Ratio

Soil and groundwater sample analytical data summaries are presented as **Table 5** and **Table 6**, respectively. Laboratory analytical data sheets are provided in **Appendix B**.

Of the regulated substances exceeding the Statewide Health Standard in soil, benzene is present at the greatest distance from the source area. The spatial distribution of benzene in soil (i.e., the source area) is shown on **Figure 7**. The soil sample collected at MIP-3 indicates a maximum benzene concentration of 450 μ g/kg, which is below the benzene non-residential Statewide Health Standard of 500 μ g/kg; therefore, the downgradient extent of benzene in soil has been delineated.

The vertical distribution of benzene in soil is shown on a strike-perpendicular geologic cross-section presented as **Figure 8**. Benzene distribution was observed in the five- to 13-foot depth range in the MIP

borings; therefore, the vertical distribution of benzene in soil has been delineated. Static groundwater levels measured in the source area between March 2015 and January 2017 (**Table 3**) show that the water table fluctuated between approximately 2.5 and 7.5 feet bgs. Soil between 2.5 and 7.5 feet bgs is within the zone of groundwater saturation during the wetter seasons, and soil below a depth of 7.5 feet is in contact with groundwater on a year-round basis. For these reasons, one-tenth of the Generic Value was used in the process to determine the Act 2 soil-to-groundwater MSC for each parameter in soil.

3.2 FORMER SUPPLY WELL PACKER TESTING

RETTEW retained Odyssey Environmental Services, Inc. (Odyssey) of Harrisburg, Pennsylvania to perform packer testing at the former supply well on August 11, 2016. The purpose of packer testing was to determine if the casing of the well provides an effective seal from shallow aquifer impacts to deeper groundwater. The former supply well is a six-inch diameter open rock well with 74 feet of steel casing and a total depth of 210 feet bgs. Prior to testing, a static water level was measured from the top of the well casing. An inflatable six-inch packer was connected to one-inch galvanized pipe and set at a depth of 100 feet in the open portion of the well. Upon stabilization, a second static water level was measured inside the pipe. Both water levels compared very closely (6.31 feet from top of casing).

Three individual packer tests were then performed in series at various depths. A Grundfos[®] electric submersible pump with an in-line check valve was positioned below the packer, and a Mega Monsson submersible pump was set above the packer to purge groundwater as noted in the following table.

Test No.	Packer Depth	Test Description
1	70 feet	Purged 59 gallons inside casing, water level stabilized at 22.2 feet during
	701661	pumping.
2	80 feet	Purged over 580 gallons (three well volumes) from 130-foot open interval.
2	20 feet	Purged 16 gallons inside casing, pump shut off, water level rebounded from
3	30 feet	24.5 feet to 18 feet in 17 minutes.

All purged groundwater was routed through a 55-gallon granular activated carbon (GAC) filter and discharged to the surface. At the conclusion of each test, a groundwater sample was collected for laboratory analysis. Groundwater samples were collected above the packer after Test 1 and Test 3 using a disposable bailer. A groundwater sample was collected below the packer from the pump discharge after Test 2. All samples were placed into a cooler with ice and delivered to LLE following standard chain-of-custody procedures for analysis of the PADEP Short List of Petroleum Products for unleaded gasoline and diesel. Groundwater sample analytical data sheets are provided in **Appendix C**. A groundwater sample analytical data sheets are provided in **Appendix C**.

- The stabilized water level observed during Test 1 pumping inside the casing indicates that recharge is entering the well through the casing at a rate equal to the pumping rate of 1.6 gallons per minute (gpm);
- The recharge observed after the pump was shut off during Test 3 (6.5 feet of recharge in 17 minutes) indicates that recharge is entering the well through the upper 30 feet of casing at a rate of approximately 0.5 gpm;
- During Test 3, trickling of recharging water was audible in the well when the water level was below 19 feet;
- Based on the difference in recharge rates observed between Test 1 and Test 3, the well casing appears to be leaking at multiple locations;

- The groundwater sample analytical results indicate that impacts associated with the release are minimal below a depth of 80 feet in the fractured rock aquifer (**Table 7**); and
- The groundwater sample analytical results indicate that maximum impacts associated with the release are entering the casing with shallow groundwater above 30 feet.

Based on the above findings, proper abandonment of the former supply well is recommended to preclude the migration of the release from shallow groundwater to deeper portions of the aquifer.

3.3 GROUNDWATER MONITORING WELL INSTALLATION

RETTEW retained a Pennsylvania-licenced well driller, Eichelbergers, Inc. (Eichelbergers) of Mechanicsburg, Pennsylvania, to install a pair of nested groundwater monitoring wells (MW-14S and MW-14D) to vertically delineate groundwater quality immediately downgradient and outside of the source area. The nested well pair was installed on August 12, 2016 at the location of boring MIP-3 as shown on **Figure 6**. The nested well pair was installed in a single borehole using 12-inch outer diameter hollow-stem augers to a depth of 15 feet, followed by an eight-inch diameter borehole drilled using air-rotary drilling methods. All drilling was performed using a Geoprobe[™] 7822 DT drilling rig with an auxiliary air compressor. During drilling, borehole cuttings were containerized in 55-gallon open-top drums and staged on-site pending proper disposal.

Well drilling and installation was performed under the direction of a RETTEW geologist. The deep groundwater monitoring well (MW-14D) was installed with a total depth of 25 feet and screened from approximately 15 to 25 feet below grade using two-inch diameter PVC 0.020-inch slotted well screen and solid riser pipe to grade. The shallow groundwater monitoring well (MW-14S) was screened from 10 feet to three feet below grade using two-inch diameter PVC 0.020-inch slotted well screen and solid riser pipe to grade. The shallow groundwater PVC 0.020-inch slotted well screen and solid riser pipe to grade. The annular space between the borehole wall and the well screen interval of each well was filled with a gravel filter pack, with a hydrated bentonite seal placed between 13 feet and 11 feet below grade between the two wells. Each well was capped with bentonite hole plug to fill the remaining annular space to grade. A flush-mount manhole and locking well cap was installed on each well to prevent unauthorized access. Drilling logs documenting the lithology encountered and well construction details are provided in **Appendix D**.

Upon completion of drilling and well construction, each well was developed by surging and over-pumping to remove drilling residuals. The purged water generated during well development was treated with GAC and discharged to the surface. All drilling waste was transported and disposed as residual waste at a PADEP-approved facility by Environmental Recovery Corporation (ERC) of Lancaster, Pennsylvania. Non-hazardous waste disposal manifests are provided in **Appendix E**.

The top-of-casing elevation of each monitoring well was surveyed by a RETTEW professional land surveyor and referenced to sea-level datum. Groundwater monitoring well top-of-casing elevations are shown on **Table 3**.

3.4 GROUNDWATER SAMPLING AND ANALYSIS

Quarterly groundwater monitoring and sampling of the monitoring well network was performed by Suburban Testing Labs (STL) of Gilbertsville, Pennsylvania on July 11, 2016, October 3, 2016 and January 16, 2017. After gauging static water levels, groundwater was purged from each well with a peristaltic pump to maintain flow rates at approximately 250 milliliters per minute (ml/min) with minimal drawdown in accordance with the PADEP *Groundwater Monitoring Guidance Manual* (December 2001) low-flow purging methods. The pump tubing was set at a depth of eight to 10 feet below grade, corresponding to

the depth of the greatest observed soil impacts at the truck garage. Purged groundwater was routed through a flow-cell and an HI 98914 water quality meter to monitor intrinsic groundwater quality parameters including pH, conductivity, dissolved oxygen (DO), total dissolved solids (TDS), temperature, and oxidation-reduction potential (ORP). Intrinsic parameters were monitored frequently until stabilization, indicative of representative groundwater chemistry. Purged groundwater was then treated with GAC and discharged to the surface. Low flow purging and monitoring data sheets for each groundwater monitoring event are included as **Appendix F**.

Upon intrinsic parameter stabilization, groundwater samples were collected from the pump discharge tubing. To reduce the likelihood of cross-contamination, new tubing was used and nitrile gloves were worn during the collection of each groundwater sample. Groundwater samples were collected in laboratory bottleware, placed in a cooler with ice, and delivered to STL for analysis of PADEP Short List parameters for unleaded gasoline and diesel fuel. A summary of groundwater sample analytical data is provided as **Table 3.** Groundwater sample analytical reports are provided in **Appendix G**. Groundwater monitoring data collected on July 11, 2016 are plotted on **Figure 9** and **Figure 10.** Groundwater monitoring data collected on October 3, 2016 and January 16, 2017 are plotted on **Figure 11** and **Figure 12**, respectively.

RETTEW conducted two rounds of groundwater sampling and analysis from the newly installed nested well pair (MW-14S and MW-14D) on August 19 and September 16, 2016. Groundwater purging and sampling techniques were consistent with the methods used for the quarterly groundwater monitoring events described above. Low flow purging and monitoring data sheets for the nested well pair are included as **Appendix F**. Upon intrinsic parameter stabilization, groundwater samples were collected from the pump discharge using disposable tubing and laboratory bottleware, placed in a cooler with ice, and delivered to LLE for analysis of PADEP Short List parameters for unleaded gasoline and diesel fuel. A summary of groundwater sample analytical data is provided as **Table 3.** Groundwater sample analytical reports are provided in **Appendix G.**

3.5 MONITORED NATURAL ATTENUATION EVALUATION

During the July 11, 2016 groundwater monitoring event, groundwater samples were collected from selected wells for laboratory analysis of chemical indicators of natural attenuation. Wells selected were located along the centerline of the dissolved benzene plume as shown on **Figure 6** and included MW-1, MW-4, MW-6, MW-7, MW-10, MW-11 and MW-12. Samples collected were analyzed for sulfate, nitrate, total iron and dissolved (ferrous) iron. In addition, selected wells within the source area, the groundwater treatment area and the wetland treatment area (MW-4, MW-10 and MW-11) were selected for collection of samples for analysis of chemical oxygen demand (COD) and TOC. Intrinsic groundwater quality parameters measured during the sampling event (see **Section 3.4**) were also used in the evaluation. A summary of additional groundwater analytical data collected from selected wells noted above is provided as **Table 8.** Groundwater sample analytical reports are provided in **Appendix G**.

Upgradient background well results from MW-1 and MW-6 show that anaerobic biodegradation is occurring. Dissolved oxygen concentrations are below 2.0 milligrams per liter (mg/L) throughout the plume (Figure 13), until flow reaches MW-12 outside of the plume. Low ORP data (Figure 14), indicative of reducing, anaerobic conditions, are noted in the source area. Nitrate, the first depleted electron receptor (Figure 15), does not reappear until flow reaches MW-11. The presence of elevated ferrous iron in MW-4, MW-7, and MW-10, and the low ferrous iron concentrations outside of the plume are an indicator of biodegradation via natural attenuation. Other groundwater sample analytical results are summarized as follows:

Well No.	COD	тос
MW-4	50.0 mg/L	9.79 mg/L
MW-10	47.0 mg/L	5.29 mg/L
MW-11	< 5.0 mg/L	0.831 mg/L

The COD concentrations (i.e., the mass of oxygen consumed per liter) are elevated in the source area and concentrations of organic carbon in groundwater decrease from the source area to downgradient portions of the plume, indicating that organic chemicals (petroleum) are breaking down by natural attenuation.

3.6 SUMMARY AND CONCLUSIONS

The findings of additional site characterization and remedial optimization indicated the following:

- Maximum PID response during the MIP survey occurred in the five to 7.5-foot range. Petroleum impacts associated with the release were observed in the five to 13-foot depth range in the MIP borings; therefore, the vertical distribution of the release in soil has been delineated.
- MIP survey and soil sample analytical results (MIP-3) show that the horizontal extent of the release has been delineated.
- Packer testing of the former supply well revealed evidence of groundwater infiltration through the casing. Groundwater sample analytical results indicate that dissolved petroleum is entering the casing with shallow groundwater above 30 feet. Petroleum impacts are minimal below a depth of 80 feet in the fractured rock aquifer.
- Groundwater sample analytical results from MIP-1 and MW-14S indicate that the most significant petroleum impacts in shallow groundwater occur at approximately eight to 10 feet bgs.
- Groundwater sample analytical results from MW-14D indicate that minimal dissolved phase impacts are present below 15 feet bgs.
- Groundwater sample analytical results indicate that anaerobic biodegradation of the release is occurring in the source area. Elevated COD concentrations in the source area and decreasing concentrations of TOC with groundwater flow suggests petroleum is breaking down by natural attenuation.

4.0 **REMEDIATION STANDARD SELECTION**

Petroleum impacted soil is present at the Site below the seasonally high water table (i.e., soil in the zone of groundwater saturation), and dissolved benzene and MTBE in groundwater is discharging to off-site surface water. Surface water will continue to be impacted by dissolved benzene and MTBE into the future. Steady state discharge of MTBE is not expected to exceed applicable WQBELs; however, steady state discharge of benzene is expected to exceed the calculated CRL water quality criteria for the UNT to North East Creek. Surface water criteria attainment demonstration is required for benzene and MTBE.

Herr's proposes to attain the Act 2 Site-Specific Standard for the PADEP Short List of Petroleum Products for unleaded gasoline and diesel in soil and groundwater. In accordance with 250.406(c) and the procedure for determining impacts to surface water from diffuse flow of contaminated groundwater described in the Act 2 TGM Section IV.A.3, the instream benzene and MTBE concentrations are determined at the point of groundwater discharge (i.e., groundwater/surface water interface). The following actions are proposed to demonstrate attainment of the Site-Specific Standard for soil and groundwater.

- Remediation of soil and groundwater at the source to reduce dissolved benzene in groundwater to concentrations below the CRL WLA surface water quality criteria prior to discharge to surface water.
- Revised fate and transport analysis to demonstrate that the CRL for benzene in surface water will be met in the future.
- Exposure pathway elimination to demonstrate attainment for soil within the zone of saturation.
- A post-remedial care plan may be required that includes the following:
 - Groundwater and/or surface water monitoring to verify that the CRL will be met;
 - An activity use restriction to prohibit the use of groundwater at the Site and eliminate potential human exposure to the release;
 - $\circ~$ A land use restriction to prohibit future residential use; and
 - An activity use restriction requiring worker health and safety provisions and waste handling protocols during future disturbance of the Site to eliminate potential human exposure to the release.

To demonstrate attainment of the Site-Specific Standard for benzene and MTBE in groundwater, remediation of the source area is proposed to reduce dissolved benzene in groundwater to concentrations below the CRL wasteload allocation (WLA) surface water quality criteria prior to discharge to surface water. Revised fate and transport analysis was performed to establish remedial objectives and to demonstrate that the CRL for benzene in surface water will be met in the future as described in **Section 7.1**. An environmental covenant containing post-remedial care provisions will also be implemented as necessary.

5.0 REMEDIAL ALTERNATIVES EVALUATION

RETTEW performed a remediation alternatives evaluation (RAE) for the Site based on the findings of site characterization. The purpose of the RAE is to evaluate candidate remedial technologies and identify a practicable remedial strategy for further refinement and, ultimately, implementation at the Site. The RAE includes a description of contaminant sources and affected media, remediation technology screening, and recommendations for Site remediation.

5.1 CONTAMINANT SOURCE AND AFFECTED MEDIA

The contaminant source at the Site is characterized as an area of subsurface diesel and unleaded gasoline impact to saturated soil and groundwater immediately downgradient of the former UST system (i.e., the source area). Petroleum impacted soil is located below the seasonally high water table in the zone of saturation in the source area; therefore, remediation and attainment demonstration will focus on groundwater. Only benzene and MTBE have been detected off-site in groundwater at concentrations exceeding their non-residential Act 2 MSCs. Benzene concentration trends are increasing and the dissolved benzene plume has not reached steady state. Benzene and MTBE have been detected in surface water in the UNT of North East Creek at concentrations of 19 μ g/L and 25 μ g/L, respectively.

SPL has been historically detected in the source area. Dissolved benzene and MTBE have been detected in groundwater outside the source area at concentrations exceeding their non-residential Statewide Health Standards over 300 feet downgradient from the former UST system. No public or private drinking water supplies have been impacted by the release. Groundwater discharges to surface water over 300 feet downgradient from the former UST system. Benzene and MTBE have been detected in the sediment and surface water of the UNT to North East Creek. Discharging groundwater also supports wetlands at the Site.

5.2 REMEDIATION TECHNOLOGY SCREENING

RETTEW screened preferred remedial technologies to obtain information and select a practicable remedial alternative for the Site. Conceptually, the remedial action objectives for the Site include source remediation (removal of the source and elimination of continued degradation of groundwater) and groundwater plume remediation (enhance natural attenuation and stabilization/degradation of the groundwater plume) to achieve WQBELs for surface water in the wetlands and the UNT to North East Creek. The remedial technology evaluation to meet remedial action objectives is described below.

Source Area Technology Evaluation and Recommendations

Pre-screening of source area remediation technologies resulted in a list of seven candidate remediation options for further evaluation; MNA, groundwater pump and treat, air sparge, multiphase extraction, ISCO, enhanced bioremediation, and excavation. **Table 9** provides a description of the screening criteria used and the candidate remediation technologies selected for consideration. Based on the initial technology screening, the primary source area remediation technologies selected for further evaluation were ISCO and excavation. MNA was selected to be performed in combination with active remediation. A description of how these remediation technologies could be applied is as follows:

<u>ISCO</u>

Technology Description: ISCO relies on chemical oxidants to oxidize and chemically convert hazardous compounds to nonhazardous or less toxic compounds that are more stable, less mobile, or inert. Redox reactions involve the transfer of electrons from one compound to another. Oxidizing agents commonly used for the treatment of hazardous contaminants in soil and groundwater are ozone, hydrogen peroxide, catalyzed hydrogen peroxide, potassium permanganate, sodium permanganate, and sodium persulfate. ISCO is applicable to vadose zone remediation but is more often used to remediate groundwater. ISCO uses injection wells or direct injection probes to deliver the oxidant to the subsurface.

Advantages: The effects of ISCO are immediate due to the oxidation of the contaminants. Compared to other remedial technologies, ISCO is the most rapid with the highest removal/destruction in the shortest duration. Minimal infrastructure is required. Temporary probes can also be used for injections eliminating the need for added infrastructure.

Disadvantages: Disadvantages include possible migration of contaminants or breakdown products, release of vapor phase VOCs from oxidative reactions, increase in temperature from exothermic reactions, and potential damage to subsurface utilities from heat and/or oxidation. The distribution of ISCO is dependent on the permeability of the subsurface soil and can be limited in less permeable formations.

Site Application: Based on the ISCO pilot testing conducted at the Site (described in **Section 6.0**), ISCO is a viable remedial alternative. ISCO can be performed throughout the source area and groundwater plume with minimal constraints from Site infrastructure. ISCO achieved a minimum ROI of 10 feet and was injected at low pressures during pilot testing. Consideration is needed relative to maintaining low injection flow rates (approximately 1.0 gpm) during ISCO application at shallower intervals due to the potential for surfacing of the injection materials. ISCO is the selected alternative for treatment within the source area because of its ability to rapidly treat source contaminant mass, minimal disruption to Herr's operations, potential to enhance biodegradation of residual hydrocarbons as part of a subsequent bioremediation or MNA program, compatibility with post-treatment MNA, and there is no permanent infrastructure required for implementation.

Excavation

Technology Description: Excavation involves the physical removal of impacted soil. The excavated soil can be transported off-site for disposal, treated on-site and then transported, or treated on-site then returned to the excavation. Soil excavation enhances groundwater remediation by removal of the soil source area. If the excavation is extended into the saturated zone, SPL and saturated soil in contact with high dissolved-phase concentrations in groundwater can also potentially be removed. Excavation can be accomplished using excavators and backhoes or by advancing large diameter soil borings.

Advantages: Excavation is generally the simplest, fastest, and most certain remedial technique, because it involves removal of the soil matrix and does not depend on permeability to move hydrocarbons out of the soil. Excavation is most feasible when small quantities of impacted soil are involved, the site is undeveloped, the natural soil permeability is low, and/or the depth of soil to be remediated is shallow and accessible to excavation equipment.

Disadvantages: Excavation is typically not feasible on developed sites or sites with deep contamination (beyond the depth capability of excavation equipment) and generally cannot be used to address contamination that has migrated off site. Excavation is not cost-competitive with other technologies for large volumes (more than several thousand tons) of soil. The presence of subsurface structures including utilities require subsurface investigations to identify the depth and alignment of the structures. There is the potential to damage subsurface structures and utilities during excavation. The sides of the excavation may need support (sheeting/shoring), which can result with increased safety concerns for workers in or near the excavation. Groundwater dewatering is required when excavating below the water table.

Site Application: Soil removal by excavation was evaluated for the source area to a depth of approximately 13 feet bgs, which is the approximate depth of known soil impacts. This is approximately 10 feet below the seasonally high water table and would require dewatering during excavation. Shoring would also be necessary near the truck garage due to structural concerns. Excavation was not selected due to the impact to Herr's operations including concerns regarding shoring requirements, compaction and load bearing issues, disruption to operations, dewatering, and ex-situ management of contaminated soil and groundwater. Additionally, dissolved phase groundwater treatment and discharge would be required in addition to excavation.

Groundwater Plume Technology Evaluation and Recommendations

Pre-screening of groundwater plume remediation technologies resulted in a list of five candidate remediation technologies for further evaluation, including MNA, groundwater pump and treat, air sparge, ISCO, and enhanced bioremediation. **Table 9** provides a description of the screening criteria used and the candidate remediation technologies selected for consideration. Based on the initial technology screening, the primary technologies selected for further evaluation were ISCO and enhanced bioremediation. MNA was selected to be performed in combination with active remediation. A description of how these remediation technologies could be applied is as follows:

<u>ISCO</u>

Technology Description: The technology description, advantages, and disadvantages are consistent with those described for the source area technology evaluation.

Site Application: As described above, pilot testing proved ISCO to be a viable alternative for Site-wide application. Additionally, the use of ISCO for groundwater plume treatment in addition to source area remediation allows for implementation efficiencies to be gained through consistent remedial application across the Site. Because soil impacts are within the zone of groundwater saturation, and attainment

demonstration will focus on groundwater, ISCO is the selected alternative for treatment within the groundwater plume for the same reasons as described for the source area technology evaluation.

Enhanced Bioremediation

Technology Description: Enhanced bioremediation is a process in which subsurface bacteria use petroleum hydrocarbons as a substrate and generate water and carbon dioxide as metabolic byproducts, thereby destroying petroleum hydrocarbons. Numerous studies and case histories have shown that the natural biodegradation of hydrocarbons occurs in groundwater at virtually all sites. Depending on the relative rates of introduction of hydrocarbons into the dissolved-phase in groundwater from soil/LNAPL sources and the consumption of hydrocarbons via natural biodegradation, the net groundwater hydrocarbon plume may be expanding, contracting, or stable. A technology that can be applied in conjunction with enhanced bioremediation is activated carbon based material. Enhanced bioremediation combined with activated carbon allows the contaminant to be adsorbed immediately, then biologically treated.

Advantages: Bioremediation is typically cost effective when compared to other remedial technologies. Natural attenuation in groundwater, coupled with active source remediation, can be very effective for petroleum hydrocarbon releases. Enhanced bioremediation, using oxygen releasing products or another method, depends on the delivery of oxygen, nutrients, introduced bacteria, or other materials into contaminated zones, and is most effective in permeable, homogeneous soils. In situ bioremediation is most applicable to sites in which the time frame for cleanup can be relatively long, soils are coarse grained, and SPL is not present to act as a continuing source.

Disadvantages: Typically, bioremediation applied to attain cleanup standards requires extended periods of time. If SPL and/or impacted soil are present to act as a continuing source of hydrocarbons, cleanup can take even longer. Enhanced bioremediation can accelerate up the process and is effective at sites with high permeability and/or unstratified soils.

Site Application: Remediation products to enhance bioremediation could be applied in-situ similar to the methods described for ISCO. Enhanced bioremediation was not selected as a primary remediation technology due to the slower timeframes required to achieve remedial objectives and the presence of petroleum hydrocarbons in the saturated soil matrix that provide a continuing source of groundwater impacts. However, enhanced bioremediation, specifically in conjunction with activated carbon based amendments, is selected as a secondary remediation technology that could be applied as a "polishing" technology following initial ISCO application. This could be evaluated following initial ISCO application.

Wetlands and Surface Water Technology Evaluation and Recommendations

Pre-screening of wetland and surface water protection remediation technologies resulted in a list of eight candidate remediation technologies for further evaluation, including MNA, groundwater pump and treat, air sparging, ISCO, enhanced bioremediation, permeable reactive barrier, sheet pile wall, and engineered wetlands. **Table 9** provides a description of the screening criteria used and the candidate remediation technologies selected for consideration. Based on the initial technology screening, the technology selected for remediation to support wetland and surface water protection was MNA. MNA was selected based on the implementation of source area and groundwater plume remediation technologies, resulting in treatment of the dissolved plume within the wetland area.

6.0 REMEDIAL PILOT TESTING

The findings of the additional site characterization work performed during July and August, 2016 indicated that the maximum impacts to groundwater extend farther downgradient than previously known, and the majority of the contaminant mass is deeper than previously anticipated; therefore, in-situ chemical oxidation (ISCO) via injection becomes a more practical remedial approach than source excavation and soil mixing. A remedial pilot testing design using a combination of fixed-point and direct-push injection was proposed resulting in less impact to truck garage operations by eliminating the need for excavation and reducing the time required for implementation in the area directly adjacent to the truck garage. Pilot testing of the ISCO injection program was conducted to collect the data needed to assess the effectiveness of ISCO to remediate the release, and to provide the data needed for remedial design.

6.1 ISCO PILOT TEST DESIGN AND IMPLEMENTATION

An ISCO pilot test was designed to evaluate ISCO as a viable alternative for remediating groundwater and saturated soil impacted by the 1997 release. The contaminant source has migrated downgradient (generally to the east) from the UST system within the smear zone, resulting in what appears to be two distinct areas. These are referred to herein as Pilot Test Area 1 (PT1) and Pilot Test Area 2 (PT2). The pilot test was designed to evaluate ISCO injections in both areas. A map depicting the pilot test injection locations is provided as **Figure 16** as described below.

<u>PT1 Area</u> – PT1 refers to an area north of the truck garage in the western portion of the contaminant plume and includes the area surrounding monitoring well MW-4. ISCO testing was performed in PT1 using direct push injection (IP-1) targeting the interval from seven to 15 feet bgs (total target interval of eight feet). MW-4 and an observation well (OW-1) were used as monitoring points during the test.

<u>PT2 Area</u> – PT2 refers to an area north and northeast of the garage and includes monitoring wells MW-7, MW-14S, MW-14D, and the former water supply well. ISCO testing was performed in PT2 using direct push injection (IP-2) and fixed well injection (IW-1) targeting the interval from eight to 12 feet bgs (total target interval of four feet). Observation points used during the test included MW-14S, MW-14D and an observation well (OW-2).

The pilot test was designed using activated sodium persulfate as the oxidant. Activation was achieved by raising the pH of the injection through the addition of sodium hydroxide (NaOH). Sodium persulfate was selected because of its ability to treat BTEX, MTBE, polyaromatic hydrocarbons, petroleum hydrocarbons in the source zone and/or downgradient plume. When activated, the sulfate radical and hydroxyl radical are formed, which have high oxidation potentials, migrate greater distances in the aquifer and remain active longer in the subsurface for diffusion into low permeability soils⁴. The reaction produces inert products such as water, carbon dioxide, and chloride.

The test was performed to assess injection pressures, flow rates, distribution of the sodium persulfate, and degradation ratios (mass of oxidant used versus mass of contaminant degraded). The results of the test were subsequently used to evaluate the feasibility of ISCO for remediation and provide design parameters for full-scale implementation, if viable.

⁴ Contaminated Site Cleanup Information, United States Department of Environmental Protection, available online at https://cluin.org/techfocus/default.focus/sec/In_Situ_Oxidation/cat/Guidance/#3, accessed March 6, 2017.

6.1.1 Subsurface Utility Survey

A subsurface utility survey was performed prior to pilot testing activities by RETTEW Field Services on November 14, 2016 to identify and field-mark private and/or abandoned subsurface utilities prior to pilot test field activities. Ground penetrating radar (GPR), electromagnetic line locating (RD 8000) equipment and M-scoping equipment were used within PT1 and PT2 to locate and mark subsurface utilities. Detected utilities were marked on the surface with paint and mapped with a Trimble GPS receiver with sub-meter accuracy. The GPS data collected was downloaded and processed for use in creating scaled CADD mapping showing the locations of identified subsurface utilities. Detected utilities within PT1 and PT2 are shown on **Figure 16**.

6.1.2 Pilot Test Observation and Injection Well Installation

RETTEW retained Cascade to install one injection well (IW-1) and two observation wells (OW-1 and OW-2) to monitor remedial effectiveness and design optimization parameters during the pilot test. The wells were installed on November 28, 2016 as shown on **Figure 16**. Well drilling and installation was performed under the direction of a RETTEW geologist. Each well was installed using a Geoprobe[™] 7822 DT drilling rig with eight-inch outer diameter hollow-stem augers. During drilling, borehole cuttings were containerized in 55-gallon open-top drums and staged on-site pending proper disposal.

OW-1 and OW-2 were installed to a total depth of 15 feet and screened from three to 15 feet below grade using two-inch diameter Schedule 40 PVC 0.020-inch slotted well screen and solid riser pipe to grade. IW-1 was installed to a total depth of 12 feet and screened from eight to 12 feet below grade using two-inch diameter Schedule 80 PVC 0.020-inch wire-wrapped well screen and solid riser pipe to grade. The annular space between the borehole wall and the well screen interval of each well was filled with a gravel filter pack. Each observation well was capped with two feet of hydrated bentonite hole plug to fill the remaining annular space to surface grade. IW-1 was grouted from six feet below grade to the surface using neat cement. A flush-mount manhole and locking well cap was installed on each well to prevent unauthorized access. Drilling logs documenting the lithology encountered and well construction details are attached in **Appendix D**.

Upon completion of drilling and well construction, each well was developed by surging and over-pumping to remove drilling residuals. The purged water generated during well development was treated with GAC and discharged to the surface. All drilling waste was transported and disposed of as residual waste at a PADEP-approved facility by ERC. Non-hazardous waste disposal manifests are provided in **Appendix E**.

The top-of-casing elevation of each monitoring well was surveyed by a RETTEW professional land surveyor and referenced to sea-level datum. Groundwater monitoring well top-of-casing elevations are shown on **Table 3**.

6.1.3 Pre-Pilot Test Performance Monitoring

Prior to the pilot test, RETTEW collected soil and groundwater samples near the ISCO injection locations to provide a baseline for evaluating contaminant mass reduction. RETTEW collected pre-test grab groundwater samples from wells MW-4 and OW-1 (PT1) and wells IW-1, MW-14S, MW-14D, and OW-2 (PT2) on November 30, 2016. Groundwater was not purged prior to sample collection. A grab groundwater sample was collected from each well using a disposable bailer and nitrile gloves to reduce the likelihood of cross-contamination. Groundwater samples were collected in laboratory bottleware, placed in a cooler with ice, and delivered to Eurofins Lancaster Labs Environmental for analysis of the PADEP Short List of Petroleum Products for unleaded gasoline and diesel using Method 8260 and total petroleum

hydrocarbons as gasoline range organics (TPH-GRO) and diesel range organics (TPH-DRO) using United States Environmental Protection Agency (USEPA) Method 8015. A summary of the pilot test groundwater sample analytical data is provided as **Table 10.** Groundwater sample analytical reports are provided in **Appendix H**.

In addition to groundwater sample collection, RETTEW collected pre-test soil samples near the injection locations using a Geoprobe[™] 7822 DT direct-push drilling rig on November 30, 2016. A pre-test soil boring (SA1-SB-Initial) was installed approximately three feet northwest of IP-1. Saturated soil samples were collected from soil boring SA1-SB-Initial and injection well IW-1 at a depth of 10 feet bgs for analysis of the PADEP Short List of Petroleum Products for unleaded gasoline and diesel using USEPA Method 8260, and TPH-GRO and TPH-DRO using USEPA Method 8015. Soil sample analytical reports are provided in **Appendix H**. The soil sampling results were used to support design calculations in **Section 7.4**.

6.1.4 Pilot Test Injection and Monitoring

ISCO pilot testing was performed at the Site between November 30 and December 2, 2016. RETTEW retained Cascade to perform ISCO injections at PT1 and PT2 utilizing a top-down injection method and Geoprobe® direct push technology (DPT). The DPT consisted of a two-foot long, 1.75-inch diameter screen driven into the subsurface using a Geoprobe® 77200DT track-mounted rig at each injection point location. The DPT was connected to a custom-built injection system, comprising three skid-mounted totes for containing fresh water and injection materials, mixers to prepare injection materials, pneumatic diaphragm pumps and an air compressor to deliver injection materials to the DPT. The pumps were connected to a manifold with valving, flow meters and pressure gauges to allow controlled delivery of injection materials to multiple DPT points. The injection system was placed on and within a secondary containment berm, and site control measures, including traffic cones and signage, were used to delineate the work area. Spill kits and portable vacuums were staged adjacent to the injection system in an equipment trailer for immediate deployment.

In addition to the setup and operation of the injection system, Cascade managed and handled the injection materials, which were staged adjacent to the injection system. Injection materials included granular sodium persulfate in 55-pound bags and liquid sodium hydroxide (caustic soda 25%) in 575-pound plastic drums. A solution of sodium persulfate activated with sodium hydroxide was mixed injected at each location. The solution was injected through the DPT tooling into the subsurface targeting four different two-foot intervals (see **Table 11**, ISCO Pilot Test Injection Summary for details). The solution was mixed on-site in "batches" and injected as follows.

Injection Solution	Treatment Zone PT1	Treatment Zone PT2	
Reagent	20% Activated Persulfate	12% Activated Persulfate	
Targeted Pore Space	25%	20%	
Assumed Radius of Influence	10 feet	10 feet	
Sodium Persulfate	297 pounds (32 gallons)	179 pounds (19 gallons)	
Activator (Sodium Hydroxide)	46 gallons	33 gallons	
Water	133 gallons	146 gallons	
Batch Volume	211 gallons	198 gallons	
Number of Batches	10	8	
Total Injection Volume	2,110 gallons	1,585 gallons	
Injection Intervals	7-9, 9-11, 11-13 and 13-15 feet bgs	8-10 and 10-12 feet bgs	
Target Injection per Interval	527 gallons	400 gallons	

Notes: Persulfate = 9.35 pounds/gallon

The target injection volume for IW-1 in PT2 was 800 gallons for both intervals, since it was constructed with four feet of well screen across the injection interval of eight to 12 feet.

During the pilot test, RETTEW monitored the injection system for downhole injection pressures, flow rates and totalized injection volumes (**Table 11**). Selected wells were also used to monitor groundwater quality and evaluate oxidant dispersion within each treatment zone during the test. Wells selected for monitoring included MW-4, OW-1, MW-14S, MW-14D, OW-2 and MW-5. Monitoring included depth to water measurements as well as direct water quality parameters using a YSI 556 multiparameter meter and a downhole probe set at a depth of 10 feet. Water quality parameters monitored included pH, conductivity, DO, temperature, and ORP. A description of each monitoring parameter⁵ is provided below.

<u>Groundwater Level</u> – Measured groundwater levels are used to determine groundwater elevations and hydraulic gradient. Ideally, the injection rate should not greatly change groundwater levels to ensure contaminants are not displaced out of the treatment zone.

<u>pH</u> –Most chemical oxidants react differently under different pH conditions, and adjusting pH can lead to the most favorable reaction conditions. Initially, persulfate activated with sodium hydroxide (25% caustic) will increase the pH of the aquifer when injected.

<u>Conductivity</u> – Increases in conductivity provide evidence for oxidant dispersion. Slight increases in conductivity are frequently observed following oxidant injections. Sodium persulfate is a salt and will increase the conductivity of the aquifer when injected as a solution.

<u>Dissolved Oxygen</u> – DO is an indicator of organic pollutant load and oxidant movement. Increases in DO concentrations reflect oxidizing conditions and generally coincide with the oxidant movement.

<u>Temperature</u> – Oxidant reactions with organic matter are generally exothermic. Reaction of sodium permanganate in the presence of high concentrations of reductant also can be exothermic. Increases in temperature generally coincide with the oxidant movement.

<u>Oxidation-Reduction Potential</u> – ORP is a water quality parameter and oxidation pathway indicator. Application of ISCO should result in increased ORP within the affected area.

An ISCO Pilot Test Field Monitoring Data Summary is provided as **Table 12**. A description of daily pilot test activity is provided below.

<u>November 30, 2016</u> - RETTEW initiated pilot testing at IP-1 in PT1 on November 30, 2016 (**Figure 16**). Downhole injection pressures were low (less than five pounds per square inch, or psi), and injection flow rates were lower than expected. Due to the low flow rates, an additional DPT (IP-3) was installed to inject the target volume in each interval. Surfacing (i.e., water table mounding) occurred at OW-1 and MW-4. Due to surfacing, the monitoring points had to be capped, which precluded further water quality monitoring. Injection rates were maintained at approximately one gallon per minute (gpm). As indicated on **Table 11**, a total of 725 gallons were injected in the seven to nine and nine to 11 feet bgs intervals.

<u>December 1, 2016</u> - Testing continued at IP-1 and IP-3 in PT1 on December 1, 2016 in the nine to 11 and 11 to 13 feet bgs intervals, but was terminated after the injection of 406 gallons and daylighting along the

⁵ Contaminated Site Cleanup Information, United States Department of Environmental Protection, available online at https://cluin.org/techfocus/default.focus/sec/In_Situ_Oxidation/cat/Guidance/#3, accessed March 6, 2017.

edge of the truck garage slab (**Figure 16**). Additional DPT points (IP-6 and IP-8) were selected in PT2 to continue injection in the seven to nine feet bgs interval away from the truck garage. Downhole injection pressures were low (less than five psi), and injection flow rates were in the 1.5 to 2.0 gpm range. Injection continued until daylighting occurred in cracks in the asphalt paving. A total of 614 gallons were injected in the seven to nine feet bgs interval at IP-6 and IP-7 as shown on **Table 11**.

<u>December 2, 2016</u> - Testing was initiated in PT2 at IP-2 and IW-1 on December 2, 2016 in the eight to 10 and eight to 12 feet bgs intervals. Downhole injection pressures were low (less than five psi), and injection flow rates were in the 0.5 to 2.0 gpm range. Due to the low flow rates, an additional DPT (IP-9) was installed to inject the target volume in the eight to 10 feet bgs interval. Injection was terminated after the injection of 275 gallons when daylighting occurred along the trace of a utility trench located between IP-2 and IW-1. Additional DPT points (IP-10 and IP-11) were selected in PT2 to continue injection in the 12 to 14 feet bgs interval away from the utility trench. Downhole injection pressures were low (less than five psi), and injection flow rates were in the 2.0 to 2.5 gpm range. A total of 1,008 gallons were injected in the 12 to 14 feet bgs interval at IP-10 and IP-11.

6.1.5 Post-Pilot Test Performance Monitoring

Following the completion of pilot testing activities, groundwater samples were collected from the wells used during pilot test monitoring (OW-1, MW-4, OW-2, MW-14S, MW-14D and MW-5) at intervals of two and four weeks after the completion of testing to evaluate mass reduction. Groundwater sampling was performed by STL on December 19 and December 30, 2016. After gauging static water levels, groundwater was purged from each well with a peristaltic pump to maintain flow rates at approximately 250 ml/min with minimal drawdown in accordance with the PADEP *Groundwater Monitoring Guidance Manual* (December 2001) low-flow purging methods. Purged groundwater was routed through a flow-cell and an HI 98914 water quality meter to monitor intrinsic groundwater quality parameters including pH, conductivity, DO, TDS, temperature, and ORP. Intrinsic parameters were monitored frequently until stabilization, indicative of representative groundwater chemistry. Purged groundwater was then treated with GAC and discharged to the surface. Low flow purging and monitoring data sheets for the post-test groundwater monitoring events are included as **Appendix F**.

Upon intrinsic parameter stabilization, groundwater samples were collected from the pump discharge tubing. To reduce the likelihood of cross-contamination, new tubing was used and nitrile gloves were worn during the collection of each groundwater sample. Groundwater samples were collected in laboratory bottleware, placed in a cooler with ice, and delivered to STL for analysis of PADEP Short List of Petroleum Products for unleaded gasoline and diesel using USEPA Method 8260, and TPH-GRO and TPH-DRO using USEPA Method 8015. A summary of pilot test groundwater sample analytical data is provided as **Table 10.** Groundwater sample analytical reports are provided in **Appendix H**.

6.2 ISCO PILOT TEST FINDINGS

The data collected during the ISCO pilot test were analyzed to assess the feasibility of implementing ISCO as a remedial action at the Site. The data analysis focused on two key study areas; ISCO injectability, and the radius of influence. Injectability is demonstrated through achieving positive injection flow rates at relatively low pressures. During the pilot test, injection flow rates were achievable between 0.5 and 2.5 gpm with corresponding pressures less than five psi (minimum measurable pressure/gauge resolution); however, injection flow rates were limited by depth interval. Injection daylighting (i.e., injected materials observed breaking through the surface) and surfacing (i.e., injection short-circuiting and groundwater mounding to the surface through nearby wells) was observed during the pilot test at shallower depth

intervals between seven and nine feet bgs (and to a lesser extent between nine and 11 feet bgs) when flow rates exceeded 1 gpm (**Table 11**).

The radius of influence (ROI) of ISCO injection is determined based on the monitoring data collected at the observation wells located at various distances from each injection point. The field monitoring data collected is described in **Section 6.1.4** and is summarized in **Table 12**. The findings of pilot test field monitoring are presented below for each source area.

PT1 Injection Results – November 30 and December 1, 2016						
Monitoring Well	OV	V-1	MV	V-4		
Injection Point	IP-1	IP-3	IP-1	IP-3		
Distance	10 feet	8 feet	7 feet	5 feet		
Water Table Mounding	X	X	X	Х		
Increasing DO	X	X	X	Х		
Increasing ORP	X	X	X	Х		
Increasing Temperature	Х	X	X	Х		
Increasing pH	Х	X	X	Х		
Increasing Conductivity	Х	X	X	X		

X = Measured Effect

O = No Effect or Inconclusive

Injection at IP-1 and IP-3 resulted in evidence of oxidant transport within two hours at a distance of at least 10 feet from the injection point. Based on the monitoring data collected at OW-1, a minimum ROI of 10 feet is apparent.

PT2 Injection Results – December 1, 2016					
Monitoring Well MW-5					
Injection Point	IP-6	IP-8			
Distance	27 feet	19 feet			
Water Table Mounding	X	X			
Increasing DO	0	0			
Increasing ORP	0	0			
Increasing Temperature	0	0			
Increasing pH	0	0			
Increasing Conductivity	0	0			

X = Measured Effect

O = No Effect or Inconclusive

Injection points IP-6 and IP-8 were located upgradient of MW-5. After approximately three hours of injection, rising water levels were noted at MW-5. No other definitive evidence of oxidant transport was observed during the test. Based on the monitoring data collected at MW-5, the maximum ROI is less than 19 feet.

PT2 Injection Results – December 2, 2016							
Monitoring Well	OV	V-2	-2 MW-14S		MW-14D		
Injection Point	IP-2	IW-1	IP-2	IW-1	IP-2	IW-1	
Distance	9.5 feet	5 feet	7.5 feet	12.5 feet	7.5 feet	12.5 feet	
Water Table Mounding	Х	Х	Х	Х	Х	Х	

PT2 Injection Results – December 2, 2016						
Increasing DO	0	0	0	0	Х	Х
Increasing ORP	Х	X	0	0	0	0
Increasing Temperature	0	0	0	0	0	0
Increasing pH	Х	X	Х	Х	0	0
Increasing Conductivity	Х	X	Х	Х	0	0

X = Measured Effect

O = No Effect or Inconclusive

Rising water levels were noted at MW-14D, followed by an increase in DO during the pilot test. No other definitive evidence of oxidant transport was observed during the test at MW-14D; however, this well is screened from 15 to 25 feet bgs, below the eight to 12-foot interval of injection. MW-14S and OW-2 also showed evidence of rising water levels, as well as increasing pH and conductivity associated with the injected oxidant. Based on the monitoring data collected at MW-14S and OW-2, evidence of oxidant transport is apparent within two hours at a distance of at least 12 feet from the injection point. Therefore, the ROI for the pilot test ranges from a minimum distance of 10 feet to a maximum distance of less than 12 feet. For full-scale implementation design purposes, the ROI is estimated to be 10 feet. The findings of post-injection field monitoring summarized in **Table 10** and **Table 12** are presented below.

Post-Injection Field Monitoring Results						
Monitoring Well	MW-4	OW-1	MW-14S	MW-14D	OW-2	MW-5
Increasing DO	х	Х	X	0	х	0
Increasing ORP	Х	Х	0	Х	0	Х
Increasing Temperature	0	0	0	0	0	0
Increasing pH	х	Х	0	0	х	0
Increasing Conductivity	х	Х	0	0	х	0
Mass Reduction - Benzene	0	Х	X	Х	х	0
Mass Reduction - GRO	0	Х	X	Х	Х	0
Mass Reduction - DRO	0	0	Х	Х	Х	0

X = Measured Effect

O = No Effect or Inconclusive

The findings of the post-injection field monitoring indicate evidence of oxidant transport based on the following:

- An increase in DO, ORP, pH and conductivity were observed in PT1 (MW-4 and OW-1) up to 45 days after the completion of the pilot test.
- An increase in pH and conductivity were observed in OW-2 in PT2 for at least 30 days after the completion of the pilot test.
- Contaminant mass reduction (benzene and TPH-GRO) was noted in OW-1 following the PT1 pilot test.
- Contaminant mass reduction (benzene, TPH-GRO and TPH-DRO) was noted in MW-14S, MW-14D and OW-2 following the PT2 pilot test.

7.0 REMEDIAL ACTION

This section describes the remedial action objectives and proposed remedial action scope of work.

7.1 REMEDIAL ACTION OBJECTIVES

Because petroleum impacted soil is present below the seasonally high water table (i.e., soil in the zone of groundwater saturation) and will continue to leach to groundwater, the goal of remediation will be to reduce the mass of hydrocarbons present and to meet surface water criteria. As such, remedial action objectives (RAOs) were developed to attain the Act 2 Site-Specific Standard for groundwater and include the following:

- Remediate the source of groundwater impacts to the extent technologically and economically feasible, to significantly minimize or eliminate the continued degradation of groundwater in the source area;
- Remediate regulated substances in groundwater to meet calculated remediation endpoints for benzene and MTBE;
- Demonstrate continued natural attenuation of the groundwater plume (plume stabilization/degradation); and
- Reduce dissolved benzene concentrations in groundwater at the point of groundwater discharge to concentrations below the CRL WLA surface water quality criteria.

Remediation endpoints were developed for benzene and MTBE in groundwater by updating the calibrated fate and transport models presented in the Revised SCR using current data collected during additional site characterization and pilot testing. The updated fate and transport analysis and the calculated remediation endpoints are described in the following sections.

7.1.1 UPDATED FATE AND TRANSPORT ANALYSIS

The calibrated fate and transport models presented in the Revised SCR were updated using current data collected at the Site during additional site characterization (**Section 3.0**) and pilot testing (**Section 6.0**). The calibrated models in the Revised SCR included the PADEP Quick Domenico (QD) model spreadsheet to estimate steady state concentrations of benzene and MTBE at the point of groundwater discharge (MW-11). As described in the Revised SCR, RETTEW calibrated the QD model spreadsheet following the methodologies presented in the PADEP guidance document titled *User's Manual for the Quick Domenico Groundwater Fate and Transport Model*. A systematic approach was used to calibrate the QD model by matching the model to actual field data along the centerline of the plume. A range of selected model calibration parameters were used in various combinations to identify the model(s) that closely approximates observed concentrations. This approach utilized nine combinations of parameters, referred to as Model 1 through Model 9. Model 8 was the only calibration model that achieved a centerline concentration for benzene and MTBE at MW-10 with some degree of degradation. Model 8 was selected for final calibration and was referred to as Model 10. The input parameters used for the Model 10 update and their sources are presented below.

Parameter	Symbol	Value	Comments
Source Concentration	Co	6.470 mg/L	Maximum observed at OW-2
Source Concentration	Co	0.705 mg/L	Average observed at OW-2
Longitudinal Dispersivity	α_x	3 feet	Variable calibration parameter scaled to plume
Transverse Dispersivity	α_y	<i>α</i> _x /10	Estimate
Vertical Dispersivity	αz	0.001 foot	Minimized for 2-D transport
Source Width	Y	35 feet	Benzene plume width at OW-2 (2,000 μg/L)
Source Depth	Ζ	8 feet	MIP-3 data
Hydraulic Conductivity	К	2.8 ft/day	Site characterization data
Hydraulic Gradient	i	0.018 ft/ft	Groundwater monitoring data

Parameter	Symbol	Value	Comments
Effective Porosity	ne	0.353	75% of avg. porosity MIP-1, MIP-3, MIP-4 and MIP-7
Density	ρ	1.788 g/cm ³	Site characterization data
Organic Carbon Coefficient	Koc	58 L/kg	Chapter 25 Table VA for Benzene
Organic Carbon Coefficient	Koc	12 L/kg	Chapter 25 Table VA for MTBE
Fraction Organic Carbon	foc	0.0118	Site characterization data
Degradation Coefficient	λ	0.00065 day ⁻¹	Calibration parameter for MTBE
Degradation Coefficient	λ	0.00024 day ⁻¹	Calibration parameter for benzene

Notes: Shaded parameters are updated using additional site characterization data.

The source concentrations used were based on the observed benzene (6,470 μ g/L) and average MTBE concentrations observed in groundwater at OW-2 on January 18, 2017. The maximum MTBE concentration observed on December 29, 2016 at OW-2 may be related to desorption following the pilot test; therefore, an average concentration (705 μ g/L) was determined to be more representative of actual MTBE concentrations. The calibration process was based on the distance between OW-2 (the source) and calibration wells MW-10 and MW-11, located along the plume centerline 100 feet and 255 feet from OW-2, respectively.

The hydraulic conductivity (K) value used was based on the maximum calculated transmissivity (T) value from the aquifer testing described in the Revised SCR (28 ft²/day) and a saturated aquifer thickness of 10 feet. The upper 10 feet of the aquifer includes the zone of maximum impacts. The average porosity of the saprolite aquifer materials (0.471) was based on the geotechnical soil sample analyses described in **Section 3.1**. The effective porosity (0.353) assumes that 75% of the pore space is interconnected.

The time used in the calibration models was based on the number of elapsed days (7,173) between the discovery of contamination (May 28, 1997) and the most recent groundwater monitoring event (January 16, 2017). The model domain was set to 255 feet, equal to the distance from OW-2 to MW-11. Average centerline concentrations for MW-10 (100 feet) and MW-11 (255 feet) were used to calibrate the models by adjusting the degradation coefficients for benzene and MTBE to match centerline concentrations. The updated QD model output is attached in **Appendix I**.

7.1.2 UPDATED SURFACE WATER QUALITY STANDARDS

Groundwater impacts to surface water were evaluated using the PADEP's SWLOAD5 model spreadsheet. The SWLOAD5 model was used to develop average concentrations of benzene and MTBE in a cross-sectional flow of the plume discharging to surface water, and to estimate the mass loading of benzene and MTBE to surface water under steady state conditions. The SWLOAD5 output was then used to determine applicable surface water quality standards for benzene and MTBE using the PADEP's PENTOXSD model.

The SWLOAD5 model is based on the same assumptions and the same input parameters as the QD model. As such, the sources of the SWLOAD5 input parameters were generally taken from the updated QD models described above. Key parameter input differences between the models pertain to time, plume depth, and the "edge criterion" established for each substance at the edge of the plume as described in the *Act 2 Technical Guidance Manual* (TGM), Section IV.A.3. These SWLOAD5 input parameters are described below.

Parameter	Value	Comments
Time	1 x 10 ⁹⁹ days	Assures model output is at steady state
Benzene Plume View Width	99 feet	Variable calibration parameter
Benzene Plume View Depth	8 feet	Site characterization data (MIP-3)
Benzene Edge Criterion	5 μg/L	Per Table IV-1 of the TGM
MTBE Plume View Width	56 feet	Variable calibration parameter
MTBE Plume View Depth	8 feet	Site characterization data (MIP-3)
MTBE Edge Criterion	20 µg/L	Per Table IV-1 of the TGM

The plume view width was adjusted to match the edge criterion concentrations for each substance at the lateral bounds of each plume. The SWLOAD5 output is attached in **Appendix I** and summarized in the following table.

Substance	Highest Modeled Concentration	Average Concentration	Plume Flow
Benzene	837.7 μg/L	300.6 μg/L	0.00046 cfs
MTBE	84.6 μg/L	51.05 μg/L	0.00017 cfs

Notes:

cfs = Cubic feet per second

The PENTOXSD surface water mixing model was then updated to calculate Water Quality Based Effluent Limits (WQBELs) for the portions of the benzene and MTBE plumes that exceeded their edge criterion based on the SWLOAD5 model output. Specifically, the average groundwater concentrations and plume flow rates noted above were used as PENTOXSD input parameters. The analysis was performed for a reach of the UNT to North East Creek shown on **Figure 17**, from Node 1, located at the Stream-1 sampling point, to Node 2, located at the confluence of the UNT with North East Creek. Hydrodynamic input parameters used in the PENTOXSD model are listed in the following table.

Parameter	Node 1	Node 2	Source
River Mile Index	1.44 mi	0.0 mi	GoogleEarth measurement
Elevation	495 ft	390 ft	GoogleEarth measurement
Drainage Area	0.04 mi ²	0.98 mi ²	StreamStats
Qh Flow	0.0083 cfs	0.29 cfs	StreamStats
Q7-10Flow	0.0012 cfs	0.0059 cfs	StreamStats
Qh Width	3.3 ft	6 ft	GoogleEarth measurement
Q7-10 Width	1.5 ft	3 ft	Estimated (approx. ½ Qh width)

The PENTOXSD output and the StreamStats datasheets used in the model are attached in **Appendix I**. The WLAs calculated by PENTOXSD are provided in the following table.

Water Quality Criteria	Benzene WLAs	MTBE WLAs
Acute Fish Criterion (AFC)	2,239 μg/L	NA
Chronic Fish Criterion (CFC)	454 μg/L	NA
Threshold Human Health (THH)	NA	108.2 μg/L
Cancer Risk Level (CRL)	22.6 μg/L	NA
Governing Criteria	22.6 μg/L	108.2 μg/L

Notes: NA = Not applicable

The PENTOXSD model selects the most restrictive WLA as the Governing Criterion, which is the applicable water quality criteria. The PENTOXSD model results indicate that the maximum average benzene concentration at steady state (300.6 μ g/L) exceeds the Governing Criterion (CRL – 22.6 μ g/L). The maximum average MTBE concentration at steady state (84.6 μ g/L) is more restrictive than any of the calculated WLAs; therefore, observed concentrations of MTBE in groundwater meet their calculated WLAs. It is noted that the maximum observed MTBE concentration in groundwater at MW-11 (137 μ g/L) does not meet the calculated WLA.

7.1.3 CALCULATED REMEDIATION ENDPOINTS

The calculated Governing Criterion for benzene and MTBE were used to back calculate source concentrations that will be required to attain the selected Act 2 standard using the SWLOAD5 model and the QD model. A target remediation endpoint was calculated for the source (OW-2) by using the Governing Criterion as the average groundwater concentration input value in the SWLOAD5 back calculation as follows.

Parameter	Value	Comments
Time	1 x 10 ⁹⁹ days	Assures model output is at steady state
Average Benzene Concentration	22.6 μg/L	Governing Criterion
Benzene Plume View Width	67 feet	Adjusted to meet Edge Criterion
Benzene Plume View Depth	8 feet	Site characterization data (MIP-3)
Benzene Edge Criterion	5 μg/L	Per Table IV-1 of the TGM
Average MTBE Concentration	108.2 μg/L	Governing Criterion
MTBE Plume View Width	70 feet	Adjusted to meet Edge Criterion
MTBE Plume View Depth	8 feet	Site characterization data (MIP-3)
MTBE Edge Criterion	20 μg/L	Per Table IV-1 of the TGM
Benzene Source Concentration	332 μg/L	Calculated for OW-2
MTBE Source Concentration	1,800 μg/L	Calculated for OW-2

The SWLOAD5 back calculation models are attached in **Appendix I**. The target remedial endpoint for benzene in groundwater at OW-2 is calculated to be 332 μ g/L. The target remedial endpoint for MTBE in groundwater at OW-2 is 1,800 μ g/L. As a final step, the updated QD model was used to back-calculate benzene and MTBE concentrations in groundwater at downgradient monitoring wells MW-10 and MW-11.

Parameter	Value	Comments
Benzene Source Concentration	332 μg/L	SWLOAD5 back calculation
MTBE Source Concentration	1,800 μg/L	SWLOAD5 back calculation
Benzene Concentration at MW-10	155 μg/L	Calculated 100 feet from OW-2
MTBE Concentration at MW-10	818 μg/L	Calculated 100 feet from OW-2
Benzene Concentration at MW-11	14 μg/L	Calculated 255 feet from OW-2
MTBE Concentration at MW-11	216 µg/L	Calculated 255 feet from OW-2

The calculated benzene and MTBE concentrations presented above are proposed as remediation endpoints for OW-2 and to serve as target concentrations to monitor and verify remedial effectiveness at MW-10 and MW-11 for the purpose of attaining applicable surface water standards. It is noted that the fate and transport analysis presented in the Revised SCR concluded that MTBE had reached steady state and that the WLAs are met into the future. It is assumed that the recent spike in dissolved MTBE

concentrations at OW-2 occurred as the result of displacement during pilot testing; however, this condition will be monitored and re-evaluated during remediation.

7.2 REMEDIAL ACTION DESCRIPTION

The proposed remedy involves site-wide application of ISCO for the remediation of petroleum hydrocarbons in saturated soil and groundwater. Sodium persulfate activated with sodium hydroxide is the selected oxidant for ISCO in the source and plume areas because of its proven ability to achieve significant reduction of toxicity, mobility, and mass of contaminants in a short time-frame, flexibility in implementing the remedial action with limited disturbance to site operations, and ability to implement the remedial action in-situ creating a more sustainable remedial approach. Product descriptions and materials safety data sheets (MSDS) for the proposed sodium and potassium persulfate products are provided in **Appendix J**.

The remedial approach involves ISCO application using DPT injection points in the source area and groundwater plume. The proposed injection layout is shown in **Figure 18**. The design details are discussed in more detail in the following sections. The design is based on the average concentrations of compounds of concern (COCs) in the saturated soil and groundwater in three distinct areas including the area designated as the source area (referred to as Remediation Area 1 or RA1), the groundwater plume area downgradient of RA1 (referred to as Remediation Area 2 or RA2), and an area of the groundwater plume upgradient of MW-10 (referred to as Remediation Area 3 or RA3). These areas are further described in the sections below.

7.3 SITE PREPARATION WORK ACTIVITIES

The following Site preparation work activities will be completed prior to remedial action implementation.

7.3.1 MARK OUT OF INJECTION WELLS AND INJECTION POINTS

The locations of injection wells and injection points are presented in the injection layout design map (**Figure 18**). These locations will be marked in the field in accordance with the injection layout design prior to mobilization to ensure the planned layout is not obstructed by facility structures, equipment, or utilities.

7.3.2 BURIED AND OVERHEAD UTILITY MANAGEMENT

A blind utility sweep using ground-penetrating radar (GPR) was conducted in the proposed remediation area at the Site in November 2016. All identified utilities were mapped using GPS and the information is presented on all design plans. Injections will be placed a minimum lateral distance of 10 feet from any utility corridor. The PA One Call System will be contacted following injection location mark out and a minimum of 72 hours prior to any ground disturbance activities (i.e., drilling of injection wells or direct push injections) to mark subsurface public utilities (i.e., natural gas and electric service) entering the Site.

7.3.3 TEMPORARY FACILITIES

To decontaminate DPT tooling, hoses, and other injection equipment, an approximately 25-foot by 25foot containment area will be constructed with a polyethylene liner and containment berm to contain wash water used for cleaning injection equipment. Equipment that comes into contact with impacted material or injection materials will be decontaminated prior to leaving the Site. Injection rods and equipment in direct contact with injection solutions will be cleaned daily. Decontamination will be performed within the designated containment area using Alconox or other biodegradable detergent. The decontamination water, and any soil and liquids generated during decontamination, will be transferred to a drum or other storage container for subsequent off-site disposal as residual waste. The decontamination area will be located as shown on **Figure 18**.

The containment area will also include storage of materials needed for remediation injections including the sodium persulfate, potassium persulfate, and sodium hydroxide. The containment area will consist of secondary containment that is constructed to contain, at a minimum the volume of the largest liquids tank plus an additional 10%. The containment area will be placed at least 100 feet from wetlands or water bodies. The proposed materials storage area is shown on **Figure 18**.

Remediation equipment will include one or two direct push drill rigs and mixing/injection trailers, along with ancillary equipment including but not limited to, drill casing, hoses, piping, pumps, mixing tanks, and pressure/flow gauges. During implementation, the equipment will be moved throughout the project area for access to proposed injection points. The equipment will be stored on-site overnight in the area designated for equipment storage as shown on **Figure 18**.

If storage of materials is required beyond the duration of the remediation activities, the materials will be covered and stored on-site within a containment pad.

7.3.4 PERMITS

The Underground Injection Control (UIC) program is administered by the Environmental Protection Agency (EPA) in the Commonwealth of Pennsylvania. The EPA approved construction and remediation activities related to remediation injection at the Site by "rule authorization" in the approval letter dated November 3, 2016. The remediation injection activities covered under the "rule authorization" include the construction and operation of remediation injection wells and subsurface emplacement of sodium persulfate for the purposes of groundwater remediation. A copy of the "rule authorization" is included in **Appendix K**. No other permits associated with the proposed remedial action are required by PADEP.

7.3.5 REMEDIATION HEALTH AND SAFETY PLAN

The remediation contractor will be responsible for preparing a Health and Safety Plan (HASP) and implementing the HASP. The existing HASP prepared by RETTEW outlines all requirements necessary for compliance with Occupational Health and Safety Administration (OSHA) 1910.120 HAZWOPER regulations and any other application general construction requirements. The HASP will be updated prior to remediation implementation to include the risk identification and mitigation procedures associated with injection activities. At a minimum, the HASP will include the following:

- Conformance to Occupational Safety and Health Administration (OSHA) and other federal requirements;
- Identification of hazards likely to be present at the Site;
- MSDSs for each chemical used; and
- Policies and procedures to protect workers from the hazards.

7.3.6 AVAILABILITY AND USE OF UTILITY SERVICES

Potable water is available on-site for use during remedial implementation. The water consists of a water tap located inside the truck garage that can be fitted with a standard garden hose for use during remediation activities.

7.3.7 PROTECTION AND MAINTENANCE OF TRAFFIC AND UNAUTHORIZED PERSONNEL

The designated work area will be demarcated by the use of traffic control barriers, cones, or temporary orange plastic construction safety fencing. Signs designating the work area and warning against trespass will be placed at all sides of the work perimeters during implementation.

7.3.8 SECURITY PROVISIONS

The remediation contractor will be responsible for the security of its own equipment, materials, and supplies. The construction perimeter barriers, cones, or fencing will support deterrence of unauthorized personnel. A daily visitor's log will be maintained to document all personnel visiting the Site.

7.3.9 DISCHARGE AND SITE RUNOFF CONTROL

Ground disturbance will be minimal consisting of only the immediate injection location with the majority of the injections occurring on an asphalt paved surface. However, there is potential for surfacing of the injection solution during injection or uncontrolled release of chemicals to the ground surface that could result in runoff. The remediation contractor will prepare a spill plan to be implemented in the event of an accidental, inadvertent discharge of liquids. The plan will include management practices (BMPs) for containing and recovering inadvertent discharges, and provisions for material storage areas to be placed at least 100 feet from any wetlands or water bodies for the protection of the downgradient wetland and stream.

7.4 REMEDIAL PERFORMANCE MONITORING

Quarterly groundwater monitoring event(s) described in **Section 8.0** will be conducted as close as possible to the remediation injection date(s). The results of quarterly groundwater monitoring will be considered the groundwater baseline results. Additionally, these results will be used for confirmation of the extent and nature of COCs in the proposed remediation area. The remediation injection layout/approach may be modified to accommodate any significant observations or changes in COC characterization as a result of the baseline groundwater monitoring event. Remedial effectiveness will be evaluated based on the quarterly monitoring data collected after remediation implementation. Additionally, post remediation soil samples will be collected near soil borings SB-7/MIP-1, SB-23, and SB-24 within the intervals that exhibited maximum hydrocarbon impacts during Site characterization to evaluate mass reduction and remedial effectiveness.

7.5 ISCO IMPLEMENTATION DETAILS

The remedial injection layout is depicted on **Figure 18** and **Figure 19**. The layout presented on **Figure 18** illustrates the lateral extent of remediation influence relative to known dissolved phase impacts. The layout presented on **Figure 19** illustrates the lateral extent of remediation influence relative to known saturated soil impacts. The vertical extent of remediation treatment is illustrated on **Figure 20** and shows the remediation treatment relative to known saturated soil impacts. As shown on **Figures 18** through **20**, the remediation activities are focused on two distinct remediation target areas of the Site described as follows:

- 1. <u>Remediation Area 1 (RA1)</u> RA1 is located adjacent to and north of the garage building. This area is considered the source area and is described with the following characteristics:
 - a. Nearest area within the groundwater plume to the area of the removed leaking USTs (i.e. the 1997 release);

- b. Exhibits the highest COC concentrations in saturated soil; and
- c. Exhibits the largest vertical interval of impacted saturated soil.
- 2. <u>Remediation Area 2 (RA2)</u> RA2 is primarily located adjacent to and downgradient of RA1, but also includes a small area west and north of RA1. This area is considered the primary portion of the groundwater plume and is described with the following characteristics:
 - a. Primarily downgradient of the source area (RA1);
 - b. Exhibits COC concentrations in groundwater near or above source area levels;
 - c. Exhibits COC concentrations in saturated soil, but at significantly less concentrations and smaller vertical interval than the source area (RA1); and
 - d. Downgradient portions of RA2 exhibit dissolved benzene and MTBE concentrations at similar levels as RA1, exhibit dissolved concentrations of other COCs at significantly lower concentrations than RA1, and do not contain saturated soil impacts.
- <u>Remediation Area2 (RA3)</u> RA3 is located downgradient of RA2 and upgradient of MW-10. This area is considered the downgradient portion of the groundwater plume and is described with the following characteristics:
 - a. Upgradient of MW-10 and the downgradient wetland;
 - b. Shallower depth to groundwater than RA1 and RA2;
 - c. Exhibits elevated COC concentrations in groundwater; and
 - d. Exhibits minimal to no COC concentrations in saturated soil.

The remedial injection design is customized to each remediation target area based on Site characterization information and remedial injection pilot testing. RETTEW uses this approach to optimize the design and implementation focusing on the areas (laterally and vertically) that contain the majority of the contaminant mass based on the high resolution information gathered during the course of the Site characterization work as described in previous sections of this report. The design parameters and basis for remedial design are described in the following sections.

7.5.1 RA1 DETAILS

This section provides remediation design details for RA1. Remediation injection layout is shown on **Figures 18 through 20**. Remediation design calculations are provided in **Appendix L**.

RA1 Area Design Parameters		
Area of treatment	1,035 square feet	Target area shown on Figures 18 – 20 based on
	(ft²)	Site characterization data.
Treatment Zone Thickness	7 feet	Treatment zone interval is 7 to 14 feet bgs and assumes top of injection interval is approximately 0.5 to 1 foot below the water table.
Treatment Groundwater Volume	25,471 gallons	Based on a total porosity of 0.47 from Site
	(GAL)	data/geotechnical sample analysis.
Treatment Soil Mass	808,542 pounds	Based on soil density of 111.6 pounds per cubic
	(lbs)	feet (lbs/ft³).

RA1 Area Design Parameters		
Targeted COC Mass	2,111 lbs	Based on 100% target mass reduction in groundwater and 75% target mass reduction in soil; using average concentrations for primary COCs, GRO, and DRO.
Persulfate demand from COCs 46,439 lbs		Design persulfate dosage is 20 lb persulfate/lb COC mass (standard ranges from 10 to 30 lb/lb); calculation includes a safety factor of 1.1.
Persulfate demand from SOD	889 lbs	Persulfate demand from SOD based on 1 gram (gm) persulfate per 1 kg soil; calculation includes a safety factor of 1.1.
Total persulfate demand	47,328 lbs	Includes persulfate demand from COCs and SOD plus safety factor
Sodium hydroxide (NaOH) demand for persulfate neutralization	15,902 lbs	Based on 2 moles of NaOH to 1 mole of persulfate (33.6% of persulfate demand).
NaOH demand for soil buffering	606 lbs	Based on 3 gm 25wt% NaOH per kg of soil.
25 wt% NaOH solution needed	6,230 GAL	Based on persulfate and soil buffering demand.

RA1 Injection Point Design Parameters				
Design ROI	7.5 feet	Reduced ROI from pilot test results of 10 feet to ensure uniform distribution in RA1.		
Design treatment thickness	7 feet	Targets the majority of the contaminant mass from approximately 7 to 14 feet bgs.		
# of injection points needed	6 DPT points	Based on area of RA1/ROI (area).		
# of injection events	3 events	Assumes three injection events needed to inject the full persulfate demand; however, subsequent injections will be reassessed based on groundwater results.		
Persulfate demand per injection point	2,629 lbs	Total persulfate demand per # of events per # of injection points.		
Solution volume per injection point	1,305 GAL	Based on injection into 30% of pore space.		
Persulfate concentration	22%	Mass of persulfate per mass of solution.		
NaOH volume per injection point	346 GAL	Total NaOH demand per # of events per # of injection points.		

The current injection plan involves three injection events in RA1 to achieve 100% COC mass reduction in the groundwater and 75% COC mass reduction in the saturated soil. Following each injection event, the groundwater will be monitored quarterly and subsequent injections will be reassessed on a six- to nine-month basis. Depending on the effectiveness of the injection events, all three injection events may not be required to achieve RAOs. Additionally, alternative remediation amendments may be evaluated for ISCO and/or enhanced bioremediation following each injection event and subsequent performance monitoring.

7.5.2 RA2 DETAILS

This section provides remediation design details for RA2. Remediation injection layout is shown on **Figures 18** through **20**. Remediation design calculations are provided in **Appendix L**.

RA2 Area Design Parameters			
Area of treatment	3,802 square feet	Target area shown on Figures 18 – 20 based on	
		Site characterization data.	
Treatment Zone Thickness	5 feet	Treatment zone interval is 7 to 12 feet bgs and	
		assumes top of injection interval is	
		approximately 0.5 to 1 foot below the water	
		table.	
Treatment Groundwater Volume	66,832 GAL	Based on a total porosity of 0.47 from Site	
		data/geotechnical sample analysis.	
Treatment Soil Mass	2,121,516 lbs	Based on soil density of 111.6 lbs/ft3.	
Targeted COC Mass	427 lbs	Based on 100% target mass reduction in	
		groundwater and soil; using average	
		concentrations for primary COCs, GRO, and	
		DRO.	
Persulfate demand from COCs	13,670 lbs	Design persulfate dosage is 20 lb persulfate/lb	
		COC mass (standard ranges from 10 to 30	
		lb/lb); includes safety factor of 1.6.	
Persulfate demand from SOD	3,394 lbs	Persulfate demand from SOD based on 1 gm	
		persulfate per 1 kg soil; includes safety factor	
		of 1.6.	
Total persulfate demand	17,065 lbs	Includes persulfate demand from COCs and	
		SOD plus safety factor.	
NaOH demand for persulfate	5,733 lbs	Based on 2 moles of NaOH to 1 mole of	
neutralization		persulfate (33.6% of persulfate demand).	
NaOH demand for soil buffering	1,591 lbs	Based on 3 gm 25wt% NaOH per kg of soil.	
25 wt% NaOH solution needed	2,764 GAL	Based on persulfate and soil buffering demand.	

RA2 Injection Point Design Parameters				
Design ROI	10 feet	Design ROI is based on pilot test result of 10 feet.		
Design treatment thickness	5 feet	Targets the majority of the contaminant mass from approximately 7 to 12 feet bgs.		
# of injection points needed	14 DPT points	Based on area of RA2/ROI (area) (assumes 15% injection overlap)		
# of injection events	1 event	One injection event is required; additional targeted injections may be evaluated based on performance monitoring results.		
Persulfate demand per injection point	1,219 lbs	Total persulfate demand per # of events per # of injection points.		
Solution volume per injection point	1,105 GAL	Based on injection into 20% of pore space.		
Persulfate concentration	12.2%	Mass of persulfate per mass of solution.		
NaOH volume per injection point	197 GAL	Total NaOH demand per # of events per # of injection points.		

The current injection plan involves one injection event in RA2 to achieve 100% COC mass reduction in the groundwater and saturated soil. Following the injection event, the groundwater will be monitored
quarterly and subsequent targeted injections may be reassessed based on the performance monitoring results.

7.5.3 RA3 DETAILS

This section provides remediation design details for RA3. Remediation injection layout is shown on **Figures 18** through **20**. Remediation design calculations are provided in **Appendix L**.

RA3 Area Design Parameters		
Area of treatment	2,312 square feet	Target area shown on Figures 18 – 20 based on Site characterization data.
Treatment Zone Thickness	4 feet	Treatment zone interval is 6 to 10 feet bgs and assumes top of injection interval is approximately 0.5 to 1 foot below the water table.
Treatment Groundwater Volume	32,512 GAL	Based on a total porosity of 0.47 from Site data/geotechnical sample analysis.
Treatment Soil Mass	1,032,077 lbs	Based on soil density of 111.6 lbs/ft3.
Targeted COC Mass	106 lbs	Based on 100% target mass reduction in groundwater and soil; using average concentrations for primary COCs, GRO, and DRO.
Persulfate demand from COCs	4,429 lbs	Design persulfate dosage is 20 lb persulfate/lb COC mass (standard ranges from 10 to 30 lb/lb); includes safety factor of 2.1.
Persulfate demand from SOD	2,167 lbs	Persulfate demand from SOD based on 1 gm persulfate per 1 kg soil; includes safety factor of 2.1.
Total persulfate demand	6,596 lbs	Includes persulfate demand from COCs and SOD plus safety factor.
NaOH demand for persulfate	2,216 lbs	Based on 2 moles of NaOH to 1 mole of
neutralization		persulfate (33.6% of persulfate demand).
NaOH demand for soil buffering	774 lbs	Based on 3 gm 25wt% NaOH per kg of soil.
25 wt% NaOH solution needed	1,128 GAL	Based on persulfate and soil buffering demand.

RA3 Injection Point Design Param	neters	
Design ROI	10 feet	Design ROI is based on pilot test result of 10
		feet.
Design treatment thickness	4 feet	Targets the majority of the contaminant mass
		from approximately 6 to 10 feet bgs.
# of injection points needed	8 DPT points	Based on area of RA3/ROI (area) (assumes 10%
		injection overlap).
# of injection events	1 event	One injection event is required; additional
		targeted injections may be evaluated based on
		performance monitoring results.
Persulfate demand per injection	825 lbs	Total persulfate demand per # of events per #
point		of injection points.

RA3 Injection Point Design Parameters													
Solution volume per injection	884 GAL	Based on injection into 20% of pore space.											
point													
Persulfate concentration	10.3%	Mass of persulfate per mass of solution.											
NaOH volume per injection point	141 GAL	Total NaOH demand per # of events per # of											
		injection points.											

The current injection plan involves one injection event in RA3 to achieve 100% COC mass reduction in the groundwater and saturated soil. Following the injection event, the groundwater will be monitored quarterly and subsequent targeted injections may be reassessed based on the performance monitoring results.

7.5.4 DESIGN LIMITATIONS, CONSTRAINTS, AND CONSIDERATIONS

The following design limitations, constraints, and considerations were identified based on the pilot test results:

- Shallow depth of groundwater and vertical remedial target zones limit the ability to inject oxidants at high pressures and high flow rates due to concerns with ground uplift, oxidant surface breakthrough, and groundwater mounding. Remediation injections at depths less than nine feet bgs will maintain pressures less than five psi at corresponding flow rates less than 1.5 gpm.
- Due to the proximity to truck garage (RA1), remediation injections within 7.5 feet of the truck garage will maintain pressures less than 5 psi, corresponding flow rates less than 1.5 gpm, and a top injection interval of no less than eight feet bgs to minimize the potential for surface breakthrough near the building.
- Due to the proximity to utility corridors (RA2), remediation injections within 10 feet from utility corridors will maintain pressures less than 5 psi, corresponding flow rates less than 1.5 gpm, and a top injection interval of no less than eight feet bgs to minimize the potential for surface breakthrough into existing utility corridors.

7.6 CLEANUP AND SITE RESTORATION

The remedial injection areas will be restored to their original condition. All injection points will be backfilled to surface with bentonite. Concrete or asphalt patches depending on surface material type will be completed for each injection point. If injection activities are conducted in the grass landscaped area, then the vegetation and top soil will be segregated during drilling and will be placed back on top of injection location following bentonite application.

7.7 WASTE MANAGEMENT

Minimal soil and groundwater waste is anticipated to be generated during the remediation activities. In the event that waste is generated, it will be contained in 55-gallon drums and disposed off-site as residual waste. Groundwater investigation-derived waste (IDW) generated during quarterly groundwater monitoring is treated on-site through GAC and discharged to the surface. Construction debris such as packaging for granular materials will be disposed of on-site as municipal solid waste. The liquid materials will be procured in reusable totes that are returnable to the vendor.

7.8 DEMOBILIATION

Following completion of the remedial activities, the remediation contractor will remove all equipment, materials, supplies, debris/waste generated by the contractor's activities, temporary utilities and facilities,

and manpower from the Site. The areas of the Site utilized and/or disturbed by the contractor during the project will be left in a condition equal to, or better than pre-work conditions.

7.9 FIELD MODIFICATIONS

Minor field modifications during remediation will be managed collaboratively with involvement from the remediation contractor, field engineer, and design engineer to ensure remediation field objectives are met. Conditions that could result in field modifications include surfacing of injection products, presence of utilities, etc. All field modifications will be documented accordingly.

7.10 DESIGN MODIFICATIONS

Design modifications may occur based on the results of the initial injection event resulting in modifications to subsequent injection approaches.

8.0 GROUNDWATER MONITORING

Quarterly groundwater monitoring will continue in accordance with the corrective action regulations defined in Title 25 Pennsylvania Code Chapter 245 titled *Administration of the Storage Tank and Spill Prevention Program* (Chapter 245). Low flow groundwater purging and sampling methods will be utilized as described in **Section 3.4** in accordance with the PADEP *Groundwater Monitoring Guidance Manual* (December 2001) low-flow purging methods. Groundwater samples will be submitted for laboratory analysis of the PADEP Short List for Petroleum Products for unleaded gasoline and diesel fuel. The groundwater sample analytical results will be compared to their applicable Act 2 MSCs to monitor trends in groundwater quality.

In addition, groundwater sample analytical results will be compared to the baseline groundwater monitoring results described in **Section 7.4** and used to assess remedial performance in the proposed remediation area following each injection event. Monitoring wells located within the area of remedial treatment (MW-3, MW-4, OW-1, MW-5, MW-7, MW-14S, MW-14D, OW-2 and MW-10) will be the primary wells used for the remedial performance evaluation. The remediation injection layout/approach may be modified to accommodate any significant observations or changes in groundwater quality and optimize remedial performance. The baseline groundwater monitoring and first quarterly groundwater monitoring event following remediation will utilize groundwater monitoring wells that are currently in the groundwater monitoring program (MW-3, MW-4, OW-1, MW-5, MW-7, MW-9, MW-14S, MW-14D, OW-2, MW-10, MW-11, and MW-12).

During remediation, an evaluation of the MNA process will be performed as needed during quarterly groundwater sampling events. Groundwater samples will be collected from selected wells for laboratory analysis of chemical indicators of natural attenuation, including sulfate, nitrate, total iron and dissolved iron. Purged groundwater will be routed through a flow-cell and a water quality meter to monitor intrinsic groundwater quality parameters including pH, conductivity, DO, TDS, temperature, and ORP. The data collected will be mapped for spatial analysis and compared to groundwater quality data to identify decreasing trends of regulated substances where natural attenuation is occurring.

Herr's proposes to discontinue groundwater monitoring at Off-Site monitoring well MW-13 in addition to the former water supply well, which is recommended for proper abandonment. The list of monitoring wells selected for quarterly groundwater monitoring events will be evaluated and optimized on a quarterly basis based on the results of the remedial performance evaluation.

9.0 **REPORTING**

During remediation, quarterly Remedial Action Progress Reports (RAPRs) will be submitted to the PADEP in accordance with the corrective action regulations of Chapter 245.312. The RAPRs will include a summary of remediation activities conducted during the reporting period, as well as tabulated summaries of groundwater sample analytical results. The RAPRs will also include hydraulic gradient maps and contaminant distribution maps as monitoring data is collected during remediation.

The RAPRs will present the findings of the remedial performance evaluation described in **Section 7.4** and **Section 8.0**, and will include a statement regarding remedial progress toward achieving the RAOs presented in **Section 7.1.3** and attainment of the selected remediation standards presented in **Section 4.0**. The findings of additional MNA evaluations performed concurrently with remediation will also be presented. Revised fate and transport analyses will be included, as necessary, to determine when RAOs have been achieved. Additional remediation injections performed at the Site to achieve the RAOs will be described. Modifications to the remediation injection layout/approach and/or groundwater monitoring well network will be documented in the RAPR. Each RAPR will be submitted to the PADEP within 30 days following receipt of all laboratory sample analytical results. The anticipated submittal date for the first RAPR will be within 90 days of remedial implementation.

Following remediation and successful attainment demonstration, a Remedial Action Completion Report (RACR) will be prepared pursuant to Chapter 245.313 with supporting documentation and submitted to PADEP for approval. Revised fate and transport analysis will be provided to demonstrate that the RAOs have been met. An evaluation of plume stability will also be provided using a variety of qualitative and quantitative methods, such as concentration over time plots, isoconcentration maps, and statistical trend analyses of groundwater monitoring data over time. The findings of additional MNA evaluations performed concurrently with remediation will also be presented to support fate and transport analyses. The findings of the required post remediation vapor intrusion assessment will be performed as a condition of attainment demonstration in accordance with Section IV.A.4 of the TGM.

10.0 POST REMEDIATION CARE

Post-remediation monitoring may be a component of attainment demonstration of the Act 2 Site Specific Standard for soil groundwater. Post-remedial monitoring will be required to verify the findings of fate and transport analysis, and to demonstrate that the CRL for benzene in surface water will be met in the future. Other post-remedial care provisions may include the following:

- Groundwater monitoring to verify natural attenuation and that the CRL is being met;
- An activity use restriction to prohibit the use of groundwater at the Site and eliminate potential human exposure to the release;
- A land use restriction to prohibit future residential use; and
- An activity use restriction requiring worker health and safety provisions and waste handling protocols during future disturbance of the Site to eliminate potential human exposure to the release.

11.0 SCHEDULE

The primary tasks and schedule associated with remedial implementation are presented below. The schedule presented below is based on PADEP approval of this RAP, subcontractor coordination, and scheduling. The schedule is also based on two ISCO injection events. If additional ISCO injections are needed to achieve RAOs, the schedule will be modified accordingly and presented in the RAPR.

- Submittal of RAP to PADEP March 2017
- Quarterly groundwater monitoring April 2017
- PADEP Approval of the RAP June 2017
- Baseline groundwater monitoring July 2017
- Former water supply well abandonment July 2017
- Remedial action implementation (1st round of injections) August 2017
- Post remediation groundwater monitoring and natural attenuation evaluation October 2017
- Quarterly RAPR submittal November 2017 and 30 days following receipt of quarterly groundwater sample analytical reports for each monitoring event thereafter.
- Remedial action implementation (2nd round of injections) December 2017
- Quarterly groundwater monitoring events January, April, and July of 2018
- Subsequent injection events To be determined based on remedial performance evaluation
- Vapor intrusion assessment 4th Quarter 2018 subject to remedial effectiveness
- Anticipated Site closure and attainment demonstration 2nd Quarter 2019

H:\Projects\10172\101722001\GS\RAP\Report\Report-RAP-03-16-17.docx

FIGURES

H:\Projects\10172\101722001\GIS\MapDocs\Remedial Action Plan\101722001_HerrFoods_RAP_Fig4_GeologyBasemap_8x11.mxd

	DRAWN BY: JME DATE: MARCH 15, 2017 SCALE: AS NOTED DWG. NO. OF 1 C. Letterhauter 10722001-1330404 (more ¹ 14- Fr.EDA) (Scale Fr. 1092404)
	RETTEW Associates, Inc. 3020 Columbia Avenue, Lancaster, PA 17603 Phome (717) 394-3721 : Fax (717) 394-1063 Engineers - Survyors - Landscape Architects Engineers - Environmental Consultants
EGEND WG 5' CONTOUR WG 25'	FIGURE 10 REGIONAL GROUNDWATER ELEVATION CONTOUR MAP - JULY 11, 2016 273 OLD BALTIMORE PIKE WEST NOTTINGHAM TOWNSHIP CHESTER COUNTY, PA

LEGEND

TABLES

Table 1Phase II ESA Soil Sample Analytical Data SummaryHerr Foods, Inc. - 273 Old Baltimore Pike, Nottingham, PennsylvaniaRETTEW Project No. 101722001

	A	ct 2 Statewide H	lealth Stan	dard Medium S	pecific Conco	entrations (M	SCs)					
	So	il to Groundwat	er (Used Ac	quifers)		Direct Contac	t					
PADEP Short List Petroleum Products for		TDS ≤	2500		Residential	Non-Res	idential					
Lubricating Oils and Fluids	Res	idential	Non-r	esidential		Surface	Subsurface					
	100 X	1/10 Generic	100 X	1/10 Generic		Soil	Soil	SB-6	SB-7	SB-8	SB-9	SB-10
	GW MSC	Value	GW MSC	Value	0-15 feet	0-2 feet	2-15 feet	10 ft.	8 ft.	7 ft.	10 ft.	5 ft.
BENZENE	500	13	500	13	57,000	290,000	330,000	120	22,000	21,000	< 0.6	8
ETHYLBENZENE	70,000	4,600	70,000	4,600	180,000	890,000	1,000,000	6,500	85,000	120,000	NA	NA
NAPHTHALENE	10,000	2,500	10,000	2,500	160,000	760,000	190,000,000	1,500	18,000	30,000	< 5	< 45
TOLUENE	100,000	4,400	100,000	4,400	10,000,000	10,000,000	10,000,000	2,600	270,000	450,000	NA	NA
XYLENES	1,000,000	99,000	1,000,000	99,000	1,900,000	8,000,000	9,100,000	28,000	390,000	560,000	NA	NA
ANTHRACENE	6,600	35,000	6,600	35,000	66,000,000	190,000,000	190,000,000	< 4	29	29	< 5	< 45
BENZO(A)ANTHRACENE	32	2,800	490	430,000	6,000	130,000	190,000,000	< 4	10 J	10 J	< 5	< 45
BENZO(A)PYRENE	20	4,600	20	4,600	580	12,000	190,000,000	< 4	6 J	< 4	< 5	< 45
BENZO(B)FLUORANTHENE	19	2,600	120	17,000	3,500	76,000	190,000,000	< 4	< 4	< 4	< 5	< 45
BENZO(G,H,I)PERYLENE	26	18,000	26	18,000	13,000,000	190,000,000	190,000,000	< 4	8 J	< 4	< 5	< 45
CHRYSENE	190	23,000	190	23,000	35,000	760,000	190,000,000	< 4	11 J	10 J	< 5	< 45
FLOURENE	170,000	340,000	190,000	380,000	8,800,000	130,000,000	190,000,000	7 J	92	89	< 5	< 45
PHENANTHRENE	110,000	1,000,000	110,000	1,000,000	66,000,000	190,000,000	190,000,000	11 J	150	150	< 5	< 45
PYRENE	13,000	220,000	13,000	220,000	6,600,000	96,000,000	190,000,000	5 J	49	45	< 5	< 45

Notes:

1) All units in milligrams per kilogram (ug/kg)

2) Bold & shaded MSCs represent the applicable Act 2 non-residential Statewide Health Standard.

3) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.

4) Soil samples were collected on October 6, 2014.

5) PADEP Short List petroleum products in *italics* are COPIACs.

6) NA = Not analyzed.

Table 2 Soil Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant

RETTEW Project No. 101722001

		Act 2 Statev	vide Health Star	ndard Medium Spec	ific Concentratio	ons (MSCs)											
		Soil to Groundwat	er (Used Aquife	rs)		Direct Contact	:			Soil Sampl	e Identificati	ons (Depth in	feet below g	rade below sa	ample I.D.)		
PADEP Short List Petroleum Products for Diesel		TDS ≤	2500		Residential	Non-Re	sidential										
Fuel and Unleaded Gasoline	Res	idential	Non-r	esidential		Surface	Subsurface										
	100 X	1/10 Generic	100 X	1/10 Generic		Soil	Soil	SB-11	SB-12	SB-12	SB-12	SB-12	SB-13	SB-14	SB-15	SB-16	SB-17
	GW MSC	Value	GW MSC	Value	0-15 feet	0-2 feet	2-15 feet	14 ft.	5 ft.	8 ft.	12 ft.	18 ft.	10 ft.	11 ft.	11 ft.	12 ft.	7 ft.
BENZENE	500	13	500	13	5,700	290,000	330,000	< 29	< 29	< 58	< 29	< 30	< 30	< 29	< 28	< 28	< 27
ETHYLBENZENE	70,000	4,600	70,000	4,600	180,000	890,000	1,000,000	< 57	480	16,000	3,800	< 61	< 60	< 58	< 56	< 56	100
ISOPROPYLBENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	< 57	250 J	5,200	2,200	< 61	< 60	< 58	< 56	< 56	< 54
METHYL TERT BUTYL ETHER	2,000	28	2,000	28	1,700,000	8,600,000	9,900,000	< 29	< 29	< 58	< 29	< 30	< 30	< 29	< 28	< 28	< 27
NAPHTHALENE	10,000	2,500	10,000	2,500	160,000	760,000	190,000,000	< 57	880	9,000	2,400	100 J	< 60	< 58	< 56	< 56	350
TOLUENE	100,000	4,400	100,000	4,400	10,000,000	10,000,000	10,000,000	< 57	< 57	< 120	< 58	< 61	< 60	< 58	< 56	< 56	1,100
1,2,4-TRIMETHYLBENZENE	1,500	840	6,200	3,500	130,000	560,000	640,000	79 J	6,600	120,000	68,000	500	< 60	< 58	< 56	< 56	450
1,3,5-TRIMETHYLBENZENE	42,000	7,400	120,000	21,000	2,200,000	10,000,000	10,000,000	< 57	2,600	39,000	15,000	190 J	< 60	< 58	< 56	< 56	250 J
XYLENES	1,000,000 99,000 1,000,000 99,000			99,000	1,900,000	8,000,000	190,000,000	< 57	1,100	34,000	8,900	< 61	< 60	< 58	< 56	< 56	1,100
MOISTURE (%)	1,000,000 99,000			No Standard				15.4	18.7	20.0	27.3	16.6	19.4	22.9	28.2	27.9	17.6

Notes:

1) All units in milligrams per kilogram (ug/kg)

2) Bold & shaded MSCs represent the applicable Act 2 non-residential Statewide Health Standard.

3) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.

4) Soil samples were collected from SB-11 through SB-21 on February 5, 2015.

5) PADEP Short List petroleum products in *italics* are COPIACs.

Table 2 Soil Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

		Act 2 Statev	wide Health Star	ndard Medium Spec	ific Concentrati	ons (MSCs)											
		Soil to Groundwat	ter (Used Aquife	ers)		Direct Contac	t			Sample	Identification	s (Depth in fe	et below gra	de below san	ple I.D.)		
PADEP Short List Petroleum Products for Diesel		TDS ≤	≦ 2500		Residential	Non-Re	esidential										
Fuel and Unleaded Gasoline	Res	idential	Non-r	esidential		Surface	Subsurface										
	100 X	1/10 Generic	100 X	1/10 Generic		Soil	Soil	SB-17	SB-17	SB-18	SB-18	SB-18	SB-19	SB-20	SB-20	SB-20	SB-21
	GW MSC	Value	GW MSC	Value	0-15 feet	0-2 feet	2-15 feet	11 ft.	15 ft.	10 ft.	13 ft.	15 ft.	10 ft.	8 ft.	11 ft.	15 ft.	8 ft.
BENZENE	500	500 13 70,000 4,600		13	5,700	290,000	330,000	240 J	< 25	1,900	3,200	< 30	< 25	1,300	1,900	< 26	< 33
ETHYLBENZENE	70,000	4,600	70,000	4,600	180,000	890,000	1,000,000	130,000	< 51	710	810	< 59	< 49	630	680	< 53	< 66
ISOPROPYLBENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	7,400	< 51	< 56	< 59	< 59	< 49	< 55	< 61	< 53	< 66
METHYL TERT BUTYL ETHER	2,000	28	2,000	28	1,700,000	8,600,000	9,900,000	< 60	< 25	260 J	31 J	< 30	< 25	< 28	< 31	< 26	< 33
NAPHTHALENE	10,000	2,500	10,000	2,500	160,000	760,000	190,000,000	120	< 51	160 J	120 J	< 59	< 49	130 J	93 J	< 53	76 J
TOLUENE	100,000	4,400	100,000	4,400	10,000,000	10,000,000	10,000,000	12,000	< 51	280	9,500	< 59	< 49	4,500	5,000	< 53	< 66
1,2,4-TRIMETHYLBENZENE	1,500	840	6,200	3,500	130,000	560,000	640,000	1,200	< 51	990	890	< 59	230 J	590	500	< 53	< 66
1,3,5-TRIMETHYLBENZENE	42,000	7,400	120,000	21,000	2,200,000	10,000,000	10,000,000	1,200	< 51	300	290 J	< 59	89 J	180 J	150 J	< 53	< 66
XYLENES	1,000,000	99,000	1,000,000	99,000	1,900,000	8,000,000	190,000,000	1,200	< 51	3,500	3,800	< 59	< 49	2,500	2,900	< 53	< 66
MOISTURE (%)	1,000,000 99,000			No Standard				26.2	16.0	22.4	25.2	15.7	18.7	21.4	24.2	12.3	22.2

Notes:

1) All units in milligrams per kilogram (ug/kg)

2) Bold & shaded MSCs represent the applicable Act 2 non-residential Statewide Health Standard.

3) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.

4) Soil samples were collected from SB-11 through SB-21 on February 5, 2015.

5) PADEP Short List petroleum products in *italics* are COPIACs.

Table 2 Soil Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

		Act 2 States	vide Health Star	ndard Medium Spec	ific Concentrati	ons (MSCs)											
		Soil to Groundwa	ter (Used Aquife	ers)		Direct Contac	t			Sample	Identification	is (Depth in fe	eet below gra	ide below san	nple I.D.)		
PADEP Short List Petroleum Products for Diesel		TDS s	2500		Residential	Non-Re	esidential										
Fuel and Unleaded Gasoline	Res	idential	Non-r	esidential		Surface	Subsurface										
	100 X	1/10 Generic	100 X	1/10 Generic		Soil	Soil	SB-21	SB-22	SB-22	SB-23	SB-23	SB-24	SB-24	SB-25	SB-25	SB-26
	GW MSC	Value	GW MSC	Value	0-15 feet	0-2 feet	2-15 feet	10 ft.	7 ft.	19 ft.	8 ft.	15 ft.	10 ft.	19 ft.	9 ft.	15 ft.	10 ft.
BENZENE	500	13	500	13	5,700	290,000	330,000	30 J	< 29	< 25	3,400	< 29	1,300	< 21	< 31	< 29	< 31
ETHYLBENZENE	70,000	4,600	70,000	4,600	180,000	890,000	1,000,000	180 J	< 58	< 50	50,000	< 57	200	< 42	< 62	< 57	< 62
ISOPROPYLBENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	< 51	< 58	< 50	3,400	< 57	< 58	< 42	< 62	< 57	< 62
METHYL TERT BUTYL ETHER	2,000	28	2,000	28	1,700,000	8,600,000	9,900,000	< 26	< 29	< 25	< 120	< 29	< 29	< 21	< 31	< 29	< 31
NAPHTHALENE	10,000	2,500	10,000	2,500	160,000	760,000	190,000,000	< 51	< 58	< 50	9,700	< 57	< 58	< 42	< 62	< 57	< 62
TOLUENE	100,000	4,400	100,000	4,400	10,000,000	10,000,000	10,000,000	270	< 58	< 50	100,000	< 57	3,300	< 42	< 62	< 57	< 62
1,2,4-TRIMETHYLBENZENE	1,500	840	6,200	3,500	130,000	560,000	640,000	670	< 58	< 50	90,000	59 J	120 J	< 42	< 62	< 57	< 62
1,3,5-TRIMETHYLBENZENE	42,000	7,400	120,000	21,000	2,200,000	10,000,000	10,000,000	240	< 58	< 50	28,000	< 57	< 58	< 42	< 62	< 57	< 62
XYLENES	1,000,000	99,000	1,000,000	99,000	1,900,000	8,000,000	190,000,000	1,100	< 58	< 50	220,000	72 J	1,000	< 42	< 62	< 57	< 62
MOISTURE (%)				No Standard				10.6	22.3	13.7	21.8	18.6	21.8	13.1	27.6	16.6	18.7

Notes:

1) All units in milligrams per kilogram (ug/kg)

2) Bold & shaded MSCs represent the applicable Act 2 non-residential Statewide Health Standard.

3) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.

4) Soil samples were collected from SB-11 through SB-21 on February 5, 2015.

5) PADEP Short List petroleum products in *italics* are COPIACs.

Table 2 Soil Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

		Act 2 States	wide Health Star	ndard Medium Spec	cific Concentrati	ons (MSCs)											
		Soil to Groundwa	ter (Used Aquife	ers)		Direct Contac	t			Sample	Identificatior	is (Depth in f	eet below gra	de below san	nple I.D.)		
PADEP Short List Petroleum Products for Diesel		TDS s	≦ 2500		Residential	Non-Re	esidential										
Fuel and Unleaded Gasoline	Res	idential	Non-r	esidential	1	Surface	Subsurface										
	100 X	1/10 Generic	100 X	1/10 Generic	1	Soil	Soil	SB-26	SB-27	SB-27	SB-28	SB-28	SB-29	SB-29	SB-30	SB-30	
	GW MSC	Value	GW MSC	Value	0-15 feet	0-2 feet	2-15 feet	15 ft.	9 ft.	20 ft.	11 ft.	20 ft.	3 ft.	18 ft.	8 ft.	20 ft.	
BENZENE	500	500 13 70,000 4,600		13	5,700	290,000	330,000	< 28	< 29	< 28	< 29	< 25	34 J	< 24	53 J	< 27	
ETHYLBENZENE	70,000	4,600	70,000	4,600	180,000	890,000	1,000,000	< 57	2,000	< 57	< 58	< 51	7,700	< 49	< 56	< 55	
ISOPROPYLBENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	< 57	730	< 57	< 58	< 51	1,400	< 49	< 56	< 55	
METHYL TERT BUTYL ETHER	2,000	28	2,000	28	1,700,000	8,600,000	9,900,000	< 28	< 29	< 28	< 29	< 25	< 29	< 24	< 28	< 27	
NAPHTHALENE	10,000	2,500	10,000	2,500	160,000	760,000	190,000,000	< 57	1,300	< 57	< 58	< 51	3,700	< 49	< 56	< 55	
TOLUENE	100,000	4,400	100,000	4,400	10,000,000	10,000,000	10,000,000	< 57	< 58	< 57	< 58	< 51	< 57	< 49	< 56	< 55	
1,2,4-TRIMETHYLBENZENE	1,500	840	6,200	3,500	130,000	560,000	640,000	< 57	20,000	< 57	< 58	< 51	49,000	< 49	510	< 55	
1,3,5-TRIMETHYLBENZENE	42,000	7,400	120,000	21,000	2,200,000	10,000,000	10,000,000	< 57	6,700	< 57	< 58	< 51	16,000	< 49	200 J	< 55	
XYLENES	1,000,000	99,000	1,000,000	99,000	1,900,000	8,000,000	190,000,000	< 57	6,400	< 57	< 58	< 51	28,000	< 49	440	< 55	
MOISTURE (%)				No Standard				13.7	16.1	16.7	15.2	14.9	22.2	14.4	22.0	14.6	

Notes:

1) All units in milligrams per kilogram (ug/kg)

2) Bold & shaded MSCs represent the applicable Act 2 non-residential Statewide Health Standard.

3) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.

4) Soil samples were collected from SB-11 through SB-21 on February 5, 2015.

5) PADEP Short List petroleum products in *italics* are COPIACs.

Table 3 Groundwater Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Well	TOC Elev. (feet)	Date	Depth to SPL (feet)	Depth to Water (feet)	SPL Thickness (feet)	Water Table Elev. (feet)	Adj. Water Table Elev. (feet)	Benzene	Ethylbenzene	Isopropylbenzene	MTBE	Naphthalene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes
		3/9/2015	0.00	2.20	0.00	510.75	510.75	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
		4/1/2015	0.00	1.39	0.00	511.56	511.56	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
		6/25/2015	0.00	2.96	0.00	509.99	509.99	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	2.85	0.00	510.10	510.10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		9/10/2015	0.00	4.94	0.00	508.01	508.01	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-1	512.95	10/6/2015	0.00	4.79	0.00	508.16	508.16	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		1/14/2016	0.00	3.84	0.00	509.11	509.11	NS	NS	NS	NS	NS	NS	NS	NS	NS
		4/6/2016	0.00	3.24	0.00	509.71	509.71	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/11/2016	0.00	3.54	0.00	509.41	509.41	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/3/2016	0.00	5.45	0.00	507.50	507.50	NS	NS	NS	NS	NS	NS	NS	NS	NS
		1/16/2017	0.00	5.84	0.00	507.11	507.11	NS	NS	NS	NS	NS	NS	NS	NS	NS
		3/9/2015	0.00	2.96	0.00	509.68	509.68	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
		4/1/2015	0.00	2.18	0.00	510.46	510.46	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5
		6/25/2015	0.00	3.08	0.00	509.56	509.56	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	3.21	0.00	509.43	509.43	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		9/10/2015	0.00	5.28	0.00	507.36	507.36	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-2	512.64	10/6/2015	0.00	5.62	0.00	507.02	507.02	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		1/14/2016	0.00	5.24	0.00	507.40	507.40	NS	NS	NS	NS	NS	NS	NS	NS	NS
		4/6/2016	0.00	2.45	0.00	510.19	510.19	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/11/2016	0.00	4.19	0.00	508.45	508.45	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/3/2016	0.00	6.68	0.00	505.96	505.96	NS	NS	NS	NS	NS	NS	NS	NS	NS
		1/16/2017	0.00	7.14	0.00	505.50	505.50	NS	NS	NS	NS	NS	NS	NS	NS	NS
		3/9/2015	0.00	3.38	0.00	508.23	508.23	180	1,100	33.1	< 25	140	14.000	670	180	6.500
		4/1/2015	0.00	2.96	0.00	508.65	508.65	270	1,600	49.0	<5	240	17.000	1100	310	9.000
		6/25/2015	0.00	3.44	0.00	508.17	508.17	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	3.61	0.00	508.00	508.00	141	1.400	50.8	< 5.0	254	11.100	866	252	6.840
		9/10/2015	0.00	5.34	0.00	506.27	506.27	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-3	511.61	10/6/2015	0.00	5.26	0.00	506.35	506.35	42.7	430	21.5	< 5.0	88.7	3,890	292	111	1.610
		1/14/2016	0.00	4.91	0.00	506.70	506.70	88.5	802	20.8	< 0.5	116	6.550	337	93.3	4.020
		4/6/2016	0.00	2.55	0.00	509.06	509.06	160	1 110	42.8	13	196	8 400	514	197	4 750
		7/11/2016	0.00	4.45	0.00	507.16	507.16	123	704	41.1	< 0.5	149	4,880	375	137	3,640
		10/3/2016	0.00	6.05	0.00	505.56	505.56	7.5	127	16.5	< 0.5	55.3	158	145	39.8	251
		1/16/2017	0.00	6.55	0.00	505.06	505.06	12.6	82.0	8.2	< 0.5	11.5	70.0	32.6	7.4	88.4
		3/9/2015	0.00	3.94	0.00	508.02	508.02	580	2,500	63.0	< 5.0	310	7.300	1.400	400	9,900
		4/1/2015	0.00	3.37	0.00	508.59	508.59	1.000	2,200	67.0	< 5.0	310	9.000	1,500	440	9,200
		6/25/2015	4.07	4.22	0.15	507.74	507.64	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	4 25	4 37	0.12	507.59	507.51	237	1 330	65.8	< 5.0	346	2 280	1 550	406	7 320
		9/10/2015	0.00	6.27	0.00	505.69	505.69	NS	1,550	NS	< 5.0 NS	NS	2,200	1,550	NS	NS
MW-4	511.06	10/6/2015	0.00	6.04	0.00	505.05	505.05	1 760	1 600	68.1	<5.0	100	8 610	857	228	6 180
10100-4	511.50	1/14/2016	0.00	5.81	0.00	506.15	506.15	1 790	1 290	36.5	< 0.5	129	8 710	725	220	5 860
		4/6/2016	0.00	3.05	0.00	508.89	508.22	1 170	2 820	70.5	10	313	4 870	1 970	2 1 2 0	9 4 3 0
		7/11/2010	0.00	5.00	0.00	506.60	506.00	520	5220	576	1.5	210	1 720	A16	105	2 270
		10/2/2010	0.00	5.34	0.00	505.00	505.00	2 020	1 500	- 50.0	< 50.0	150	7,220	410	204	2,270 E 400
		1/16/2017	0.00	7.62	0.00	503.00	503.00	1 1 2,030	017	< JU.U	< 10.0	220	2 240	1.070	147	5,400
1	1	1/10/2017	0.00	1.02	0.00	504.54	504.54	1,160	917	54.8	< 10.0	229	3,240	1,070	147	0,430

Table 3 Groundwater Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Well	TOC Elev. (feet)	Date	Depth to SPL (feet)	Depth to Water (feet)	SPL Thickness (feet)	Water Table Elev. (feet)	Adj. Water Table Elev. (feet)	Benzene	Ethylbenzene	lsopropylbenzene	MTBE	Naphthalene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes
		3/9/2015	0.00	3.44	0.00	507.13	507.13	1,100	740	25 J	15 J	100	1,900	280	68	1,600
		4/1/2015	0.00	2.94	0.00	507.63	507.63	1,700	1300	42	21	190	3,500	500	130	3,000
		6/25/2015	0.00	3.37	0.00	507.20	507.20	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	3.54	0.00	507.03	507.03	2,620	1,580	58.2	< 5.0	306	9,020	1,090	284	8,260
		9/10/2015	0.00	5.09	0.00	505.48	505.48	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-5	510.57	10/6/2015	0.00	4.86	0.00	505.71	505.71	1,040	694	21.7	9.0	86.8	1,550	299	77.3	1,650
		1/14/2016	0.00	4.60	0.00	505.97	505.97	187	94.7	5.6	4.1	21.8	6.4	56.8	17.9	151
		4/6/2016	0.00	4.61	0.00	505.96	505.96	594	304	12.5	10.6	36.7	155	156	35.2	643
		7/11/2016	0.00	4.29	0.00	506.28	506.28	267	229	9.7	6.8	40.1	203	94.4	21	538
		10/3/2016	0.00	5.37	0.00	505.20	505.20	55.2	26.9	4.5	2.7	14.6	5	18.6	5.9	73
		1/16/2017	0.00	6.07	0.00	504.50	504.50	10.7	4.4	3.0	< 0.5	5.7	1.4	10.6	2.6	43.5
		6/25/2015	0.00	2.00	0.00	507.57	507.57	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	1.90	0.00	507.67	507.67	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		9/10/2015	0.00	3.90	0.00	505.67	505.67	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	3.42	0.00	506.15	506.15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
MW-6	509.57	1/14/2016	0.00	2.70	0.00	506.87	506.87	NS	NS	NS	NS	NS	NS	NS	NS	NS
		4/6/2016	0.00	4.54	0.00	505.03	505.03	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/11/2016	0.00	2.66	0.00	506.91	506.91	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/3/2016	0.00	3.68	0.00	505.89	505.89	NS	NS	NS	NS	NS	NS	NS	NS	NS
		1/16/2017	0.00	4.25	0.00	505.32	505.32	NS	NS	NS	NS	NS	NS	NS	NS	NS
		6/25/2015	0.00	4.37	0.00	506.94	506.94	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	4.47	0.00	506.84	506.84	1,820	1,300	59.3	< 0.5	352	3,200	1,060	275	7,940
		9/10/2015	0.00	6.55	0.00	504.76	504.76	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	6.20	0.00	505.11	505.11	514	728	53.4	< 0.5	240	741	622	169	3,050
MW-7	511.31	1/14/2016	0.00	5.96	0.00	505.35	505.35	692	681	50.0	< 0.5	171	784	623	167	3,760
		4/6/2016	0.00	4.33	0.00	506.98	506.98	2,770	2,050	91.4	0.9	389	< 0.5	1,680	373	10,300
		7/11/2016	0.00	5.55	0.00	505.76	505.76	1,370	669	86.6	< 0.5	332	1,170	658	274	4,260
		10/3/2016	0.00	7.12	0.00	504.19	504.19	182	754	48.7	< 0.5	109	473	497	144	2,010
		1/16/2017	0.00	7.45	0.00	503.86	503.86	510	972	57.2	< 2.5	222	897	760	224	3,210
		6/25/2015	0.00	2.86	0.00	505.18	505.18	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	2.89	0.00	505.15	505.15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		9/10/2015	0.00	4.15	0.00	503.89	503.89	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	3.84	0.00	504.20	504.20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
MW-8	508.04	1/14/2016	0.00	3.23	0.00	504.81	504.81	NS	NS	NS	NS	NS	NS	NS	NS	NS
		4/6/2016	0.00	3.70	0.00	504.34	504.34	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/11/2016	0.00	3.44	0.00	504.60	504.60	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/3/2016	0.00	4.40	0.00	503.64	503.64	NS	NS	NS	NS	NS	NS	NS	NS	NS
		1/16/2017	0.00	4.70	0.00	503.34	503.34	NS	NS	NS	NS	NS	NS	NS	NS	NS
		6/25/2015	0.00	2.31	0.00	506.31	506.31	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	2.55	0.00	506.07	506.07	4.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.4	< 0.5	2
		9/10/2015	0.00	4.49	0.00	504.13	504.13	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	4.16	0.00	504.46	504.46	2.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
MW-9	508.62	1/14/2016	0.00	3.94	0.00	504.68	504.68	5.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 1.0
		4/6/2016	0.00	2.05	0.00	506.57	506.57	5.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		7/11/2016	0.00	3.41	0.00	505.21	505.21	4.6	< 0.5	< 0.5	< 0.5	5.8	0.6	0.6	< 0.5	1.7
		10/3/2016	0.00	5.10	0.00	503.52	503.52	1.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		1/16/2017	0.00	5.25	0.00	503.37	503.37	3.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 1.0
		6/25/2015	0.00	4.22	0.00	503.81	503.81	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	3.05	0.00	504.98	504.98	1,450	23	13.2	122	59.1	11	0.7	0.8	17
		9/10/2015	0.00	5.51	0.00	502.52	502.52	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	4.88	0.00	503.15	503.15	2,040	< 50	< 50	91	< 50	< 50	< 50	< 50	< 100
MW-10	508.03	1/14/2016	0.00	4.01	0.00	504.02	504.02	2,190	13.6	22.6	114	75.4	43.6	3.9	3.2	42.2
		4/6/2016	0.00	3.63	0.00	504.40	504.40	2,050	10.4	28	122	62.6	22.3	3.0	4	23.9
		7/11/2016	0.00	5.88	0.00	502.15	502.15	1,340	7.0	17.2	72.9	30	7.7	1.7	2	9.8
		10/3/2016	0.00	4.94	0.00	503.09	503.09	2,600	34.5	21.5	101	69.7	102.0	17.1	5.5	154.0
		1/16/2017	0.00	5.15	0.00	502.88	502.88	3,030	96.4	28.9	211	101	160	43.0	11.6	372

Table 3 Groundwater Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Well	TOC Elev. (feet)	Date	Depth to SPL (feet)	Depth to Water (feet)	SPL Thickness (feet)	Water Table Elev. (feet)	Adj. Water Table Elev. (feet)	Benzene	Ethylbenzene	lsopropylbenzene	MTBE	Naphthalene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes
		1/14/2016	0.00	0.24	0.00	500.54	500.54	0.9	< 0.5	< 0.5	137	< 0.5	0.6	< 0.5	< 0.5	< 1.0
		4/6/2016	0.00	0.34*	0.00	501.31	501.31	19.4	< 0.5	< 0.5	19.4	0.7	< 0.5	< 0.5	< 0.5	< 1.0
MW-11	500.78	7/11/2016	0.00	0.84*	0.00	500.81	500.81	14.7	< 0.5	< 0.5	12.5	5.8	< 0.5	< 0.5	< 0.5	< 1.0
		10/3/2016	0.00	0.38	0.00	500.40	500.40	56.8	< 0.5	0.8	83.1	2.3	< 0.5	< 0.5	< 0.5	1.0
		1/16/2017	0.00	0.39	0.00	500.39	500.39	46.8	< 0.5	0.6	85.4	1.6	< 0.5	< 0.5	< 0.5	< 1.0
		1/14/2016	0.00	2.20	0.00	487.47	487.47	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		4/6/2016	0.00	2.09	0.00	487.58	487.58	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
MW-12	489.67	7/11/2016	0.00	3.71	0.00	485.96	485.96	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		10/3/2016	0.00	5.48	0.00	484.19	484.19	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		1/16/2017	0.00	4.16	0.00	485.51	485.51	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		1/14/2016	0.00	3.41	0.00	483.47	483.47	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		4/6/2016	0.00	3.98	0.00	482.90	482.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
MW-13	486.88	7/11/2016	0.00	5.02	0.00	481.86	481.86	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		10/3/2016	0.00	6.63	0.00	480.25	481.86	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		1/16/2017	0.00	5.92	0.00	480.96	481.86	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		8/19/2016	0.00	5.12	0.00	505.08	505.08	4,900	2,700	86	200	350	12,000	1,800	500	12,000
		9/16/2016	0.00	6.13	0.00	504.07	504.07	4,700	2,700	57	170	320	13,000	1,300	360	11,000
MW-14S	510.2	10/3/2016	0.00	5.71	0.00	504.49	504.49	6,760	3,380	98	180	271	14,400	1,780	544	13,600
		1/16/2017	0.00	6.20	0.00	504.00	504.00	2,570	2,060	97	184	279	11,900	1,230	337	12,400
		8/19/2016	0.00	5.40	0.00	505.08	505.08	660	270	33	38	130	1,500	120	32	820
MW-12 / MW-12 / MW-13 / MW-145 / MW-140 ! OW-1 ! OW-1 ! OW-2 ! Supply !		9/16/2016	0.00	6.21	0.00	504.27	504.27	250	89	35	38	120	37	25	7	140
	510.48	10/3/2016	0.00	6.41	0.00	504.07	504.07	335	80.2	47.3	46	164	10.3	19.5	6.2	96.1
		1/16/2017	0.00	6.49	0.00	503.99	503.99	211	27.2	40.0	< 0.5	137	5.8	4.7	2.8	48.0
OW-1	511.85	1/16/2017	0.00	7.48	0.00	504.37	504.37	3,240	369	< 25.0	< 25.0	78	3,020	48	< 25	494
OW-2	510.73	1/16/2017	0.00	6.84	0.00	503.89	503.89	6,470	956	61	124	241	10,200	819	214	6,420
		6/25/2015	0.00	5.08	0.00	506.13	506.13	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	5.19	0.00	506.02	506.02	NS	NS	NS	NS	NS	NS	NS	NS	NS
		9/10/2015	0.00	6.61	0.00	504.60	504.60	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	6.28	0.00	504.93	504.93	NS	NS	NS	NS	NS	NS	NS	NS	NS
Former Supply	511.21	1/14/2016	0.00	5.09	0.00	506.12	506.12	NS	NS	NS	NS	NS	NS	NS	NS	NS
Well		4/6/2016	0.00	5.31	0.00	505.90	505.90	2,310	1,280	33.4	47.5	118	4,730	518	120	3,160
		7/11/2016	0.00	5.85	0.00	505.36	505.36	2,080	1,160	29	< 0.5	142	2,830	508	88.6	2,440
		10/3/2016	0.00	6.94	0.00	504.27	504.27	< 0.5	1	0.6	< 0.5	1.2	< 0.5	1	0.7	2
		1/16/2017	0.00	7.55	0.00	503.66	503.66	2	0.6	< 0.5	< 0.5	< 0.5	3	0.6	< 0.5	2.2
		6/25/2015	0.00	3.55	0.00	495.77	495.77	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/9/2015	0.00	3.53	0.00	495.79	495.79	NS	NS	NS	NS	NS	NS	NS	NS	NS
		9/10/2015	0.00	3.44	0.00	495.88	495.88	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/6/2015	0.00	3.57	0.00	495.75	495.75	NS	NS	NS	NS	NS	NS	NS	NS	NS
End Wall	499.32	1/14/2016	0.00	5.39	0.00	493.93	493.93	NS	NS	NS	NS	NS	NS	NS	NS	NS
(sciedin)		4/6/2016	0.00	3.66	0.00	495.66	495.66	NS	NS	NS	NS	NS	NS	NS	NS	NS
		7/11/2016	0.00	3.56	0.00	495.76	495.76	NS	NS	NS	NS	NS	NS	NS	NS	NS
		10/3/2016	0.00	3.55	0.00	495.77	495.77	NS	NS	NS	NS	NS	NS	NS	NS	NS
		1/16/2017	0.00	3.58	0.00	495.74	495.74	NS	NS	NS	NS	NS	NS	NS	NS	NS
	Act 2 Sta	tewide Health	Standards fo	or Used, No	n-Residentia	l Aquifers	1	5	700	3,500	20	100	1,000	62	1,200	10,000

Notes: 1) TOC = Top of casing. 2) SPL = Separate phase liquid. 3) All units in micrograms per liter (ug/l). 4) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard. 5) PADEP Short List petroleum products in italics are COPIACs. 6) J = Estimated concentration detected between the method detection limit and the limit of quantitation. 7) NS = Not sampled. 8) Adjusted water table elevation based on an assumed SPL specific gravity of 0.68. * Water level measured from the top of the protective casing (elevation 501.65) due to static water above TOC.

Table 4 Conceptual Site Model Herr Foods, Inc., Nottingham Plant RETTEW Project No. 101722001

					POTENTIAL RECEPTORS					
				ion Worker	orker	Vorker	rker			
SOURCE	MIGRATION PATHWAY	AFFECTED MEDIA	EXPOSURE PATHWAY	Constructi	Indoor Wo	Outdoor V	Utility Wo	Wader	Ecological	
Former UST Systems Containing Gasoline and Diesel	Groundwater Flow Through Source Area	Saturated Soil	Incidental Ingestion	х	0	0	0	0	0	
			Dermal Contact	0	0	0	0	0	0	
		Groundwater	Incidental Ingestion	х	0	0	0	0	0	
			Dermal Contact	х	0	0	0	0	ο	
	Groundwater Volatilization	Indoor Air	Inhalation	х	х	0	х	0	0	
	Offsite Groundwater Discharge	Offsite Surface Water	Incidental Ingestion	ο	0	0	ο	x	х	
			Dermal Contact	0	0	0	0	х	x	

Notes:

X = Complete exposure pathway

O = Incomplete exposure pathway
Table 5Remedial Optimization Data - Soil Sample Analytical Data SummaryHerr Foods, Inc. Nottingham PlantRETTEW Project No. 101722001

		Boring and Depth								
		MIP-1	MIP-3	MIP-4	MIP-7					
Parameter	Units	5.5 ft.	7.5 ft.	4.75 ft.	7.5 ft.					
Benzene	μg/kg	50,000	450	< 0.5	< 0.3					
Ethylbenzene	μg/kg	120,000	46,000	< 1.0	< 0.6					
Isopropylbenzene	μg/kg	7,200	3,100	< 1.0	< 0.6					
MTBE	μg/kg	< 510	< 130	< 0.5	9					
Naphthalene	μg/kg	23,000	8,900	< 1.0	< 0.6					
Toluene	μg/kg	450,000	67,000	< 1.0	< 0.6					
1,2,4-TMB	μg/kg	170,000	67,000	< 1.0	< 0.6					
1,3,5-TMB	μg/kg	56,000	22,000	< 1.0	< 0.6					
Xylenes	μg/kg	530,000	210,000	< 1.0	< 0.6					
TPH-GRO	mg/kg	5,300	110	0.2	< 0.2					
TPH-DRO	mg/kg	1,300	220	25	27					
ТОС	mg/kg	1,410	< 183	2,380	15,200					

Notes:

1) Soil samples were collected on July 29, 2016.

Table 6Remedial Optimization Data - Groundwater Sample Analytical Data SummaryHerr Foods, Inc. Nottingham PlantRETTEW Project No. 101722001

			Well and Date									
. .		MIP-1	MIP-3	MIP-4	MIP-7	MW-4	MW-10	MW-11				
Parameter	Units	//29/2016	//29/2016	//29/2016	//29/2016	//11/2016	//11/2016	//11/2016				
Benzene	μg/l	3,400	220	< 5	< 5	528	1,340	14.7				
Ethylbenzene	μg/l	1,600	490	< 5	< 5	522	7.0	< 0.5				
Isopropylbenzene	μg/l	62	14	< 5	< 5	57.6	17.2	< 0.5				
MTBE	μg/l	21	120	< 5	< 5	< 0.5	72.9	12.5				
Naphthalene	μg/l	230	23	< 10	< 1	218	30	5.8				
Toluene	μg/l	14,000	1,500	< 5	< 5	1,730	7.7	< 0.5				
1,2,4-TMB	μg/l	1,600	160	< 5	< 5	416	1.7	< 0.5				
1,3,5-TMB	μg/l	490	59	< 5	< 5	105	2.0	< 0.5				
Xylenes	μg/l	7,500	1,800	< 5	< 5	2,270	9.8	< 1.0				
TPH-GRO	μg/l	71,000	12,000	< 200	21	NA	NA	NA				
TPH-DRO	μg/l	3,900	1,400	140	8,800	NA	NA	NA				
ТОС	mg/l	34.5	72.7	257.0	48.3	9.79	5.29	0.831				
COD	mg/l	NA	NA	NA	NA	50	47	< 5.00				

Notes:

µg/I = Micrograms per liter

mg/l = Milligrams per liter

Table 7 Former Supply Well Packer Testing - Groundwater Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Test No.	Packer Depth	Benzene	Ethylbenzene	lsopropylbenzene	MTBE	Naphthalene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes	Comments
1	70 feet	1,900	1,200	34	8 J	200	3,300	520	140	2,500	Pump set above packer at 70 feet within the casing.
2	80 feet	170	36	4 J	6	9 J	7	12	3 J	38	Pump set below packer at 80 feet within the open rock interval of well.
3	30 feet	2,700	1,700	49	6 J	260	5,600	730	200	4,100	Pump set above packer at 30 feet within the casing.
Act 2 St Health S	tatewide Standards	5	700	3,500	20	100	1,000	62	53	10,000	

Notes:

1) All units in micrograms per liter (ug/l).

2) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.

3) J = Estimated concentration detected between the method detection limit and the limit of quantitation.

4) Act 2 Statewide Health Standards are for Used, Non-Residential Aquifers.

Table 8 Monitored Natural Attenuation Data Summary - July 11, 2016 Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

		рН	Conductivity	ORP	DO	TDS	Temperature	Nitrate	Sulfate	Total Iron	Dissolved Iron	Ferric Iron
Well	Date	(SU)	(mS/cm)	(mV)	(mg/L)	(g/L)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1	7/11/2016	6.85	0.130	138.7	4.51	0.065	15.96	2.34	7.62	0.124	< 0.100	< 0.124
MW-3	7/11/2016	8.75	1.520	-184.9	1.30	0.761	18.57	NA	NA	NA	NA	NA
MW-4	7/11/2016	7.58	0.842	-144.8	1.28	0.421	18.94	< 1.00	< 5.00	47.60	33.30	14.3
MW-5	7/11/2016	5.23	1.231	87.2	1.28	0.615	20.01	NA	NA	NA	NA	NA
MW-6	7/11/2016	6.32	0.129	106.2	6.28	0.065	19.39	6.86	< 5.00	0.261	0.142	0.119
MW-7	7/11/2016	6.89	0.398	-21.1	1.34	0.199	17.64	< 1.00	31.80	22.10	30.90	8.80
MW-9	7/11/2016	6.22	1.839	28.9	1.36	0.924	15.52	NA	NA	NA	NA	NA
MW-10	7/11/2016	5.48	1.433	36.0	1.30	0.716	19.28	< 1.00	< 5.00	16.90	17.30	< 0.100
MW-11	7/11/2016	6.11	0.535	83.7	1.87	0.269	15.63	2.35	< 5.00	< 0.100	< 0.100	< 0.100
MW-12	7/11/2016	5.55	0.076	195.7	2.32	0.038	16.14	3.74	< 5.00	0.117	< 0.100	< 0.117
MW-13	7/11/2016	5.03	0.264	215.6	6.29	0.132	15.61	NA	NA	NA	NA	NA
SW	7/11/2016	7.55	0.799	-164.6	0.56	0.400	15.79	NA	NA	NA	NA	NA

Notes:

1) SU = Standard Units.

2) mS/cm = Millisiemens.

3) mg/L = Milligrams per liter.

4) mV = Millivolts.

5) g/L = Grams per liter.

6) °C = Degrees Celcius

7) NA = Not analyzed.

8) Total Iron - Dissolved Iron = Ferric Iron

Table 9 **Remedial Alternatives Analysis** Herr Foods, Inc. - 273 Old Baltimore Pike, Nottingham, Pennsylvania

Remedial Options Alternatives			1			RETTEW Project N	lo. 101722001	1	1		
	Technology Description	Stream Protection	Source (SPL and Residual Soil Impacts) Remediation and Longevity Reduction	Protect Groundwater Users	Remediate Groundwater to CRLs	Innovative or Established Technology	Applicable to Site Characteristics	Applicable to Site Contaminants	Implementability (Reduced Infrastructure, Equipment, and OM&M Needs)	Technology Retained for Further Consideration	Comments
C											
MNA	Passive					Established	x	x	x	x	To be considered as combination with active technologies
Groundwater Pump and Treat	Active			х		Established		х			Not considered due to extent of residual source and concern for dewatering wetlands & stream, and capital/OM&M costs
Air Sparge	Active			Х		Established		x			Not considered further due to extent of residual source, soil type, vertical extent of impacts, and capital/OM&M costs
Multiphase Extraction	Active		x	х		Established		x			Although MPE could be considered for targeting impacts beneath the garage, it is not considered further due to shallow residual soil impacts, potential for short circuiting of high-vacuum extraction, and difficulty in capturing less volatile compounds in the vapor phase.
In-situ Chemical Oxidation (ISCO)	Active		х	Х	x	Established	Х	x	х	x	Considered for further evaluation based on constituent type, accessibility to impact zones, and compatibility with facility operations.
Enhanced Bioremediation	Active			Х		Established	Х	x	x		Not considered for source remvoal due to extent of source impacts, potential for SPL, and extent of petroleum hydrocarbons in saturated soil matrix
Excavation (Saturated Soil)	Active		х	х	x	Established	х	х	x	x	Considered for further evaluation based on accessibility of source area impacts (shallow). However, excavation could require combination with other active groundwater treatments such as ISCO or enchanced bioremediation.
Groundwater Plume											
MNA	Passive					Established	Х	x	х	х	To be considered as combination with active technologies
Groundwater Pump and Treat	Active	х	X - limited effectiveness in areas of high residual soil impacts	Х		Established	Х	х			Not considered due to concern for dewatering wetlands & streatm, and capital/OM&M requirements
Air Sparge	Active	x	X - limited effectiveness in areas of high residual soil impacts	х	x	Established		х			Not considered due to soil type, vertical extent of impacts, and capital/OM&M requirements.
ISCO	Active	x	x	х	x	Established	х	x	x	x	This is considered a primary plume remediation technology - need to consider application method (DPT injection requires low pressure/low flow due to shallow depth of water table resulting in potential for short-circuiting), emplacement by trench is feasible.
Enhanced Bioremediation	Active	x	X - limited effectiveness in areas of high residual soil impacts	x	x	Established	x	x	x	x	This is not considered a primary plume remediation technology due to residual soil impacts and elevated dissolved concentrations (benzene) that exceed levels required for optimal treatment effectiveness. Additionally, enhanced bioremediation is a secondary effect of chemical oxidation. However, this technology could be considered for future application after source area and groundwater plume reduction has occurred.
Surface Water / Wetland Protection			·								
MNA	Passive	x	N/A	х	x	Established	х	x	x	x	This is considered the primary remediation technology for surface water/wetland protection based on successful source area and groundwater plume treatment.
Groundwater Pump and Treat	Active	х	N/A	х	х	Established		х			Not considered due to concern for dewatering wetlands & stream, and capital/QM&M requirements
Air Sparge	Active	x	N/A	х	x	Established		x			Not considered due to soil type, vertical extent of impacts, and capital/OM&M requirements
ISCO	Active	x	N/A	х	x	Established		x			Direct application of chemical oxidation is not considered within the wetland or surface water due to potential for adverse impacts.
Enhanced Bioremediation	Active	x	N/A	Х	x	Established		x			Direct application of enhanced bioremediation is not considered within the wetland or surface water due to potential for adverse impacts.
Permeable Reactive Barrier	Passive	x	N/A	X	x	Established	x	x	x		This is an application method for chemical oxidation and enhanced bioremediation and is considered for future evaluation if warranted following source area and groundwater plume treatment. Application would be considered immediately upgradient of the wetland area through trenching or direct push technology.
Sheet Pile Wall	Passive	x	N/A	x	x	Established	x	х			Not considered due to potential impacts to wetland and stream.
Engineered Wetland	Passive	x	N/A	х	x	Established		x			Not considered due to vertical extent of impacts.
Notes: CRL=cancer risk level; ISCO=in-	situ chemical oxic	lation; N/A=not app	licable; OM&M=operation, mon	itoring, and mainter	nance; SPL=separat	e phase liquid	L	1	11	L	۱

Table 10
SCO Pilot Test Groundwater Sample Analytical Data Summary
Herr Foods, Inc. Nottingham Plant
RETTEW Project No. 101722001

Well	TOC Elev. (feet)	Date	Depth to Water (feet)	Water Table Elev. (feet)	TPH-GRO	ояо - нат	Benzene	Ethylbenzene	lsopropylbenzene	MTBE	Naphthalene	Toluene	1,2,4-TMB	1,3,5-TMB	Xylenes
		11/29/2016	8.39	503.57	20,000	4,700	740	590	27	< 10	100	2,200	540	180	2,200
	544.00	12/19/2016	7.70	504.26	28,000	6,600	1,510	3,250	24.1	< 0.5	2630	5,440	870	79.1	5,880
10100-4	511.96	12/30/2016	7.59	504.37	26,000	9,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
		1/17/2017	7.67	504.29	NA	NA	1,180	917	54.8	< 10	229	3,240	1,070	147	6,430
		11/29/2016	8.50	503.35	75,000	5,500	5,200	2,300	61	10	400	11,000	1,400	370	9,200
014/ 1	F11 0F	12/19/2016	7.69	504.16	31,000	4,900	310	154	7.2	21.4	438	9,910	151	< 25.0	4,870
00-1	511.85	12/30/2016	7.54	504.31	39,000	7,700	NA	NA	NA	NA	NA	NA	NA	NA	NA
		1/17/2017	7.44	504.41	NA	NA	3,240	369	< 25	< 25	78	3,020	48	< 25	494
		11/29/2016	ND	ND	76,000	8,500	3,500	2,600	90	210	380	11,000	2,000	560	1,000
NAVA/ 145	F10 20	12/19/2016	6.30	503.90	33,000	22	2,800	1,360	66.7	153	2,050	8,980	775	2,270	6,990
10100-143	510.20	12/30/2016	6.14	504.06	41,000	4,900	NA	NA	NA	NA	NA	NA	NA	NA	NA
		1/17/2017	6.16	504.04	NA	NA	2,570	2,060	97	184	279	11,900	1,230	337	12,400
		11/29/2016	ND	ND	3,100	1,600	190	28	10	45	25	180	22	13	320
	E10.49	12/19/2016	5.85	504.63	1,600	19	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 2
10100-14D	510.46	12/30/2016	6.17	504.31	1,800	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA
		1/17/2017	6.36	504.12	NA	NA	211	27.2	40.0	< 0.5	137	5.8	4.7	2.8	48.0
		11/29/2016	ND	ND	130,000	6,600	13,000	2,500	55	130	310	26,000	1,200	320	9,800
0.04-2	510 72	12/19/2016	7.00	503.73	45,000	2,400	6,730	< 500	44.3	1,860	1,510	5,120	7,210	411	< 1,000
000-2	510.75	12/30/2016	6.76	503.97	57,000	3,200	NA	NA	NA	NA	NA	NA	NA	NA	NA
		1/18/2017	7.55	503.18	NA	NA	6,470	956	61	124	241	10,200	819	214	6,420
		10/3/2016	5.37	505.20	NS	NS	55.2	26.9	4.5	2.7	14.6	5.0	18.6	5.9	73
		11/29/2016	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-5	510.57	12/19/2016	6.86	503.71	180	18	14.1	6.1	2.3	1.9	2.5	3.5	3.4	0.9	31.2
		12/30/2016	6.17	504.40	230	< 520	NA	NA	NA	NA	NA	NA	NA	NA	NA
_	1/17/2017	6.07	504.50	NA	NA	10.0	4.4	3.0	< 0.5	5.7	1.4	10.6	2.6	43.5	

Notes:

1) TOC = Top of casing.

2) All units in micrograms per liter (ug/l).
3) NA = Not analyzed.

4) NS = Not sampled.
5) ND = No data due to field equipment malfunction.

Table 11 ISCO Pilot Test Injection Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Injection		Interval	Start	End	Flow Rate	Total	Pressure	
Point	Date	(ft)	Time	Time	(gpm)	(gal)	(psi)	Comments
IP-1	11/30/2016	7 to 9	9:02	11:45	1	125	< 5	Surfacing at MW-4 and OW-1. Observation points
IP-3	11/30/2016	7 to 9	11:17	12:12	1	208	< 5	capped.
IP-1	11/30/2016	9 to 11	13:40	17:30	1	202	< 5	Observation points remain conned
IP-3	11/30/2016	9 to 11	14:00	17:30	1	392	< 5	
IP-1	12/1/2016	9 to 11	8:45	10:50	2	142	< 5	Terminated injection to drive DPTs to deeper interval
IP-3	12/1/2016	9 to 11	8:45	10:50	2	132	< 5	due to daylighting at building.
IP-1	12/1/2016	11 to 13	11:10	11:15	2	61	< 5	
IP-3	12/1/2016	11 to 13	11:10	11:15	2	67	< 5	Terminated injection due to continued daylighting at building, lost DPT at IP-4 upon removal.
IP-4	12/1/2016	7 to 15	11:10	11:40		4	< 5	
IP-5	12/1/2016							Not used - moved away from building.
IP-6	12/1/2016	7 to 9	13:10	16:00	2	358	< 5	Terminated injection due to daylighting in parking lot at IP-6.
IP-7	12/1/2016	7 to 9	13:10	13:25		0	< 5	Lost DPT after attempt to lift tooling and induce flow.
IP-8	12/1/2016	7 to 9	13:42	16:00	1.5	256	< 5	Terminated injection due to daylighting in parking lot at IP-6.
IW-1	12/2/2016	8 to 12	10:41	11:50	2	123	< 5	
IP-2	12/2/2016	8 to 10	10:41	11:50	2	120	< 5	Test aborted due to daylighting along utility trenching.
IP-9	12/2/2016	8 to 10	10:41	11:50	0.5	32	< 5	
IP-10	12/2/2016	12 to 14	14:00	18:22	2.5	563	< 5	
IP-11	12/2/2016	12 to 14	14:00	18:22	2	445	< 5	

NOTES:

1) Total Injection = 3,028 gallons

Table 12 ISCO Pilot Test Field Monitoring Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

MW-4												
		DTW	DO	ORP	Temp.	рН	Cond.					
Date	Time	(feet)	(mg/L)	(mV)	(C)	(SU)	(mS/cm)	Comments				
	8:50	7.91	0.56	-87.2	18.02	6.43	0.901	Static				
	9:28	7.12	0.58	-139.4	18.15	6.60	0.863					
11/20/2016	9:58	< 1	0.58	290.6	13.25	13.62	236.9	IP-1 and IP-3 injection				
11/30/2010	10:35	< 1	0.99	528.9	14.48	13.83	293.2					
	11:40 No Access							Capped during IP-1 and IP-3				
	12:12			No A	ccess			injection				
	7:40	7.57	21.22	358.9	19.55	13.14	124.9	Static				
12/1/2016	10:50	6.50	25.91	369.1	19.42	13.60	145.0					
12/1/2010	11:10	6.45		Wa	ater Level O	nly		IP 1 IP 2 and IP 4 injection				
	11:30	6.11		Wa	ater Level O	nly						
12/2/2016	15:10	7.59	29.14	245	19.07	13.38	100.5					
12/19/2016	10:15	7.70	2.68	103.7	17.42	12.12	26.48	Post-test monitoring				
12/30/2016	10:25	7.59	28.01	124.3	17.50	10.59	23.71	Post-test monitoring				
1/17/2017	12:15	7.67	10.64	61.4	16.29	8.30	24.18	Post-test monitoring				

	OW-1												
		DTW	DO	ORP	Temp.	рН	Cond.						
Date	Time	(feet)	(mg/L)	(mV)	(C)	(SU)	(mS/cm)	Comments					
	8:50	8.11	5.34	35.7	18.40	6.03	0.906	Static					
	9:28	7.33	5.76	21.8	18.31	6.01	0.855						
11/30/2016	9:58	6.03	7.66	38.9	18.28	6.01	0.791						
	10:35	6.01	6.98	207.4	17.86	6.67	0.794	IP-1 and IP-3 injection					
	11:40	4.50	10.23	228.8	18.08	5.91	0.765						
	12:12	< 1	1.20	439.0	14.32	13.46	133.0						
	7:40	7.90	0.41	350.8	20.65	13.47	152.7	Static					
12/1/2016	10:50	2.94	0.11	365.2	18.60	13.96	187.3						
12/1/2010	11:10	2.30		Wa	ater Level O	nly		IP-1, IP-3 and IP-4 injection					
	11:30 4.09 Water Level Only												
12/19/2016	11:05	7.69	1.91	159.7	17.21	12.09	29.95	Post-test monitoring					
12/30/2016	11:30	7.54	32.40	141.7	17.12	10.44	17.35	Post-test monitoring					
1/17/2017	11:05	7.44	31.14	120.4	15.61	7.32	19.57	Post-test monitoring					

MW-5													
		DTW	DO	ORP	Temp.	рН	Cond.						
Date	Time	(feet)	(mg/L)	(mV)	(C)	(SU)	(mS/cm)	Comments					
	13:10	6.02	153	-45.5	19.80	5.20	1.121	Static					
12/1/2016	14:15	4.88	1.44	-265.8	19.84	4.92	1.026						
	14:40	4.31	0.42	-295.6	19.95	4.95	1.042						
12/1/2010	15:15	3.57	1.95	-325.6	19.96	7.15	1.156	IP-6, IP-7 and IP-8 injection					
	15:42	3.05		Wa	ater Level O	nly							
	16:00	2.85	0.55	-279.8	19.96	5.66	1.181						
12/19/2016	12:00	6.86	1.83	396.4	18.65	4.20	0.386	Post-test monitoring					
12/30/2016	14:50	6.17	1.87	368.2	18.02	3.86	0.743	Post-test monitoring					
1/17/2017	10:00	6.07	0.85	245.7	16.74	5.79	1.52	Post-test monitoring					

Table 12 ISCO Pilot Test Field Monitoring Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

MW-14S												
		DTW	DO	ORP	Temp.	рН	Cond.					
Date	Time	(feet)	(mg/L)	(mV)	(C)	(SU)	(mS/cm)	Comments				
12/1/2016	9:15	6.41	0.20	-53.2	18.55	6.98	2.501	Static				
	9:00	6.23	0.49	-494.8	18.42	6.84	2.504					
12/2/2016	11:11	3.01	0.47	-310.8	18.42	6.32	2.865	IW 1 ID 2 and ID 0 injection				
12/2/2010	11:41	1.04	0.27	-475.5	18.50	6.31	2.539	TW-1, IP-2 and IP-9 injection				
	15:10	3.77	0.14	-220.7	18.11	9.07	9.680					
12/19/2016	13:30	6.30	1.75	37.4	16.98	5.67	3.161	Post-test monitoring				
12/30/2016	14:00	6.14	1.72	-3.4	15.84	5.66	2.730	Post-test monitoring				
1/17/2017	14:05	6.16	0.80	-78.4	14.53	6.49	3.675	Post-test monitoring				

	MW-14D							
		DTW	DO	ORP	Temp.	рН	Cond.	
Date	Time	(feet)	(mg/L)	(mV)	(C)	(SU)	(mS/cm)	Comments
12/1/2016	9:15	6.65	0.26	95.3	18.67	6.43	1.439	Static
	9:00	6.48	0.41	-449.7	18.40	6.62	1.431	
12/2/2016	11:11	5.52	0.73	-308.3	18.51	5.62	1.430	INV 1 ID 2 and ID 0 injection
12/2/2010	11:41	4.65	0.39	-17.2	18.20	5.76	1.432	TW-1, IP-2 and IP-9 injection
	15:10	5.15	1.30	-326.6	18.45	5.78	1.436	
12/19/2016	12:50	5.85	1.82	151.8	17.05	5.47	1.223	Post-test monitoring
12/30/2016	13:15	6.17	1.93	160.1	17.48	5.30	1.221	Post-test monitoring
1/17/2017	13:10	6.36	0.80	114.1	16.89	5.93	1.711	Post-test monitoring

	OW-2							
		DTW	DO	ORP	Temp.	рН	Cond.	
Date	Time	(feet)	(mg/L)	(mV)	(C)	(SU)	(mS/cm)	Comments
12/1/2016	9:15	7.32	1.44	45.1	18.17	6.41	1.282	Static
	9:00	6.85	1.6	-257.4	18.01	6.22	1.299	Static
12/2/2016	11:09	No Access					Capped during IW-1, IP-2	
12/2/2010	15:10	No Access						
	16:23	3.27	0.72	291.4	13.88	13.68	148.8	
12/19/2016	14:10	7.00	5.71	22.1	16.92	10.38	10.18	Post-test monitoring
12/30/2016	12:35	6.76	3.41	27.3	16.81	9.14	7.669	Post-test monitoring
1/18/2017	10:05	6.70	0.71	20.8	15.52	8.02	6.718	Post-test monitoring

APPENDIX A MIP Survey Data Plots

		MIP-01.MHP
Company:	Operator:	Date:
Cascade Technical Services	Ethan Olson	7/28/2016
Project ID:	Client:	Location:
Herr's - Rettew - MIP - 301.16.8239	Rettew	

CASCADE
DRILLING TECHNICAL SERVICES

		MIP-02.MHP
Company:	Operator:	Date:
Cascade Technical Services	Ethan Olson	7/28/2016
Project ID:	Client:	Location:
Herr's - Rettew - MIP - 301.16.8239	Rettew	

CASCADE
DRILLING TECHNICAL SERVICES

		MIP-03.MHP
Company:	Operator:	Date:
Cascade Technical Services	Ethan Olson	7/28/2016
Project ID:	Client:	Location:
Herr's - Rettew - MIP - 301.16.8239	Rettew	

CASCADE
DRILLING TECHNICAL SERVICES

		MIP-04.MHP
Company:	Operator:	Date:
Cascade Technical Services	Ethan Olson	7/28/2016
Project ID:	Client:	Location:
Herr's - Rettew - MIP - 301.16.8239	Rettew	

Project ID: Herr's - Rettew - MIP - 301.16.8239 DRILLING | TECHNICAL SERVICES

Ethan Olson 7/28/2016 Client: Location: Rettew

0, 1	001		Cascade Technical Servi
DRILLING	TECHNICAL	SERVICES	Project ID: Herr's - Rettew - MIP - 301.1

	Operator:	Date:
ical Services	Ethan Olson	7/28/2016
	Client:	Location:
P - 301.16.8239	Rettew	

CASCADE	C
DRILLING TECHNICAL SERVICES	Ρ

		MIP-07.MHP
company:	Operator:	Date:
Cascade Technical Services	Ethan Olson	7/28/2016
roject ID:	Client:	Location:
Herr's - Rettew - MIP - 301.16.8239	Rettew	

DRILLING | TECHNICAL SERVICES

Ethan Olson 7/28/2016 Client: Location: Rettew

DRILLING | TECHNICAL SERVICES

Client: Location: Rettew

DRILLING | TECHNICAL SERVICES

I Services Ethan Olson 7/28/2016 Client: Location: 201.16.8239 Rettew APPENDIX B MIP Survey Laboratory Analytical Reports

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Report Date: August 18, 2016

Project: Herr Foods/101722001

Submittal Date: 07/29/2016 Group Number: 1688839 PO Number: 101722001 State of Sample Origin: PA

Client Sample Description MIP-1@5.5 ft Grab Soil MIP-1 Grab Groundwater MIP-3@7.5 ft Grab Soil MIP-3 Grab Groundwater MIP-4@4.75 ft Grab Soil MIP-4 Grab Groundwater MIP-7@7.5 ft Grab Soil MIP-7 Grab Groundwater TB Water

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

Electronic Copy To Rettew Associates

Attn: Ed Dziedzic

Respectfully Submitted,

afflers) Stacy L. Hess

Project Manager

(717) 556-7236

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-1@5.5 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 09:30 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP1S

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/kg	ug/kg	
10237	Benzene		71-43-2	50,000	510	846.02
10237	Ethylbenzene		100-41-4	120,000	1,000	846.02
10237	Isopropylbenzene		98-82-8	7,200	1,000	846.02
10237	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.	510	846.02
10237	Naphthalene		91-20-3	23,000	1,000	846.02
10237	Toluene		108-88-3	450,000	10,000	8460.24
10237	1,2,4-Trimethylbenze	ene	95-63-6	170,000	1,000	846.02
10237	1,3,5-Trimethylbenze	ene	108-67-8	56,000	1,000	846.02
10237	Xylene (Total)		1330-20-7	530,000	1,000	846.02
GC Vol	atiles	SW-846	8015B	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	5,300	160	16233.77
GC Mis	cellaneous	SW-846	8015B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C28	3 microway	ve n.a.	1,300	240	50
Wet Ch	nemistry	SM 5310	В	mg/kg	mg/kg	
		modifie	ed-2000			
02079	TOC Solids/Sludges (Combustion	n n.a.	1,410	243	1
Wet Ch	nemistry	SM 2540	G-1997	8	સ	
00111	Moisture		n.a.	17.0	0.50	1
	Moisture represents 103 - 105 degrees Ce as-received basis.	the loss elsius. Th	in weight of the ne moisture result	sample after over reported is on a	n drying at an	

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	Q162151AA	08/03/2016	00:22	Stephen C Nolte	846.02
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	Q162151AA	08/03/2016	00:45	Stephen C Nolte	8460.24
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201621142058	07/29/2016	09:30	Client Supplied	1
02392	GC/MS - Field Preserved	SW-846 5035A	2	201621142058	07/29/2016	09:30	Client Supplied	1
07579	GC/MS-5g Field Preserv MeOH-NC	SW-846 5035A	1	201621142060	07/29/2016	09:30	Client Supplied	1

LL Sample # SW 8500769 LL Group # 1688839 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-1@5.5 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 09:30 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP1S

LL Sample	#	SW 8500769
LL Group	#	1688839
Account	#	00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
01637	TPH-GRO soil C6-C10	SW-846 8015B	1	16216A16A	08/03/2016	22:27	Marie D Beamenderfer	16233.7 7		
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201621142060	07/29/2016	09:30	Client Supplied	n.a.		
10941	TPH-DRO soil C10-C28 microwave	SW-846 8015B	2	162220010A	08/10/2016	11:33	Thomas C Wildermuth	50		
10942	Microwave Extraction-DRO soils	SW-846 3546	1	162220010A	08/10/2016	09:23	Sally L Appleyard	1		
02079	TOC Solids/Sludges Combustion	SM 5310 B modified-2000	1	16229298731A	08/16/2016	19:41	Clinton M Wilson	1		
00111	Moisture	SM 2540 G-1997	1	16216820009B	08/03/2016	18:27	Scott W Freisher	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-1 Grab Groundwater HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 10:15 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP1

Wet Chemistry

00273 Total Organic Carbon

MIP1W	P1W									
CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor				
GC/MS	Volatiles SW	1-846	8260B	ug/l	ug/l					
10945	Benzene		71-43-2	3,400	50	100				
10945	Ethylbenzene		100-41-4	1,600	5	10				
10945	Isopropylbenzene		98-82-8	62	5	10				
10945	Methyl Tertiary Butyl	Ether	1634-04-4	21	5	10				
10945	Naphthalene		91-20-3	230	10	10				
10945	Toluene		108-88-3	14,000	50	100				
10945	1,2,4-Trimethylbenzene		95-63-6	1,600	5	10				
10945	1,3,5-Trimethylbenzene		108-67-8	490	5	10				
10945	Xylene (Total)		1330-20-7	7,500	50	100				
GC Vol	atiles SW	1-846	8015B	ug/l	ug/l					
01635	TPH-GRO water C6-C10		n.a.	71,000	2,000	100				
GC Pet	croleum SW	1-846	8015B	ug/l	ug/l					
08269	TPH-DRO water C10-C28		n.a.	3,900	640	20				

Sample Comments

mg/l

34.5

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

SM 5310 C-2000

n.a.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016	15:51	Daniel H Heller	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016	16:13	Daniel H Heller	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162151AA	08/02/2016	15:51	Daniel H Heller	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F162151AA	08/02/2016	16:13	Daniel H Heller	100
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16214C20A	08/02/2016	16:49	Jeremy C Giffin	100
01146	GC VOA Water Prep	SW-846 5030B	1	16214C20A	08/02/2016	16:49	Jeremy C Giffin	100
08269	TPH-DRO water C10-C28	SW-846 8015B	2	162170016A	08/05/2016	21:24	Amy Lehr	20
07003	Extraction - DRO (Waters)	SW-846 3510C	1	162170016A	08/04/2016	17:30	Ryan J Dowdy	1
00273	Total Organic Carbon	SM 5310 C-2000	1	16228049506A	08/16/2016	02:37	James S Mathiot	1

LL Sample # WW 8500770 LL Group # 1688839 Account # 00721

1

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

mg/l

0.50

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-3@7.5 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 11:00 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP3S

CAT No.	Analysis Name		CAS Number	Dry Result		Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/kg		ug/kg	
10237	Benzene		71-43-2	450	J	130	216.92
10237	Ethylbenzene		100-41-4	46,000		270	216.92
10237	Isopropylbenzene		98-82-8	3,100		270	216.92
10237	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.		130	216.92
10237	Naphthalene		91-20-3	8,900		270	216.92
10237	Toluene		108-88-3	67,000		270	216.92
10237	1,2,4-Trimethylbenze	ene	95-63-6	67,000		270	216.92
10237	1,3,5-Trimethylbenze	ene	108-67-8	22,000		270	216.92
10237	Xylene (Total)		1330-20-7	210,000		270	216.92
GC Vol	atiles	SW-846	8015B	mg/kg		mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	110		2.1	211.51
GC Mis	scellaneous	SW-846	8015B	mg/kg		mg/kg	
10941	TPH-DRO soil C10-C28	8 microway	/e n.a.	220		4.9	1
Wet Ch	nemistry	SM 5310	В	mg/kg		mg/kg	
		modifie	d-2000				
02079	TOC Solids/Sludges (Due to the nature of to capacity with less sample weight has re-	Combustion this san ss than 10 esulted in	n n.a. mple matrix, the s 000 mg of sample b n a raised report:	N.D. sample cup being used. ing limit.	was filled The lowered	183	1
Wet Ch	nemistry	SM 2540	G-1997	8		8	
00111	Moisture		n.a.	19.0		0.50	1
	Moisture represents 103 - 105 degrees Ce as-received basis.	the loss elsius. Th	in weight of the ne moisture result	sample aft reported	er oven drying at is on an		

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	R162161AA	08/03/2016 18	8:05	Anita M Dale	216.92
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201621142058	07/29/2016 11	1:00	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201621142058	07/29/2016 11	1:00	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201621142060	07/29/2016 11	1:00	Client Supplied	1

LL Sample # SW 8500771 LL Group # 1688839 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-3@7.5 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 11:00 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP3S

LL Sample # SW 8500771 LL Group # 1688839 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
01637	TPH-GRO soil C6-C10	SW-846 8015B	1	16216A16B	08/04/2016	18:17	Jeremy C Giffin	211.51	
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201621142060	07/29/2016	11:00	Client Supplied	n.a.	
10941	TPH-DRO soil C10-C28 microwave	SW-846 8015B	1	162220010A	08/10/2016	16:10	Thomas C Wildermuth	1	
10942	Microwave Extraction-DRO soils	SW-846 3546	1	162220010A	08/10/2016	09:23	Sally L Appleyard	1	
02079	TOC Solids/Sludges Combustion	SM 5310 B modified-2000	1	16229298731A	08/16/2016	19:51	Clinton M Wilson	1	
00111	Moisture	SM 2540 G-1997	1	16216820009B	08/03/2016	18:27	Scott W Freisher	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-3 Grab Groundwater HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 12:30 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP3W

MIP3W					
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	220	3	5
10945	Ethylbenzene	100-41-4	490	3	5
10945	Isopropylbenzene	98-82-8	14	3	5
10945	Methyl Tertiary Butyl Ether	1634-04-4	120	3	5
10945	Naphthalene	91-20-3	23	5	5
10945	Toluene	108-88-3	1,500	25	50
10945	1,2,4-Trimethylbenzene	95-63-6	160	3	5
10945	1,3,5-Trimethylbenzene	108-67-8	59	3	5
10945	Xylene (Total)	1330-20-7	1,800	3	5
GC Vo	Latiles SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C10	n.a.	12,000	400	20
GC Pet	croleum SW-846	8015B	ug/l	ug/l	

GC Petroleum Hydrocarbons

12858 DRO C10-C28 n.a. 1,400 The recovery for the sample surrogate(s) is outside the QC acceptance limits as noted on the QC Summary. The client was contacted and the data reported.

Wet Chemistry 00273 Total Organic Carbon

Sample Comments

mg/l

72.7

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

SM 5310 C-2000

n.a.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016	16:35	Daniel H Heller	5
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016	16:57	Daniel H Heller	50
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162151AA	08/02/2016	16:35	Daniel H Heller	5
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F162151AA	08/02/2016	16:57	Daniel H Heller	50
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16214C20A	08/02/2016	17:17	Jeremy C Giffin	20
01146	GC VOA Water Prep	SW-846 5030B	1	16214C20A	08/02/2016	17:17	Jeremy C Giffin	20
12858	DRO Microextraction	SW-846 8015B	1	162190011A	08/08/2016	17:38	Christine E Dolman	1
	Master							
12059	Microextraction - DRO (waters)	SW-846 3511	2	162190011A	08/08/2016	08:50	Maria Davenport	1
00273	Total Organic Carbon	SM 5310 C-2000	1	16228049506A	08/16/2016	03:03	James S Mathiot	1

LL Sample # WW 8500772 LL Group # 1688839 Account # 00721

1

1

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

45

mg/l

0.50

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-4@4.75 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 13:10 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP4S

L	L	Sample	#	SW	8500773
L	L	Group	#	168	8839
A	cc	ount	#	007	21

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/kg	ug/kg	
10237	Benzene		71-43-2	N.D.	0.5	0.82
10237	Ethylbenzene		100-41-4	N.D.	1	0.82
10237	Isopropylbenzene		98-82-8	N.D.	1	0.82
10237	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	0.82
10237	Naphthalene		91-20-3	N.D.	1	0.82
10237	Toluene		108-88-3	N.D.	1	0.82
10237	1,2,4-Trimethylbenz	ene	95-63-6	N.D.	1	0.82
10237	1,3,5-Trimethylbenz	ene	108-67-8	N.D.	1	0.82
10237	Xylene (Total)		1330-20-7	N.D.	1	0.82
GC Vol	latiles	SW-846	8015B	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	0.2 J	0.2	21.29
GC Mis	scellaneous	SW-846	8015B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C2	8 microwav	e n.a.	25	4.8	1
Wet Cł	nemistry	SM 5310	В	mg/kg	mg/kg	
		modifie	a-2000			
02079	TOC Solids/Sludges	Combustion	n.a.	2,380	239	1
Wet Ch	nemistry	SM 2540	G-1997	8	%	
00111	Moisture		n.a.	18.0	0.50	1
	Moisture represents 103 - 105 degrees C as-received basis.	the loss elsius. Th	in weight of the e moisture result	sample after over reported is on a	n drying at an	

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	X162141AA	08/01/2016 17	:22	Linda C Pape	0.82
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201621142058	07/29/2016 13	:10	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201621142058	07/29/2016 13	:10	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201621142060	07/29/2016 13	:10	Client Supplied	1
01637	TPH-GRO soil C6-C10	SW-846 8015B	1	16221A34A	08/08/2016 20	:59	Marie D Beamenderfer	21.29

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-4@4.75 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 13:10 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP4S

LL Sample	#	SW 8500773
LL Group	#	1688839
Account	#	00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Laboratory Sample Analysis Record Method Trial# Batch# CAT Analysis Name Analysis Analyst Dilution No. Date and Time Factor 06647 GC-5g Field Preserved SW-846 5035A 1 201621142060 07/29/2016 13:10 Client Supplied n.a. MeOH SW-846 8015B 162220010A 10941 TPH-DRO soil C10-C28 1 08/10/2016 17:30 Thomas C 1 microwave Wildermuth 10942 Microwave Extraction-DRO SW-846 3546 1 162220010A 08/10/2016 09:23 Sally L Appleyard 1 soils 02079 TOC Solids/Sludges 16229298731A SM 5310 B 1 08/16/2016 20:38 Clinton M Wilson 1 modified-2000 Combustion 00111 Moisture SM 2540 G-1997 1 16216820009B 08/03/2016 18:27 Scott W Freisher 1

Page 9 of 25

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-4 Grab Groundwater HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 14:30 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MI

Wet Chemistry

00273 Total Organic Carbon

MIP4W						
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10945	Benzene	71-43-2	N.D.	5	10	
10945	Ethylbenzene	100-41-4	N.D.	5	10	
10945	Isopropylbenzene	98-82-8	N.D.	5	10	
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	5	10	
10945	Naphthalene	91-20-3	N.D.	10	10	
10945	Toluene	108-88-3	N.D.	5	10	
10945	1,2,4-Trimethylbenzene	95-63-6	N.D.	5	10	
10945	1,3,5-Trimethylbenzene	108-67-8	N.D.	5	10	
10945	Xylene (Total)	1330-20-7	N.D.	5	10	
Repo	rting limits were raised due t	to sample foaming.				
GC Vo	Latiles SW-846	8015B	ug/l	ug/l		
01635	TPH-GRO water C6-C10	n.a.	N.D.	200	10	
Repo	rting limits were raised due t	to sample foaming.				
GC Pet	croleum SW-846	8015B	ug/l	ug/l		
Hydrod	carbons					
12858	DRO C10-C28	n.a.	140	45	1	

Sample Comments

mg/l

257

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

SM 5310 C-2000

n.a.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
NO.					Date and Tim	ne		Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016	17:18	Daniel H Heller	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162151AA	08/02/2016	17:18	Daniel H Heller	10
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16214C20A	08/02/2016	13:10	Jeremy C Giffin	10
01146	GC VOA Water Prep	SW-846 5030B	1	16214C20A	08/02/2016	13:10	Jeremy C Giffin	10
12858	DRO Microextraction Master	SW-846 8015B	1	162160025A	08/04/2016	15:22	Christine E Dolman	1
12059	Microextraction - DRO (waters)	SW-846 3511	1	162160025A	08/04/2016	07:45	Maria Davenport	1
00273	Total Organic Carbon	SM 5310 C-2000	1	16228049505A	08/16/2016	23:54	Clinton M Wilson	5

5

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

> mg/l 2.5

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-7@7.5 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 14:00 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP7S

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	ug/kg	ug/kg	
10237	Benzene		71-43-2	N.D.	0.3	0.44
10237	Ethylbenzene		100-41-4	N.D.	0.6	0.44
10237	Isopropylbenzene		98-82-8	N.D.	0.6	0.44
10237	Methyl Tertiary But	yl Ether	1634-04-4	9	0.3	0.44
10237	Naphthalene		91-20-3	N.D.	0.6	0.44
10237	Toluene		108-88-3	N.D.	0.6	0.44
10237	1,2,4-Trimethylbenz	ene	95-63-6	N.D.	0.6	0.44
10237	1,3,5-Trimethylbenz	ene	108-67-8	N.D.	0.6	0.44
10237	Xylene (Total)		1330-20-7	N.D.	0.6	0.44
GC Vo	latiles	SW-846 80	15B	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10)	n.a.	N.D.	0.2	18.8
GC Mi	scellaneous	SW-846 80	15B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C2	8 microwave	n.a.	27	5.2	1
Wet Cl	hemistry	SM 5310 B		mg/kg	mg/kg	
	_	modified-	2000			
02079	TOC Solids/Sludges	Combustion	n.a.	15,200	254	1
Wet Cl	hemistry	SM 2540 G	-1997	8	8	
00111	Moisture		n.a.	23.6	0.50	1
00111	Moisture represents 103 - 105 degrees C	the loss in Celsius. The r	weight of the moisture result	sample after oven t reported is on an	drying at	±

as-received basis.

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	X162141AA	08/01/2016 17:	45 Linda C Pape	0.44
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201621142058	07/29/2016 14:	00 Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201621142060	07/29/2016 14:	00 Client Supplied	1
01637	TPH-GRO soil C6-C10	SW-846 8015B	1	16221A34A	08/08/2016 21:	51 Marie D Beamenderfer	18.8
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201621142060	07/29/2016 14:	00 Client Supplied	n.a.

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-7@7.5 ft Grab Soil HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 14:00 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP7S

LL Sample	#	SW 8500775
LL Group	#	1688839
Account	#	00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Laboratory Sample Analysis Record Method Trial# Batch# CAT Analysis Name Analysis Analyst Dilution No. Date and Time Factor 10941 TPH-DRO soil C10-C28 SW-846 8015B 1 162220010A 08/10/2016 17:50 Thomas C 1 Wildermuth microwave 10942 Microwave Extraction-DRO SW-846 3546 162220010A 08/10/2016 09:23 1 Sally L Appleyard 1 soils 02079 TOC Solids/Sludges SM 5310 B 1 16229298731A 08/16/2016 20:58 Clinton M Wilson 1 modified-2000 Combustion 00111 Moisture 16216820009B 08/03/2016 18:27 Scott W Freisher SM 2540 G-1997 1 1

Analysis Report

LL Sample # WW 8500776

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MIP-7 Grab Groundwater HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016 15:30 by ED

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIP7W

LL Samp.	Le #	WW 8500
LL Grou	p #	1688839
Account	#	00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit	Dilution Factor
GC/MS	Volatiles :	SW-846	8260B	ug/l		ug/l	
10945	Benzene		71-43-2	N.D.		0.5	1
10945	Ethylbenzene		100-41-4	N.D.		0.5	1
10945	Isopropylbenzene		98-82-8	N.D.		0.5	1
10945	Methyl Tertiary Buty	l Ether	1634-04-4	N.D.		0.5	1
10945	Naphthalene		91-20-3	N.D.		1	1
10945	Toluene		108-88-3	N.D.		0.5	1
10945	1,2,4-Trimethylbenzer	ne	95-63-6	N.D.		0.5	1
10945	1,3,5-Trimethylbenzer	ıe	108-67-8	N.D.		0.5	1
10945	Xylene (Total)		1330-20-7	N.D.		0.5	1
GC Vol	atiles	SW-846	8015B	ug/l		ug/l	
01635	TPH-GRO water C6-C10		n.a.	21	J	20	1
GC Pet Hydrod	roleum s arbons	SW-846	8015B	ug/l		ug/l	
08269	TPH-DRO water C10-C28	3	n.a.	8,800		33	1
Wet Ch	emistry 9	SM 5310	C-2000	mg/l		mg/l	
00273	Total Organic Carbon	511 5510	n.a.	48.3		0.50	1

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17. Preservation requirements were not met. The pH preservation of all non-volatile containers was checked upon receipt at the laboratory. The container for the following analysis was not within specification and was adjusted accordingly by the laboratory: Total Organic Carbon

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016	17:40	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162151AA	08/02/2016	17:40	Daniel H Heller	1
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16214C20A	08/02/2016	14:05	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16214C20A	08/02/2016	14:05	Jeremy C Giffin	1
08269	TPH-DRO water C10-C28	SW-846 8015B	1	162170016A	08/05/2016	21:02	Amy Lehr	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	162170016A	08/04/2016	17:30	Ryan J Dowdy	1
00273	Total Organic Carbon	SM 5310 C-2000	1	16228049506A	08/16/2016	03:30	James S Mathiot	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: TB Water HERR FOODS/101722001

Project Name: Herr Foods/101722001

Collected: 07/29/2016

Submitted: 07/29/2016 16:45 Reported: 08/18/2016 09:44

MIPTB

\mathbf{LL}	Sample	#	WW	8500777
\mathbf{LL}	Group	#	168	8839
Acc	ount	#	007	21

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Isopropylbenzene	98-82-8	N.D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162151AA	08/02/2016 19	:01 Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162151AA	08/02/2016 19	:01 Daniel H Heller	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL
	ug/kg	ug/kg
Batch number: Q162151AA	Sample num	ber(s): 8500769
Benzene	N.D.	25
Ethylbenzene	N.D.	50
Isopropylbenzene	N.D.	50
Methyl Tertiary Butyl Ether	N.D.	25
Naphthalene	N.D.	50
Toluene	N.D.	50
1,2,4-Trimethylbenzene	N.D.	50
1,3,5-Trimethylbenzene	N.D.	50
Xylene (Total)	N.D.	50
Batch number: R162161AA	Sample num	ber(s): 8500771
Benzene	N.D.	25
Ethylbenzene	N.D.	50
Isopropylbenzene	N.D.	50
Methyl Tertiary Butyl Ether	N.D.	25
Naphthalene	N.D.	50
Toluene	N.D.	50
1,2,4-Trimethylbenzene	N.D.	50
1,3,5-Trimethylbenzene	N.D.	50
Xylene (Total)	N.D.	50
Batch number: X162141AA	Sample num	ber(s): 8500773,8500775
Benzene	N.D.	0.5
Ethylbenzene	N.D.	1
Isopropylbenzene	N.D.	1
Methyl Tertiary Butyl Ether	N.D.	0.5
Naphthalene	N.D.	1
Toluene	N.D.	1
1,2,4-Trimethylbenzene	N.D.	1
1,3,5-Trimethylbenzene	N.D.	1
Xylene (Total)	N.D.	1
	ug/l	ug/l
Batch number: F162151AA	Sample num	ber(s): 8500770,8500772,8500774,8500776-8500777
Benzene	N.D.	0.5
Ethylbenzene	N.D.	0.5
Isopropylbenzene	N.D.	0.5
Methyl Tertiary Butyl Ether	N.D.	0.5
Naphthalene	N.D.	1
Toluene	N.D.	0.5
1,2,4-Trimethylbenzene	N.D.	0.5
1,3,5-Trimethylbenzene	N.D.	0.5
Xylene (Total)	N.D.	0.5

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

P###### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

Method Blank (continued)

Analysis Name	Result	MDL mg/kg
Batch number: 16216A16A TPH-GRO soil C6-C10	Sample number 0.4 J	(s): 8500769 0.2
Batch number: 16216A16B TPH-GRO soil C6-C10	Sample number 0.2 J	(s): 8500771 0.2
Batch number: 16221A34A TPH-GRO soil C6-C10	Sample number N.D.	(s): 8500773,8500775 0.2
	ug/l	ug/l
Batch number: 16214C20A TPH-GRO water C6-C10	Sample number N.D.	(s): 8500770,8500772,8500774,8500776 20
	mg/kg	mg/kg
Batch number: 162220010A TPH-DRO soil C10-C28 microwave	Sample number N.D.	(s): 8500769,8500771,8500773,8500775 4.0
	ug/l	ug/l
Batch number: 162160025A DRO C10-C28	ug/l Sample number N.D.	ug/1 (s): 8500774 45
Batch number: 162160025A DRO C10-C28 Batch number: 162170016A TPH-DRO water C10-C28	ug/l Sample number N.D. Sample number N.D.	ug/l (s): 8500774 45 (s): 8500770,8500776 32
Batch number: 162160025A DRO C10-C28 Batch number: 162170016A TPH-DRO water C10-C28 Batch number: 162190011A DRO C10-C28	ug/l Sample number N.D. Sample number N.D. Sample number N.D.	ug/l (s): 8500774 45 (s): 8500770,8500776 32 (s): 8500772 45
Batch number: 162160025A DRO C10-C28 Batch number: 162170016A TPH-DRO water C10-C28 Batch number: 162190011A DRO C10-C28	ug/l Sample number N.D. Sample number N.D. Sample number N.D. mg/kg	ug/l (s): 8500774 45 (s): 8500770,8500776 32 (s): 8500772 45 mg/kg
Batch number: 162160025A DRO C10-C28 Batch number: 162170016A TPH-DRO water C10-C28 Batch number: 162190011A DRO C10-C28 Batch number: 16229298731A TOC Solids/Sludges Combustion	ug/l Sample number N.D. Sample number N.D. mg/kg Sample number N.D.	<pre>ug/l (s): 8500774 45 (s): 8500770,8500776 32 (s): 8500772 45 mg/kg (s): 8500769,8500771,8500773,8500775 100</pre>
Batch number: 162160025A DRO C10-C28 Batch number: 162170016A TPH-DRO water C10-C28 Batch number: 162190011A DRO C10-C28 Batch number: 16229298731A TOC Solids/Sludges Combustion	ug/1 Sample number N.D. Sample number N.D. mg/kg Sample number N.D. mg/1	<pre>ug/l (s): 8500774 45 (s): 8500770,8500776 32 (s): 8500772 45 mg/kg (s): 8500769,8500771,8500773,8500775 100 mg/l</pre>
Batch number: 162160025A DRO C10-C28 Batch number: 162170016A TPH-DRO water C10-C28 Batch number: 162190011A DRO C10-C28 Batch number: 16229298731A TOC Solids/Sludges Combustion Batch number: 16228049505A Total Organic Carbon	<pre>ug/1 Sample number N.D. Sample number N.D. mg/kg Sample number N.D. mg/l Sample number N.D.</pre>	<pre>ug/l (s): 8500774 45 (s): 8500770,8500776 32 (s): 8500772 45 mg/kg (s): 8500769,8500771,8500773,8500775 100 mg/l (s): 8500774 0.50</pre>

LCS/LCSD

Analysis Name	LCS Spike Added ug/kg	LCS Conc ug/kg	LCSD Spike Added ug/kg	LCSD Conc ug/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: Q162151AA	Sample numbe	r(s): 85007	69						
Benzene	1000	982.2	1000	1080.66	98	108	80-120	10	30
Ethylbenzene	1000	990.79	1000	1071.41	99	107	80-120	8	30
Isopropylbenzene	1000	1014.18	1000	1081.61	101	108	70-120	6	30
Methyl Tertiary Butyl Ether	1000	960.12	1000	1043.93	96	104	72-120	8	30
Naphthalene	1000	1018.54	1000	1083.79	102	108	53-120	6	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

LCS/LCSD (continued)

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	ug/kg	ug/kg	ug/kg	ug/kg					
Toluene	1000	982.42	1000	1056.49	98	106	80-120	7	30
1.2.4-Trimethylbenzene	1000	1006.96	1000	1077.45	101	108	74-120	7	30
1.3.5-Trimethylbenzene	1000	1020.6	1000	1076.57	102	108	73-120	5	30
Xvlene (Total)	3000	2964.7	3000	3167.55	99	106	80-120	7	30
Batch number: R162161AA	Sample numbe	er(s): 85007	1000	076 70	0.0	0.0	00 100	1	2.0
Belizelle	1000	988.71	1000	976.73	99	98	80-120	1	30
Etnyibenzene	1000	877.73	1000	848.1	88	85	80-120	3	30
Isopropylbenzene	1000	855.63	1000	793.71	86	79	70-120	8	30
Methyl Tertiary Butyl Ether	1000	1019.14	1000	1014.73	102	101	72-120	0	30
Naphthalene	1000	937.14	1000	858.48	94	86	53-120	9	30
Toluene	1000	894.72	1000	853.6	89	85	80-120	5	30
1,2,4-Trimethylbenzene	1000	908.82	1000	847.81	91	85	74-120	7	30
1,3,5-Trimethylbenzene	1000	930.26	1000	864.71	93	86	73-120	7	30
Xylene (Total)	3000	2622.18	3000	2578.67	87	86	80-120	2	30
Batch number: X162141AA	Sample numbe	er(s): 85005	773.8500775						
Benzene	20	16 16	20	19 39	81	97	80-120	18	30
Ethylbenzene	20	16 99	20	20 94	95	105	80-120	21	30
Isopropulbenzene	20	17 06	20	20.94	85	107	70-120	22	30
Mothul Tortiory Putul Ethor	20	15 77	20	17 04	70	107	70-120	10	20
Meeniyi leiclary Bucyi Echer	20	15.77	20	17.94	79	90	72-120	15	20
Maphthalene	20	15.25	20	17.79	76	89	53-120	15	30
Toluene	20	17.08	20	20.86	85	104	80-120	20	30
1,2,4-Trimethylbenzene	20	17.25	20	21.17	86	106	74-120	20	30
1,3,5-Trimethylbenzene	20	17.07	20	21.3	85	107	73-120	22	30
Xylene (Total)	60	50.69	60	62.61	84	104	80-120	21	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: F162151AA	Sample numbe	er(s): 85007	770,8500772,85	00774,8500	776-8500	777			
Benzene	20	17.7	20	17.25	88	86	78-120	3	30
Ethylbenzene	20	18.19	20	17.83	91	89	78-120	2	30
Isopropylbenzene	20	18.1	20	17.7	90	89	80-120	2	30
Methyl Tertiary Butyl Ether	20	18.65	20	18.19	93	91	75-120	3	30
Naphthalene	20	16.25	20	15.69	81	78	59-120	4	30
Toluene	20	18.71	20	18.06	94	90	80-120	4	30
1,2,4-Trimethylbenzene	20	18.22	20	17.54	91	88	75-120	4	30
1,3,5-Trimethvlbenzene	20	18.13	20	17.8	91	89	75-120	2	30
Xylene (Total)	60	54.44	60	53.44	91	89	80-120	2	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 16216A16A	Sample numbe	$Pr(s) \cdot 85005$	769						
TPH-GRO soil C6-C10	11	9.47	11	9.63	86	88	61-120	2	30
Detah number 10010010	Comple numb		7 7 1						
Balch Humber: 16216A16B		21(S): 8500	1/1	0 60	0.6	0.0	C1 100	~	2.0
TPH-GRO SOII C6-CIU	11	9.47		9.63	86	88	61-120	2	30
Batch number: 16221A34A	Sample numbe	er(s): 85007	773,8500775						
TPH-GRO soil C6-C10	11	8.28	11	8.63	75	78	61-120	4	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: 16214C20A	Sample numbe	er(s): 85007	770,8500772,85	00774,8500	776				

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
TPH-GRO water C6-C10	1100	1103.93	1100	1089.7	100	99	80-120	1	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 162220010A TPH-DRO soil C10-C28 microwave	Sample numbe 133	er(s): 85007 142.54	69,8500771,85	00773,8500	775 107		74-117		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 162160025A DRO C10-C28	Sample numbe 2680	er(s): 85007 2332.61	74 2660	2122.31	87	80	69-115	9	20
Batch number: 162170016A TPH-DRO water C10-C28	Sample numbe 1600	er(s): 85007 1234.57	70,8500776 1600	1290.21	77	81	53-115	4	20
Batch number: 162190011A DRO C10-C28	Sample numbe 2670	er(s): 85007 2062.36	72 2680	2000.01	77	75	69-115	3	20
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 16229298731A TOC Solids/Sludges Combustion	Sample numbe 5830	er(s): 85007 5022.57	69,8500771,85	00773,8500	775 86		47-143		
	mg/l	mg/l	mg/l	mg/l					
Batch number: 16228049505A Total Organic Carbon	Sample numbe 25	er(s): 85007 25.06	74		100		91-113		
Batch number: 16228049506A Total Organic Carbon	Sample numbe 25	er(s): 85007 24.86	70,8500772,85	00776	99		91-113		
	%	8	8	8					
Batch number: 16216820009B Moisture	Sample numbe 89.5	er(s): 85007 89.42	69,8500771,85	00773,8500	775 100		99-101		

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: F162151AA	Sample numb	er(s): 8500	770,8500	772,8500774	,8500776-	8500777	UNSPK: H	2500394		
Benzene	N.D.	20	19.28	20	19.3	96	96	78-120	0	30
Ethylbenzene	N.D.	20	19.23	20	19.64	96	98	78-120	2	30
Isopropylbenzene	N.D.	20	19.51	20	19.84	98	99	80-120	2	30
Methyl Tertiary Butyl Ether	N.D.	20	19.03	20	18.86	95	94	75-120	1	30
Naphthalene	N.D.	20	15.77	20	15.82	79	79	59-120	0	30
Toluene	N.D.	20	19.91	20	20.43	100	102	80-120	3	30
1,2,4-Trimethylbenzene	N.D.	20	19.47	20	19.31	97	97	75-120	1	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
1,3,5-Trimethylbenzene Xylene (Total)	N.D. N.D.	20 60	19.69 58.35	20 60	19.31 59.45	98 97	97 99	75-120 80-120	2 2	30 30
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 162220010A TPH-DRO soil C10-C28 microwave	Sample numb 175.91	er(s): 8500 131	0769,8500 315.53	771,8500773,	,8500775	UNSPK: 8 107	500771	74-117		
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 16229298731A TOC Solids/Sludges Combustion	Sample numb 4981.53	er(s): 8500 13530	0769,8500 19053.63	771,8500773,	,8500775	UNSPK: P 104	501688	47-143		
	mg/l	mg/l	mg/l	mg/l	mg/l					
Batch number: 16228049505A Total Organic Carbon	Sample numb 0.939	er(s): 8500 10	0774 UNSP 11.62	K: P500548		107		91-113		
Batch number: 16228049506A Total Organic Carbon	Sample numb 5.34	er(s): 8500 10	0770,8500 15.47	772,8500776	UNSPK:	P500387 101		91-113		

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/kg	DUP Conc mg/kg	DUP RPD D	UP RPD Max
Batch number: 162220010A TPH-DRO soil C10-C28 microwave	Sample number(s): 175.91	8500769,8500771,85 233.72	500773,8500775 E 28*	8KG: 8500771 20
	mg/kg	mg/kg		
Batch number: 16229298731A TOC Solids/Sludges Combustion	Sample number(s): 4981.53	8500769,8500771,85 6348.66	500773,8500775 E 24*	KG: P501688 7
	mg/l	mg/l		
Batch number: 16228049505A Total Organic Carbon	Sample number(s): 0.939	8500774 BKG: P5005 0.962	548 2 (1)	3
Batch number: 16228049506A	Sample number(s):	8500770,8500772,85	500776 BKG: P500	387
Total Organic Carbon	5.34	5.40	T	٤
	8	8		
Batch number: 16216820009B Moisture	Sample number(s): 18.04	8500769,8500771,85 17.41	500773,8500775 E 4	KG: 8500773 5

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: PA UST Unleaded + TMBs Batch number: F162151AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8500770	92	95	102	97
8500772	92	95	102	97
8500774	94	97	101	94
8500776	94	100	101	97
8500777	95	98	101	93
Blank	94	96	102	96
LCS	95	102	101	97
LCSD	95	100	102	96
MS	96	99	101	97
MSD	94	98	102	98
Limits:	80-116	77-113	80-113	78-113

Analysis Name: PA Unleaded/Diesel 8260B Batch number: 0162151AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8500769	80	84	93	111
Blank	89	93	91	89
LCS	91	91	92	91
LCSD	101	106	101	100
Limits:	50-141	54-135	52-141	50-131

Analysis Name: PA Unleaded/Diesel 8260B Batch number: R162161AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8500771	68	70	64	69
Blank	109	103	98	83
LCS	96	91	77	79
LCSD	95	92	77	73
Limits:	50-141	54-135	52-141	50-131

Analysis Name: PA Unleaded/Diesel 8260B Batch number: X162141AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8500773	105	103	102	84
8500775	112	118	99	91
Blank	105	98	98	95
LCS	100	100	102	102
LCSD	97	93	104	101
Limits:	50-141	54-135	52-141	50-131

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: TPH-GRO water C6-C10

Batch number: 16214C20A

	Trifluorotoluene-F
8500770	93
8500772	94
8500774	90
8500776	90
Blank	90
LCS	100
LCSD	98
Limits:	63-135

Analysis Name: TPH-GRO soil C6-C10 Batch number: 16216A16A

	Trifluorotoluene-F
8500769	1845*
Blank	107
LCS	106
LCSD	107
Limits:	50-142

Analysis Name: TPH-GRO soil C6-C10 Batch number: 16216A16B Trifluorotoluene-F

8500771	128
Blank	101
LCS	106
LCSD	107
Limits:	50-142

Analysis Name: TPH-GRO soil C6-C10 Batch number: 16221A34A Trifluorotoluone.F

	Thiluorololuene-F
8500773	99
8500775	62
Blank	79
LCS	88
LCSD	90
Limits:	50-142

Analysis Name: DRO Microextraction Master Batch number: 162160025A Orthotembenyl

	Ontiloterprienyi
8500774	68
Blank	115
LCS	94

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/18/2016 09:44 Group Number: 1688839

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Orthoterphenyl
LCSD	90
Limits:	42-160

Analysis Name: TPH-DRO water C10-C28 Batch number: 162170016A

	Orthoterphenyl
8500770	121
8500776	79
Blank	95
LCS	97
LCSD	101
Limits:	50-124

Analysis Name: DRO Microextraction Master Batch number: 162190011A

	Orthoterphenyl
8500772	27*
Blank	91
LCS	94
LCSD	96
Limits:	42-160

Analysis Name: TPH-DRO soil C10-C28 microwave Batch number: 162220010A

	Orthoterphenyl
8500769	111
8500771	112
8500773	105
8500775	99
Blank	113
DUP	97
LCS	110
MS	95
Limits:	34-147

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

🖏 eurofins					For E	Eurofir	ns Lar	ncaster Lab	orator	ries Er	viron	nenta	l use c	only					~		11 point etc.		
	Lancaster Labor Environmental	atories	Acct. #	721		aroup	<u># 1(</u>	68883	<u>39</u> s	Sample	•#	55	500	5769	-7	7			C	;OC ;	# 50	6448	
	Client I	nformatio	'n					Matrix		I	1		A	nalvsi	s Re	aues	ted			For Lab L	se Onlv		
Client:		an a	Acct. #:				Îm		1	1				Preserv	vatio	n Cod	es			FSC:			
RETTON A	FSSOC. IN	C					l l											1		scr#:_/	9186	3	
Project Name/#:	00/10/002	1	PWSID #:				ssu	ace Ind					4		Í	Ì	Í			Pres	ervation	Codes	transmooth
MEIUL FOC	509/1017220	201					Ê	nuts				5	96							H=HCI	T=	Thiosulfate	reduced to a
ED DZ-2	DED7.IZ		101	12200	-1		\Box	<u> </u>		ι υ	AND A REAL PROPERTY OF		E								$D_3 = B_{-}$	NaOH Othor	And interferences
Sampler:	~		Quote #:				nt nt			le Le		Ā	5							3-П25	Remar	(S	and the second
EN 07	2.FED242						e E	e si		nta		1	d'd								Tioman		- Antonio
State where samples were o	collected: For	Compliance:				U	edi	PDF		ß		2	N N										A CONTRACTOR OF THE OWNER
V-14		Yes 🗌				sit		lg Z		ð	. (\dot{i}	B										Constant Income
Sampl	a Identification		Colle	ected	٩	du	I <u>گ</u> ا	j	5	# 	2	3	C										000000000000000000000000000000000000000
Campr	chainmeation		Date	Time	Gra	Co	Soi	Wat	0 th	lot	+	F	2										1000000000
MTP-10	25.54		7/29/16	2:30	X		X			İ4	X	X	X							1			
MIP-1			7/29/16	10:15	X			X		16	X	X	X		nicationary S an Lasian					1 AMP	ALT	EL DRO	
MtP-3	07.5 Ft		7/29/16	11:00	X		X			4	X	X	X			**************************************				1			ingunterener
MIP-3		•	2/29/16	12:30	X			X		7	X	X	X				-			DRO M	ICNOE	X MAC DR	J,
MJP-4	@ 4.75 fz	-	7/29/16	13:10	Х		X			4	X	X	X		Ì					1			-
MIP-4			7/29/K	13:30	X			X		6	X	Χ	X							DRO MI	OVOG	MACTIC	N
M7P-7	e 7.5 h		7/29/16	14:00	X		Х			4	X	Х	X										Thread out a could
M2P-7			7/29/14	15:30	X			X		7	X	X	X										
										ļ	ļ									Į	••••••••••••••••••••••••••••••••••••••		
*	d Times (TAT) D		L		Poling	uiabad	hu					Dala		Ti			1_				nt f	1	
Stan	dard	equestea Bi	(please circl	le)			11	65	tor	GG.	17	191	slie	12:1	6 DE		り、	Las	las	AD. 1	1 23 9/1	110°14	÷
(Rush TAT is subjed	ct to laboratory approval	and surcharge	.)		Relinq	uished	by J	DT	,	Ĵ	-1	Date/	10	Time	Re	ceived by	, Y	A		\sim	Date	J Time	4
		-			$\langle \cdot \rangle$	P. (\bigwedge	Re	ve	\sim	\mathbb{Z}_{c}	22/	116	13:3	P	Ш	ull	1)	m		7/29/1	3:00	anterestion.
Date results are nee	ded:			-	Rélinq	uished	by	Ah a			1	Date	du	Time	Re	ceived b	/				Date	Time	
F-mail address:	DETEDERC	NETTO	N.Can	1	Belinb	<u>Ш</u> shed	/I bv	MM				Date	110	No. t"		ceived by	<u>}</u>		****		Date	Timo	The second
Data	Package Option	S (circle if re	auired)							\mathbf{i}							1	\neg			Duito	T inte	
Type I (EPA Level 3			Relinq	uished	by			$\overline{}$		Date		Time	Re	ceived by	2	<u>/</u>	~		Bate 1	Time			
Equivalent/non-CLP)						·		`						12- 12-116 1645									
Type III (Reduc	ed non-CLP)	NJ DKQP	, тхт	RRP-13			r	EDD Red	quirec	1? (Yes	No			R	elinquis	shed	by Co	mme	rcial Carrie	r:		and the second second
						l Site	I yes,	$rormat: \subseteq$		- <u>//</u>) Jun)?	V	90	No		UPS_		Fed	Ex	Other			and the second
NYSDEC Category A or B MA MCP CT RCP				(If yes, indicate QC sample and submit triplicate sample volume.)						Temperature upon receipt /.S °C													

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

🔹 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID: 155838 Group Number(s): ♪@중중중≤9

Client: <u>Rettew</u>

Delivery Method:	Client Drop Off	Arrival Timestamp:	07/29/2016 16:45
Number of Packages:	<u>1</u>	Number of Projects:	<u>1</u>
State/Province of Origin:	PA		
	Arrival Co	ndition Summary	
Shipping Container Sealed:	No	Sample IDs on COC mat	ch Containers: Yes
Custody Seal Present:	No	Sample Date/Times mate	ch COC: Yes
Samples Chilled:	Yes	VOA Vial Headspace ≥ 6	mm: No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	2
Samples Intact:	Yes	Trip Blank Type:	HCI
Missing Samples:	No	Air Quality Samples Pres	sent: No
Extra Samples:	No		
Discrepancy in Container Q	ty on COC: No		

Unpacked by Karen Diem (3060) at 17:07 on 07/29/2016

Samples Chilled Details								
The	ermometer Types	s: DT = Dia	ital (Temp. Bottle) IR =	Infrared (Sur	face Temp)	All Temperatur	es in °C.
1110					·			Samples Collected Same
Cooler #	Thermometer ID	Corrected Temp	Therm. Type	<u>lce Type</u>	Ice Present?	Ice Container	Elevated Temp?	Day as Receipt?
1	DT131	8.5	DT	Wet	Y	Bagged	Y	Y

Page 24 of 25

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level				
N.D.	none detected	MPN	Most Probable Number				
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units				
IU	International Units	NTU	nephelometric turbidity units				
umhos/cm	micromhos/cm	ng	nanogram(s)				
С	degrees Celsius	F	degrees Fahrenheit				
meq	milliequivalents	lb.	pound(s)				
g	gram(s)	kg	kilogram(s)				
μg	microgram(s)	mg	milligram(s)				
mL	milliliter(s)	L	liter(s)				
m3	cubic meter(s)	μL	microliter(s)				
		pg/L	picogram/liter				
<	less than						
>	greater than						
ppm	parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.						
ppb	parts per billion						
Dry weight basis	Results printed under this heading have been a concentration to approximate the value presen	adjusted for moi t in a similar sar	sture content. This increases the analyte weight nple without moisture. All other results are reported on an				

Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis

as-received basis.

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

SUMMARY OF LABORATORY TESTING

HERR FOODS

PROJECT NO.	101722001	SAMPLE DATE	-	JAY KAY TESTING, INC.
SAMPLES:	5	LOCATION:	-	5233 Lehman Road, Suite 110
REPORT:	08/05/16	REMARKS:	-	Spring Grove, PA 17362 Phone: (410) 259-5101

BORING	SAMPLE	DEPTH	MC %	LL	PL	PI	% FINES	WET UNIT	DRY UNIT	VR
MIP-1	Tube	6.5-7.5	29.2	NP	NP	NP	35.1	119.7	92.6	0.820
MIP-3	Tube	5.0-6.0	35.5	52	39	13	38.0	111.9	82.6	1.040
MIP-4	Tube	6.0-7.0	28.4	38	NP	NP	50.7	99.4	77.4	1.178
MIP-7	Tube	6.0-7.0	16.1	40	34	6	29.0	120.5	103.8	0.623
MIP-1, 3, 4, 7	Composite	-	-	-	-	-	-	-	-	-
Jay Kay Testing, Inc. (AASHTO-Accredited)										

GRAIN SIZE ANALYSIS

Diameter	75.0	50.8	37.5	25.4	19.0	12.7	9.51	4.75	2.0	0.42	0.25	0.147	0.074
Sieve Size	3"	2"	1.5"	1"	3/4"	1/2"	3/8"	#4	#10	#40	#60	#100	# 200
% Passing	-	-	-	-	-	-	100.0	99.9	99.1	89.9	74.7	54.5	35.1

% GRAVEL	% SAND	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand	Fine Sand	CC	CU
0.1	64.8	-	0.1	0.8	9.2	54.8	-	-
								AASHTO T-89/T-90
				60		🖌 u-line	/	

Light brown silty SAND

GRAIN SIZE ANALYSIS

Diameter	75.0	50.8	37.5	25.4	19.0	12.7	9.51	4.75	2.0	0.42	0.25	0.147	0.074
Sieve Size	3"	2"	1.5"	1"	3/4"	1/2"	3/8"	#4	#10	#40	#60	#100	# 200
% Passing	-	-	-	100.0	86.7	86.7	83.2	75.3	71.2	62.8	56.2	47.4	38.0

% GRAVEL	% SAND	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand	Fine Sand	CC	CU
24.7	37.3	13.3	11.4	4.1	8.4	24.8	-	-
							AAS	HTO T-89/T-90

SOIL DESCRIPTION

Dark green brown silty SAND with rock

GRAIN SIZE ANALYSIS

Sieve Size 3" 2" 1.5" 1" 3/4" 1/2" 3/8" #4 #10 #40 #60	#40 #60	#10 #40 #60	#10 #40 #60	2" #4 #10	2 /0"	4 /211	0 / 4 11					
			110 110 100	5 #4 #10	3/8	1/2"	3/4"	1"	1.5"	2"	3"	Sieve Size
% Passing 100.0 98.8 96.5 94.9 87.6 79.0	87.6 79.0	94.9 87.6 79.0	94.9 87.6 79.0	.8 96.5 94.9	98.8	100.0	-	-	-	-	-	% Passing

% GRAVEL	% SAND	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand	Fine Sand	CC	CU	
3.5	45.8	-	3.5	1.6	7.3	36.9	-	-	
							AAS	HTO T-89/T-90	

SOIL DESCRIPTION

Brown sandy SILT

GRAIN SIZE ANALYSIS

Sieve Size 3" 2" 1	1.5" 1"	3/4"	1/2"	3/8"	#4	#10	#40	#60	#100	# 200
% Passing	- 100.0	96.3	89.0	82.5	71.4	63.1	50.9	43.5	36.0	29.0

% GRAVEL	% SAND	Coarse Gravel	Fine Gravel	Coarse Sand	Medium Sand	Fine Sand	CC	CU	
28.6	42.4	3.7	24.9	8.3	12.2	21.9	-	-	
							AAS	HTO T-89/T-90	

SOIL DESCRIPTION

Brown silty SAND with rock

Boring:	MIP-1, 3, 4, 7	Project No.:	101722001	JAY KAY TESTING, INC.
Sample:	Composite	Sample Date:	-	5233 Lehman Road, Suite 110
Depth:	-	Location:	-	Spring Grove, PA 17362 Phone: (410) 259-5101

APPENDIX C

Packer Testing Laboratory Analytical Reports

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Report Date: August 22, 2016

Project: Herr Foods 101722001

Submittal Date: 08/11/2016 Group Number: 1694048 PO Number: 101722001 State of Sample Origin: PA

<u>Client Sample Description</u> Former SW @ 70 Grab Groundwater Former SW @ 80 Grab Groundwater Former SW @ 30 Grab Groundwater Trip Blank Water

<u>(LL) #</u> 8522696 8522697 8522698 8522699

Lancaster Labs

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

Electronic Copy To Rettew Associates

Attn: Ed Dziedzic

Respectfully Submitted,

acyffers) Stacy L. Hess

Project Manager

(717) 556-7236

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Former SW @ 70 Grab Groundwater Herr Foods 101722001

Project Name: Herr Foods 101722001

Collected: 08/11/2016 10:42 by ED

Submitted: 08/11/2016 15:17 Reported: 08/22/2016 10:24

SW-70

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	1,900	5	10
10945	Ethylbenzene	100-41-4	1,200	5	10
10945	Isopropylbenzene	98-82-8	34	5	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	8 J	5	10
10945	Naphthalene	91-20-3	200	10	10
10945	Toluene	108-88-3	3,300	50	100
10945	1,2,4-Trimethylbenzene	95-63-6	520	5	10
10945	1,3,5-Trimethylbenzene	108-67-8	140	5	10
10945	Xylene (Total)	1330-20-7	2,500	5	10

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162321AA	08/19/2016 17:43	Daniel H Heller	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162321AA	08/19/2016 18:05	Daniel H Heller	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162321AA	08/19/2016 17:43	Daniel H Heller	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F162321AA	08/19/2016 18:05	Daniel H Heller	100

LL Sample # WW 8522696 LL Group # 1694048 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Former SW @ 80 Grab Groundwater Herr Foods 101722001

Project Name: Herr Foods 101722001

Collected: 08/11/2016 12:25 by ED

Submitted: 08/11/2016 15:17 Reported: 08/22/2016 10:24

SW-80

CAT No.	Analysis Name	CAS Number	Resul	t	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l		ug/l	
10945	Benzene	71-43-2	170		3	5
10945	Ethylbenzene	100-41-4	36		3	5
10945	Isopropylbenzene	98-82-8	4	J	3	5
10945	Methyl Tertiary Butyl Ether	1634-04-4	6		3	5
10945	Naphthalene	91-20-3	9	J	5	5
10945	Toluene	108-88-3	7		3	5
10945	1,2,4-Trimethylbenzene	95-63-6	12		3	5
10945	1,3,5-Trimethylbenzene	108-67-8	3	J	3	5
10945	Xylene (Total)	1330-20-7	38		3	5

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162321AA	08/19/2016 18:27	Daniel H Heller	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162321AA	08/19/2016 18:27	Daniel H Heller	5

LL Sample # WW 8522697 LL Group # 1694048 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Former SW @ 30 Grab Groundwater Herr Foods 101722001

Project Name: Herr Foods 101722001

Collected: 08/11/2016 13:47 by ED

Submitted: 08/11/2016 15:17 Reported: 08/22/2016 10:24

SW-30

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	2,700	50	100
10945	Ethylbenzene	100-41-4	1,700	5	10
10945	Isopropylbenzene	98-82-8	49	5	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	6 J	5	10
10945	Naphthalene	91-20-3	260	10	10
10945	Toluene	108-88-3	5,600	50	100
10945	1,2,4-Trimethylbenzene	95-63-6	730	5	10
10945	1,3,5-Trimethylbenzene	108-67-8	200	5	10
10945	Xylene (Total)	1330-20-7	4,100	5	10

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162321AA	08/19/2016 18:49	Daniel H Heller	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162321AA	08/19/2016 19:11	Daniel H Heller	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162321AA	08/19/2016 18:49	Daniel H Heller	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	F162321AA	08/19/2016 19:11	Daniel H Heller	100

LL Sample # WW 8522698 LL Group # 1694048 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Trip Blank Water Herr Foods 101722001

Project Name: Herr Foods 101722001

Collected: 08/11/2016

Submitted: 08/11/2016 15:17 Reported: 08/22/2016 10:24

HR-TB

LL Sample # WW 8522699 LL Group # 1694048 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Isopropylbenzene	98-82-8	N.D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N.D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	9	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F162321AA	08/19/2016 1	L9:33	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F162321AA	08/19/2016 1	L9:33	Daniel H Heller	1

Analysis Report

Group Number: 1694048

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/22/2016 10:24

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL
	ug/l	ug/l
Batch number: F162321AA	Sample number	(s): 8522696-8522699
Benzene	N.D.	0.5
Ethylbenzene	N.D.	0.5
Isopropylbenzene	N.D.	0.5
Methyl Tertiary Butyl Ether	N.D.	0.5
Naphthalene	N.D.	1
Toluene	N.D.	0.5
1,2,4-Trimethylbenzene	N.D.	0.5
1,3,5-Trimethylbenzene	N.D.	0.5
Xylene (Total)	N.D.	0.5

LCS/LCSD

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	ug/l	ug/l	ug/l	ug/l					
Batch number: F162321AA	Sample numbe:	r(s): 8522	696-8522699						
Benzene	20	19.82	20	18.77	99	94	78-120	5	30
Ethylbenzene	20	19.17	20	17.99	96	90	78-120	6	30
Isopropylbenzene	20	19.47	20	18.34	97	92	80-120	6	30
Methyl Tertiary Butyl Ether	20	18.43	20	17.41	92	87	75-120	6	30
Naphthalene	20	19.2	20	17.47	96	87	59-120	9	30
Toluene	20	19.11	20	18.22	96	91	80-120	5	30
1,2,4-Trimethylbenzene	20	18.88	20	17.63	94	88	75-120	7	30
1,3,5-Trimethylbenzene	20	19.01	20	17.95	95	90	75-120	6	30
Xylene (Total)	60	57.87	60	54.26	96	90	80-120	6	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 08/22/2016 10:24 Group Number: 1694048

Surrogate Quality Control

Surrogate unless at	recoveries which a tributed to dilutic	are outside of the Q on or otherwise note	QC window are cor ed on the Analysi	nfirmed is Report.
Analysis Batch num	Name: PA UST Unlead ber: F162321AA	led + TMBs		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8522696	99	96	98	100
8522697	100	96	98	98
8522698	98	98	97	102
8522699	99	98	98	97
Blank	99	97	99	98
LCS	100	99	100	100
LCSD	101	100	99	99
Limits:	80-116	77-113	80-113	78-113

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

🐝 eurofins	Lancaster Labo Environmental	ratories	Acct. #	121	For E	Eurofir Aroup	ns Lar # <u> (</u>	ncaster Labo , 9404.8	orator S	ies En ample	vironr	menta SSZ	l use 2_6	only 96 -	do					C	C :	# 50	6626
	Client I	Informatior	า				1	Matrix		1	1		l	Analy	sis f	Requ	este	d		l	⁼or Lab l	lse Only	
Client:	Are -	7	Acct. #:											Prese	ervat	ion C	odes			F	SC:	ton	
I CETTEN I	ASSOCIATE	5 ENC.					ت ق	K L			R									3	SCR#:	<u>924</u>	34
Project Name/#:			PWSID #:				nss	nd Bce			R									I	Pres	ervation	Codes
pierul 10	009		2.0. //	6			Ë	nuts			A										H=HCI	Т=	Thiosulfate
Project Manager:	Enger		1017	27:27	i			ס ס		y	N	1									N=HNO	$D_3 = B =$	NaOH
Sampler:	Vexe		Quote #:		L		<u>س</u> د			ne	E									ŀ	S=H ₂ S	$O_4 O=$	Other
ED DZA	EDZEZ						Der	e v		Itai	B									-		Remar	KS
State where samples were	collected: For	Compliance:	L		1	Ι	dir	DE		Ц С	3												
PA		Yes 🗌	No 🛛			site	လိ	NP Pot		ot	3												
			Colle	hatad		őď		2	5	#	Ē.												
Samp	le Identification] ap	E	<u>S</u>	ate	0 L	otal	R					2							
			Date	Time	Ū	Ŭ	ű	N N	0						1999/1999								
Formar	<u>5W @ 70</u>		8/11/16	10:42	X			X		3	X	ļ											
FORMER	SWC 600	80	3/11/16	12:25	X			X		3	X										.*		
FORMER	<u>- 5W C 30</u>	1	8/11/16	13.47	X			X		3	X												
											· ·												
					Î					Î			******	Ì									
					Î										all descent descent des	1							
					l				1														
					1									$\uparrow \neg \uparrow$									
														$\left \right $								<u></u>	
Turnarou	ed Time (TAT) B	equested (nlease circl	 e)	Relinq	uished	by			<u>I</u>		Øate /	<u> </u>	Time		Receive	d by			1		Date /	Time
Star	ndard	Ru	ish	107	B	H	1p	Stor	nOt	~	81	12	16	11:	30	$\langle \rangle$	ľ.	Z	l s	2-1-	1.18	19/ K	11:30
(Rush TAT is subje	eet to laboratory approva	I and surcharge.	.)		Relinq	uishga	py C	D I	7	and in the second s	1	Date .	1.	Time	6 A 0	Beegive	d by	Ω	忻	anna Kana		Date	Time
						Þ.	Æ	24 a	ire	' <u>^</u> _	_8]	17	<u> 16</u>	13	i Li	» Yj	\mathbb{D}	Vι	îΝ	Î	2	3 U 1	6 8:00
Date results are nee	eded:			-	Relinq	uished	by	Mr.			/		. 11	Time	10	Receive	d by		\sim (Date	Time
	AN EDZTE	DUTTO	Argent	N) (AN	141	AA	<u>N_</u>	¥ДД				ЧI	1110	15	<u>.[]</u>	<u> </u>		7					
E-mail address: ***	Dackara Ontion	Vunc	ne in		Relinq	uisnea	БУ	~ v		2		Date		Time		Heceive	a by	\setminus				Date	1 ime
	rackage Option	15 (circle if red	quirea)		Relina	uished	by			<u> </u>		Date		Time		Receive	d bv		<u> </u>			Date	Time
Equivalent/non	-CLP)	Type VI (F	Raw Data	Only)						\						M	чл. Х.Л		A	~)_		8-11-1	6 1517
								EDD Rec	uirec	1? 5	v Yes	No		I.		Relino	uish	ed by	Com	merc	ial Carrie	er:	
Type III (Reduc	ced non-CLP)	NJ DKQP	TX T	KRP-13		I	lf yes,	format:	1220					_		UP	S		FedEx	<	Othe	r	
	ann A or B		OTE			Sit	e-Spe	ecific QC (MS/N	/ISD/E	Dup)?	Y Y	es	No			Ter		turo	IDOR	accient J		•
	YOIY A UI D			IVF		(If yes	, indica	ate QC sampl	le and	submit	triplica	ate san	nple vo	olume.)			rer	npera	uie t	ihou	eceiptZ	Viz	_`\

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client.

💸 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID: 158075 Group Number(s): 694048

Client: Rettew Associates

	Deli	very and	d Receip	t Informati	on		
Delivery Method:	Client Dro	op Off	Arriva	I Timestamp:	<u>08/1</u>	1/2016 15:17	
Number of Package	s: <u>1</u>		Numb	er of Projects	:: <u>1</u>		
State/Province of Or	rigin: <u>PA</u>						
	A	rival Co	ondition	Summary	an a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>, , , , , , , , , , , , , , , , , , , </u>
Shipping Container S	Sealed:	Yes	San	ple IDs on C	OC match Cor	ntainers:	Yes
Custody Seal Preser	nt:	Yes	San	ple Date/Tim	es match COC	D:	Yes
Custody Seal Intact:		Yes	VO	Vial Headsp	ace ≥ 6mm:		No
Samples Chilled:		Yes	Tota	l Trip Blank C	Qty:	2	
Paperwork Enclosed	ł:	Yes	Trip	Blank Type:		HCI	
Samples Intact:		Yes	Air (Quality Sampl	es Present:		No
Missing Samples:		No					
 Extra Samples: 		No	•				ŧ
Discrepancy in Cont	ainer Qty on COC:	No					
Unpacked by Wesle	y Miller (2308) at 23	3:21 on 08,	/11/2016				
		Sample	es Chille	d Details			
Thermometer Types:	DT = Digital (T	emp. Botti	le) IR =	Infrared (Sur	face Temp)	All Temper	atures in °C.
Cooler # Thermometer ID C	orrooted Tomp The	rm Tune	lee Type	les Present?	Ice Container	Elevated Terr	Samples Collected Same Day as Receipt?
1 DT121	10.2	DT	Wet	Y	Bagged	<u>Lievated Tell</u> Y	<u>γ</u>

Page 9 of 10

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter
<	less than		
>	greater than		
ppm	parts per million - One ppm is equivalent to one aqueous liquids, ppm is usually taken to be eq very close to a kilogram. For gases or vapors,	e milligram per k uivalent to millig one ppm is equ	kilogram (mg/kg) or one gram per million grams. For rams per liter (mg/l), because one liter of water has a weight ivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis	Results printed under this heading have been a concentration to approximate the value present	adjusted for moi t in a similar sar	sture content. This increases the analyte weight nple without moisture. All other results are reported on an

Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis

as-received basis.

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX D Soil Boring and Monitoring Well Logs

LITHOLOGIC	LITHOLOGIC DESCRIPTION			REMARKS	Surf. Elev. 512
0 0'-1.0': Asphalt and subbase stone 1.0'-4.0': Dark brown silt with wood fragment fill. 2	nents, organic mater sand.	ial and other		Petroleum Odor at 5 ft. Boring was back filled with bentonite holepug and capped with a cold patch.	- 512

	Herr Foods, Inc. 273 Old Baltimore Pike Notthingham, Pennsylvania Project #: 101722001	Date Drilled Equipment Driller Logged By Surface Elevation	: 7/29/16 : Truck-Mounted Geoprol : Cascade : E. Dziedzic : 511 ft. MSL Approximat	be tely	Latitude/Longitude : Township/County : W. N Total Depth : 8.0 ft Diameter : 2-incl	ottingham Twp. bgs n boring	/Chester
Depth (Feet)	LITHOLOGIC DESCRIPTION			GRAPHIC	REMARKS	Surf. Elev. 511	
-0	0'-1.0': Asphalt and subbase stone.					511	
2-	1.0'-5.0': Brown silt with some clay, wood	I fragments, and root	S.		Boring was backfilled with bentonite holeplug and capp with cold patch.	- 509 ved	
4	5.0'-6.0': Tube sample for geotechnical a	nalysis.				- 507	
	6.0'-8.0': Greenish brown sandy silt.				Wet @ 6 ft.	- 505	
8-	Target Depth Reached at 8.0 ft bgs				a]	

	Herr Foods, Inc. 273 Old Baltimore Pike Notthingham, Pennsylvania Project #: 101722001	Date Drilled Equipment Driller Logged By Surface Elevation	: 7/29/16 : Truck-Mounted Geoprol : Cascade : E. Dziedzic : 508 ft. MSL Approximat	be rely	Latitude/Longitude : Township/County : W. Total Depth : 8.0 Diameter : 2-in	Nottingham Twp./) ft. bgs nch boring	/Chester
Depth (Feet)	LITHOLOGIC DESCRIPTION			GRAPHIC	REMARKS	Surf. Elev. 508	
0	0'-1.0': Asphalt and subbase stone.	y silt, dry.				508	
2-					Boring was backfilled with hole plug and capped with cold patch.	- 506	
4	4.0'-6.0': Light brown silty sand with weat fragments.	hered quartz and so	chist			- 504	
	6.0'-7.0': Tube sample for geotechnical a	nalysis.			vvet @ 6 ft.	- 502	
	7.0'-8.0': Brown sandy silt, dry.						
D-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-	I arget Depth Reached at 8.0 ft bgs						

	Herr Foods, Inc. 273 Old Baltimore Pike Notthingham, Pennsylvania Project #: 101722001	Date Drilled : 7/29/16 Equipment : Truck-Mounted Geopril Driller : Cascade Logged By : E. Dziedzic Surface Elevation : 507 ft. MSL Approxim		be tely	Latitude/Longitude : Township/County : W. Total Depth : 8.0 Diameter : 2-in	: : W. Nottingham Twp./Ches : 8.0 ft. bgs : 2-inch boring	
Depth (Feet)	LITHOLOGIC [DESCRIPTION		GRAPHIC	REMARKS	Surf. Elev. 507	
0	0'-1.0': Asphalt and subbase stone.					507	
2-	3.0'-5.0': Dark brown clayey silt with roots	s and organic materi	al.		Boring was backfilled with holeplug and capped with cold patch.	- 505	
	5 0' 6 0': Brown micacoous silty sand					- 503	
- - - 6-	6.0'-7.0': Tube sample for geotechnical la	ab analysis.			Wet @ 6 ft.	- 501	
	7.0'-8.0': Brown micaceous silty sand.	- 					
	Target Depth Reached at 8.0 ft bgs						

12-14-2016 H:\Projects\10172\10172\001\GS\Boring Logs\OW-1.bor

APPENDIX E Waste Disposal Manifests

AC NON-HAZARDOUS WASTE MANIFEST

NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID NON HA	No. NZ		Manifest Document No.	D34563	2. Page 1 of 1
3. Generator's Name and Mailing Address Herr Foods Incorporated 273 Old Baltimore Pike Norman PA 19362 4. Generator's Phone (1	Site Address				
5. Transporter 1 Company Name Environmental Recovery Corpor	ation 6.	US EPA ID Number PAD98726674	9	A. State Trans	1 Phone 717-5	93-2627
7. Transporter 2 Company Name	8,	US EPA ID Number		C. State Trans	porter's ID	
				D. Transporter	2 Phone	
9. Designated Facility Name and Site Address Environmental Recovery Corpor 1076 Old Manheim Pike Lancaster, PA 17601	10. ation	US EPA ID Number	g	E. State Facilit	y's ID <u>717-393-26</u> one	27
11. WASTE DESCRIPTION			Co No.	ontainers Type	13. Total Quantity	14. Unit WLA/ol
^{a.} Non RCRA/DOT Liquids (Drill (Cuttings)		4	DIM	2,500 KST	P.
2 b. И 5						
R c. A T						in .
p d. R						- W
G. Additional Descriptions for Materials Listed Above				H. Handling C	odes for Wastes Listed Abov	9
1.) Approval #. 1506-01926-LP	F					
15. Special Handling Instructions and Additional Inform	nation		2	1	PO:	
16. GENERATOR'S CERTIFICATION: I hereby certify in proper condition for transport. The materials de	that the contents of this ship scribed on this manifest are	oment are fully and accurately described a not subject to federal hezardous waste re	and are in guletions.	all respects		Date
Printed / Typed Name	a unultan;	Signature	UN	in	Mon	h Day Year
17. Transporter 1 Acknowledgement of Receipt of Mat	erials	10000				Date
Printed Typed Name		Signature			Mon	n Day Year
18. Transporter 2 Acknowledgement of Receipt of Mat	erials	2 Mg	T		00	Date
Printed / Typed Name		Signature			Mont	h Day Year
19. Discrepancy Indication Space						
20. Facility Owner or Operator: Certification of receipt	of the waste materials cover	ed by this manifest, except as noted in ite	m 19.			Date
Printed / Typed Name		Signature			Mont	h Day Year

ter.

APPENDIX F

Low Flow Groundwater Purging and Monitoring Data Sheets

REFINENCE We answer to you.

LOW-FLOW PURGUING AND SAMPLING DATA SHEET

6064766 Deborah Hannum

Site: Herr F	oods, Inc.,	Nottingham	n, PA			Field Perso	onnel: Por	ovar Co	-rell (5	12)		Deboran Hannun				
Date: 7/#	l Ic					Pump: Per	istaltic Pum	p Proge	tone Ale	2 x 1 5						
Weather 5	unny					Meter: Mu	ıltiparamete	r With Flov	V Cell Han	na 1419	8194	. · ·				
Well No.:		MW-1				Screened I	nterval:		7 to 27 ft.		Purgo SI	art: 111	5			
Well Depth	n:	27 ft.				Depth To \	Nater Befor	e Pump Ins	tallation: 3	54	5	na 115)			
Well Diamo	eter:	2-inch				Pump Inta	ke Depth:		10 ft.		Sample Tir	ne: 7/1/1	6 1138	1		
	p (S	6H	Condu (mS	ictivity /cm)	0 (m	RP 1V)	D (m	0 z/L)	TI (g	DS	Tei (°	mp	Pumping Rate*	Denth To		
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water		
1120	6.93	NA	0.129	NA	148.5	NA	4.44	NA	0.065	NA	16.24	NA	320	9.10		
~~~~~				N	IEASURE 1	WATER L	EVEL ONI	Y. DO NO	<del>)T SAMPI</del>	.E						
1125	6-87	0.06	0.129	6	142.8	5.7	4.50	0.06	0.065	0	16-11	0.13	320	4.14		
1130	6.87	0	0-129	Ø	140.7	2.1	4.35	0.15	0.065	0	15.96	0.15	320	7-14		
1135	6.85	0.02	0.130	0.001	138.7	2-0	4.51	0-16	0.065	0	15.96	0	320	4.14		
								_								
Stabilization Criteria	+/- 0	).2 SU	+/- 3% of	f Reading	+/- 20	0 mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- (	).2°C	N/	4		

* Not to exceed 500 ml/min

** Resolution accuracy of YSI 556

2

1.69 gals, purged

### We answer to you.

#### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

6064766 Deborah Hannum

		,	••											
Site: Herr	Foods, Inc., I	Nottingham	n, PA			Field Perso	onnel: <i>Dar</i>	o-cin (	orrell (	(STL)				
Date: 7	112/16					Pump: Peri	istaltic Pump	Proge	tive Ale	12) S				
Weather:	Sunny	79°F				Meter: Mu	ltiparamete	r With Flow	VCell Hani	na HÍ 48	794			
Well No.:	3	MW-3				Screened I	nterval:		5 to 25 ft.			at dates.		
Well Dept	h:	25 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 4	1.45	Purger ?	5ta-T-120 End: 122	70 5	
Well Diam	eter:	2-inch				Pump Intal	ke Depth:		11 ft.		Sample Tin	ne: 7/12,	16 122	28
	p	H	Condu	ıctivity	0	RP	D	0	TI	DS	Tei	mp	Pumping	
<b>T</b> :	(S	U)	(mS	/cm)	(m	IV)	(mg	g/L)	(g	/L)	(°	C)	Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1205	8.20	NA	1.210	NA	-1921	NA	1.33	NA	0-183	NA	19.51	NA	340	4-16
1210	8,33	0.13	1.570	0	-153.7	10.6	1-33	0.02	0. 785	0	18.55	0.04	340	4.80
1215	8.66	0.33	1.543	0.027	-174.2	20.5	1.31	0.02	0.772	0.013	18.59	0.04	340	4.82
1220	8.76	0.10	1.524	0.019	-179,9	5.7	1.30	0-01	0.761	0.011	19.60	0-01	340	4.85
1225	8.75	0.01	1.520	0.004	-184-9		1-30	Ó	0-761	0	18.57	0.03	340	4.85
C.,														
														· · · · · · · · · · · · · · · · · · ·
								<u></u>				· · · · · · · · · · · · · · · · · · ·		
Stabilization Criteria	+/- 0	l 0.2 SU	+/- 3% o	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- C	).2°C	N/	4

* Not to exceed 500 ml/min

** Resolution accuracy of YSI 556

2.25 gals purged

### REMEW

#### LOW-FLOW PURGUING AND SAMPLING **DATA SHEET**



vve	answer	to you	Ι.								6064766			
Site: Herr	Foods, Inc.,	Nottingham	n, PA			Field Perso	onnel: Dos	novan C	orrell	(STL)	Deborah H	annum		
Date: 7/	2/16					Pump: Peri	staltic Pum	Prone	tire Ale	×1'5				• •
Weather:	Sunny 7	7°F				Meter: Mu	ltiparamete	er With Flov	v Cell Han	naHI 981	94			
Well No.:		MW-5				Screened I	nterval:		7 to 27 ft.		0	~ 1 .		
Well Dept	h:	27 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 4	.29	Pivinge	Start: 1 E. J. i	030	
Well Diam	eter:	2-inch				Pump Intal	ke Depth:		10 ft.		Sample Tin	ne: 7/12/	16 .110-	1
	<b></b>	н	Condu	ıctivity	0	RP	D	0	Т	DS	Tei	nn,	Pumping	
	(S	U)	(mS/cm) age Reading Change Rea		(m	ιV)		g/L)	(g	:/L)	(°	с)	Rate*	Depth To
line	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1035	7-81		1.724		111-1	NA	1.37	NA	0.616	NA	20.17	NA	360	4.52
1040	4.89	0-02	1.270	0-046	102.6	8.5	1.32	0-05	0.635	0.019	20.24	0.07	360	4.56
1045	5.01	0.12	1-259	0.012	101.3	1.3	1.28	0.04	0-629	0.006	20.25	-0-01	360	4-60
1050	5-13	0.12	1-244	0-014	99.5	1-8	1.27	0.01	0-622	0.007	20.21	0.04	360	4.60
1055	5,23	0.10	1.233	0.011	58.5		1.29	0.01	0.616	0-006	20.01	0-0	360	7.60
1100	5.23	0	1-231	0.002	87.2	1-3	128	0	0-615	0.00(	20.01	0	360	4.60
						The Market State								
						/								
Stabilization Criteria	+/- 0	.2 SU	+/- 3% 0	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% o	of Reading		.2°C	N/	A

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

2.85 gals purged

<b>R</b> We	answer	The second	541 I.		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	6064 Debo	766 rah Hannum			
Site: Herr I	oods, Inc., I	Nottingham	, PA			Field Perso	nnel: Da	noroin	Govell	(STL)				
Date: 7/1	1/16	-				Pump: Peri	staltic Pum	p Picaac	tius A	laris				
Weather:	Sunny	78° F				Meter: Mu	ltiparamete	er With Flow	Cell Ita.	nna HI	98194			
Well No.:		MW-6			i kanali madi kana ta'da ku kana kana	Screened I	nterval:		3 to 20 ft.		Purge	Start :	1155	- and the Carl
Well Depti	ı:	20 ft.				Depth To V	Vater Befoi	e Pump Ins	tallation: 7	66		End: i	220	
Well Diam	eter:	2-inch				Pump Intal	ke Depth:		10 ft.		Sample Tin	ne: 7/11/	16 122	Z
	pH     Conductivity       (SU)     (mS/cm)       Time     Reading     Change     Reading     Change					RP 1V)	C	O g/L)	TI (g,	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1200	6.26	NA	0.129	NA	99.3	NA	6.40		0.064		19.31	NA	350	3.08
	0.20			N	TEASURE	WATER L	EVEL ON	. <del>Y. DO N</del> O	OT SAMPI	-E				
1205	6.26	0	0-131	0.002	95.4	3.9	6.27	013	0.066	0.002	19.39	0.05	350	3.09
1210	6.28	0.02	0-130	0.001	99.1	2.7	6.32	0.05	0.065	0.001	19.43	0.04	350	3.09
1215	6.29	0.0(	0-130	0	104.2	5-1	6.31	0.01	0.065	0	19.47	0-01	350	3.09
1220	6.32	0.03	0.129	0.001	106.2	2.0	6.28	0.03	0.065	0	19.39	0.08	350	3.09
Stabilization	+/- 0	I ).2 SU	+/- 3% 0	f Reading	+/- 20	L) mV**	+/- 0.2	I mg/L**	+/- 10% c	of Reading	+/- 0	).2°C	N	Α

RETTER	
We answer to you.	

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



6064766 Deborah Hannum

Site: Herr	Foods, Inc.,	Nottingham	n, PA			Field Perso	onnel: $ ho_{\mathcal{O}\mathcal{N}}$	man Go.	mell (s	TL)				
Date: 7/	12/16					Pump: Per	istaltic Pum	p Proac	tive Al	eri's				
Weather:	Sunay	78° F				Meter: Mu	ultiparamete	er With Flow	v Cell Han	ng HIG	98194			
Well No.:		MW-7				Screened I	nterval:		3 to 20 ft.				11-20	
Well Dept	:h:	20 ft.				Depth To \	Nater Befor	e Pump Ins	tallation: $\zeta$	55	Purga 5	tarted .	1120	
Well Diam	eter:	2-inch				Pump Inta	ke Depth:		~ 8 ft.		Sample Tin	re: 7/12	145	prin.
	F	он	Condu	uctivity	0	RP	D	0	Т.	DS	Ter	np.	Pumping	
Time	Reading	Change	(mS Reading	/cm)	mge Reading Change		(m	g/L)	(g	/L)	(°	C)	Rate*	Depth To
1125	6.36	NA	0.409	NA	-17 (	NA	1 3/	NA	Reading 0704	Change NA	Reading	Change	(ml/min)	Water
1130	6.52	12.16	0.405	0004	- 27.7	56	1 34	002	0 207	11A	10.21		360	5.90
1135	6.61	0 109	0.401	0004	- 77 4	03	134	0	6 200	0.002	1801	<u>0.78</u> A ia	360	6-11
1140	6.81	0.20	0.399	0.002	- 21.0	0.8	1.34	[7	0.199	0.002	1772	0.25	340	6:15
1145	6.89	0.80	0.398	0.001	-21.1	0.5	1.34	D D	0.199		17.64	0-056	360	V.11
												V	· & ·	0-1
Stabilization														
Criteria	+/- 0.	.2 SU	+/- 3% of	% of Reading +/- 20 mV**			+/- 0.2 ו	mg/L**	+/- 10% o	f Reading	+/- 0.	2°C	N/	4

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

2.37 gals purged

## We answer to you.

#### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



6064766

Site: Herr F	oods, Inc.,	Nottingham	n, PA			Field Perso	onnel: Do.y	oran Q	orrell (	STL>				
Date: 7/l	2/16					Pump: Per	istaltic Pum	p Proac	tive Al-	¥1- e-				
Weather:	Smany	73°				Meter: Mu	Iltiparamete	er With Flow	v Cell Han	~ > na H198	194			
Well No.:		MW-9				Screened I	nterval:		3 to 20 ft.		Pirrage 3	Start: 0	\$1511	
Well Depth	n:	20 ft.				Depth To \	Nater Befor	e Pump Ins	stallation: 🖥	. 41	Ŀ	nd: D	935	
Well Diame	eter:	2-inch				Pump Inta	ke Depth:		10 ft.	> f a	Sample Tir	ne: 7/12/	16 .093	S.
	r (S	oH GU)	Condu (mS	uctivity /cm)	0	RP	D (m	)O g/l)	T	DS	Te	mp	Pumping	Double T
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
0855	5.94	NA	1.482	NA	.8.9	NA	1.50	NA	0.741	NA	16.19	NA	350	399
0900	6_01	0.07	1-490	0.008	-15	10.4	1.38	0.12	0.746	0.005	15.89	0.30	350	4125
0905	6.03	0.02	1.500	0.010	-30	1.5	1-37	0.01	0.751	0.005	15.79	0.10	350	410
0910	6.02	0.01	1-534	0.034	- 3.2	O.Z	1-38-	0.01	0-765-	0-017	15.67	0.12	350	417
0915	6.01	0.01	1.615	0.081	· 3.Z	6.4	1.36	0.02	0.810	0.047	15.65	007	350	4.18
0920	6-07	0.00	1-694	0.079	9.9	6.7	1-36	0	0.849	0.039	15.52	0.13	350	4.18
0925	6-08	0.0 (	1.777	0.083	15.5	5.6	1.36	0	0.889	0.040	15.54	0.02	350	418
0930	6.21	0.13	1.832	0.055	25.5	10.0	1.36	0	0.918	0.029	15.44	0.10	350	UIB
0935	6.22	0_01	1.839	0.007	28.9	34	1.36	0	0.924	0.006	15.52	0.08	350	4.18
										~				1010
					s.									
					· .			22 100 E						
Stabilization	+/- 0	.2 SU	+/- 3% of	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	f Reading		.2°C	N/	

## We answer to you.

LOW-FLOW PURGUING AND SAMPLING DATA SHEET



Deborah Hannum

Site: Herr	Foods, Inc.,	Nottingham	n, PA			Field Perso	onnel: <i>Dav</i>	vovem C	omell	(STL)				
Date: 7/	12/16					Pump: Peri	istaltic Pum	p Proact	ive Al	lexis				
Weather:	Cloudy	72°F				Meter: Mu	Iltiparamete	er With Flov	Cell Itan	na Iti 9	18194			
Well No.:		MW-10				Screened I	nterval:		3 to 20 ft.					
Well Dept	h:	20 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 🌶	.88	Pairga	Start - 6	1800	
Well Diam	eter:	2-inch				Pump Intal	ke Depth:		10 ft.		Sample Tir	End: 09 ne: 7/12	330 117 - 128	24
		.u	Const				_				<u> </u>	1,1,001		
	р (S	ин 50)	(mS	ctivity /cm)	0 (m	KP NV)	D (mi	0 7/1)		DS /I)	Tei /•	mp	Pumping	
Time	Reading	, Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Kate* (ml/min)	Depth To Water
0805	5.53	NA	1-409	NA	-4-5	NA	1-31	NA	0.705	NA	19.95	NA	3.945	Jun
0810	5.52	0.01	1.420	0.011	5.1	7.6	1-33	0.02	0.711	0.006	19.86	0.09	340	294
0815	5.48	0.04	1.433	0.013	16.4	13.3	1.37	0.04	0.717	0-001	19-65	0.71	340	7.17
0920	5.46	0.02	1.485	0-00Z	29.9	13.5	1.32	0.05	0.718	0.001	19.35	0.27	340	394
0825	5.46	0	1-437	0.002	37.0	3.1	1.31	0-01	0.718	0	19.33	1.05	34/7	294
0830	5.48	0.02	1.433	0_004	36.0	3.0	1-30	0.01	0-716	0.002	19.28	0.05	340	594
													- 1-	
Stabilization Criteria	+/- 0	.2 SU	+/- 3% of	Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% o	f Reading	+/- 0	2°C		

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

2.7 gals parged

### RETERING We answer to you. te: Herr Foods, Inc., Nottingham, PA Field Personnel: Danascan Cerrell



6064766	
Deborah Han	r

Site: Herr	Foods, Inc.,	Nottingham	i, PA			Field Perso	onnel: Do.	no con	Cerrel	1 CSTL					
Date: 7/	12 16					Pump: Per	istaltic Pum	p Proca	ctive A	lexis					
Weather:	Sunny	75°F				Meter: Mu	Iltiparamete	er With Flov	v Cell Hav	nna HI a	18194				
Well No.:		MW-11				Screened I	nterval:		2 to 12.5 ft						
Well Dept	h:	12.5 ft.				Depth To \	Water Befor	e Pump Ins	tallation: 🕖	84*	Purge ?	stat: 0	950		
Well Diam	eter:	2-inch				Pump Inta	ke Depth:	1970 - Artestan	11.5 ft.		Sample Tir	ne: 7/12/1	16 1015		
	p	Н	Condu	ıctivity	0	RP	D	0	т	DS	Te		Pumping		1
	(S	U)	(mS	/cm)	(m	iV)	(mį	g/L)	(g,	/L)	(°	ΥC)	Rate*	Depth To	-
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
0955	6.36	NA	0.536	NA	48.5	NA	1.97	NA	0.268	NA	15.96	NA	350	1.04	*
1000	6.29	0.07	0.539	0.003	65.8	17.3	1-80	0.17	0-269	0.001	15:75	0.21	350	1.06	<b>*</b>
1005	6.19	0.10	0.535	0-004	75.5	9.7	1.84	0.04	0268	0.001	15:67	0.08	350	1.12	¥
1010	6.11	0.08	0-535	D	83.7	8.2	1-87	0.03	0.269	0.001	15.63	0.04	350	1.20	*
									-						
															-
<u> </u>															
															1
						<u> </u>									
Challen at			_												
Stabilization Criteria	+/- 0	.2 SU	+/- 3% of	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% o	of Reading	+/- (	).2°C	NA	Ą	

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

* Feet below top of metal casing

1.84 gals: purged

#### LOW-FLOW PURGUING AND SAMPLING **DATA SHEET** Deborah Hannum We answer to you. Field Personnel: Donoran Formell (STL) Site: Herr Foods, Inc., Nottingham, PA Date: 7/4/16 Pump: Peristaltic Pump Practice Alexis Powege Stated: 1030 Fuderel: 1055 Weather: Sunny 74°F Meter: Multiparameter With Flow Cell Hanne H 198194 Well No.: MW-12 Screened Interval: 2 to 12 ft. Well Depth: 12 ft. Depth To Water Before Pump Installation: 3.71Well Diameter: 2-inch Pump Intake Depth: Sample Time: 7/11/16 1058 9 ft.

ORP

(mV)

+/-20 mV**

Change

NA

3.6

4.4

28

40

Reading

211.5

207.9

203.5

199-7

195.7

DO

(mg/L)

Change

NA

0.21

0.01

0.02

Ô

Reading

256

2.35

234

232

2.32

TDS

(g/L)

Change

NA

Ô

0

0

0

+/- 10% of Reading

Reading

0 038

0.038

0.035

0.038

0.035

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

+/- 0.2 SU

pН

(SU)

Change

NA

0.02

12 07

0.09

0.12

Reading

5.25

5.27

5.34

5.43

5. 55

Time

1005

1040

1045

1050

10 55

Stabilization

Criteria

Conductivity

(mS/cm)

+/- 3% of Reading

Change

NA

0.001

D

Reading

0.077

0.076

0.076

0.076

0.076

+/- 0.2 mg/L**



Temp.

(°C)

Change

NA

0.43

0.03

0.09

0.04

+/- 0.2°C

Reading

16-59

16.16

16.19

16.10

16.14

Pumping

Rate*

(ml/min)

320

320

320

320

320

Depth To

Water

4:10

4.13

4.15

7.17

4-18

NA

2.11 gals purged

## We answer to you.

#### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



Deborah Hannum

Site: Herr Foods, Inc., Nottingham, PA						Field Perso	onnel: <i>Dev</i>	iscon Ce	errell (	STL)				
Date: 7/#	1/12					Pump: Per	staltic Pum	p foractio	e Aleris I	op				
Weather:	Sunny	72°F				Meter: Mu	ltiparamete	er With Flow	Cell Han	na H198194	Purger 9	started:	0935	Endel: 1
Well No.:		MW-13				Screened I	nterval:		2 to 12 ft.					
Well Depth	ו:	12 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 5	202				
Well Diame	eter:	2-inch				Pump Inta	ke Depth:		9 ft.	2	Sample Tir	ne: 100	<u>8 71111</u>	k .
	p	oH	Condu	(cm)	0	RP	D	0	T	DS	Tei	mp.	Pumping	Denth T
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Кеаding	Change	Reading	Change	(ml/min)	Water
0940	4-84	NA	0.275	NA	195.6	NA	7.25	NA	0.136	NA	15.94	NA	340	<b>9</b> .72
0945	5.00	0.16	0.267	0-00%	199.4	3.8	6.63	0.62	0.133	0.003	16.09	0.15	340	5.80
09.50	507	0.03	0-266	0.001	201.7	2.0	6.32	0.31	0.133	0	16.19	0-10	390	5.83
0955	5:02	0_01	6-266	0	207,5	6-1	6.27	0.05	0.133	Ø	15.95	8.24	340	5.84
1000	5.00	0.02	0.265	0.001	212.3	4.8	6.36	0.09	0.132	0.001	15.71	0.24	340	5.85
1065	5.03	0.03	6.264	0.001	215.6	3.3	6.29	0.07	0.132	0	15.61	0-10	340	5.85
													·	
-														
Stabilization	+/- (	).2 SU	+/- 3% o	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- 0	).2°C	NA	4

# We answer to you.





Deborah Hannum

Field Personnel: Donowan Correll (STL) Site: Herr Foods, Inc., Nottingham, PA Date: 7/11/16 Pump: Peristaltic Pump Proactive Alexis Weather: Suppy 73°F Meter: Multiparameter With Flow Cell Hanna H 198194 Purse Start: 1240 Well No.: ₩-8 5W Screened Interval: 3 to 20 ft. End: 1325 Depth To Water Before Pump Installation:  $\int g' \zeta'$ Well Depth: <del>20 ft.</del> Well Diameter: Pump Intake Depth: Sample Time: 7 11/6 1328 2-inch-100 10 ft. ORP DO Conductivity pН TDS Temp. Pumping (mg/L)(SU) (mS/cm) (mV) (g/L) (°C) Rate* Depth To Reading Time Change Reading Change Reading Change Reading Change Reading Change Reading Change (ml/min) Water 16.62 0.63 0.819 -1929 1245 7-80 NA NA NA NA 0.410 NA NA 450 6.02 1250 MEASURE WATER LEVEL ONLY. DO NOT SAMPLE 0.410 0.54 6.28 1250 7-94 0-14 1.520 0.09 15.42 1.2 450 6.001 -180-7 12.2 0 0 7.69 1255 0-25 0-822 0.78 0.410 6.28 148.9 31.8 0-24 0.58 0.002 16.00 450 0.813 60 16-25 450 1300 -56 0.13 0.009 -155.5 0. 0.407 8-003 0.28 628 0.18 6 15.97 1305 7.62 6-809 0-60 0.00 0.404 0.003 6.28 0.00 0.004 -156-6 0.31 450 15.94 0.808 0.57 0.03 0:404 450 7.65 0-03 -160.4 38 0.03 1310 0.001 0 6.28 0.56 1287 450 67 0.864 0.004 - 162.9 2.5 0.00 0.402 0-002 0.07 6.28 1315 0.02 450 7-65 6.801 0.003 9 0.55 15-71 0.02 0.401 6.28 -164.8 1320 0.01 0-001 0.16 0.56 7.55 0:199 -164-6 15.79 450 0.7 1325 0002 0.01 0-400 0.001 0.08 6.28 0.10 Stabilization +/- 3% of Reading +/- 20 mV** +/- 0.2 mg/L** +/- 10% of Reading +/- 0.2°C +/- 0.2 SU NA Criteria

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

5.35 gallons purged

### **RETTERN** We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F Date: 8 Weather:	ioods, Inc., M [19]16 SUNN	Nottingham	, РА			Field Perso Pump: Per Meter: Mu	istaltic Pump Itiparamete	D270 v r With Flow	Cell					
Well No.:		MW-14S				Screened I	nterval:		3 to 10 ft.					
Well Depth	n: eter:	10 ft. 2-i <i>nc</i> h				Depth To \ Pump Inta	Nater Befor ke Depth:	e Pump Ins	8 ft.	5.12	Sample Tin	.70 B ne: 8:50	65	
Time	p (S Reading	H U) Change	Conduc (mS/	ctivity cm)	Ol (m	RP IV) Change	D (mg	O g/L) Change	Ti (g, Reading	DS /L) Change	Ter (° Reading	mp. C) Change	Pumping Rate*	Depth To Water
8:31	5.67	NA	2.587	NA	35.7	NA	4.65	NA		NA	23.15	NA	300	5.69
8:36	5.67		2.649		42.1		4.23				24.07		350	5.82
8:39	5.77		2.892		44.5		3.95				23.91		300	5.90
8:42	5.78		2.840		41.1		3.69				23.70		300	5.98
8:45	5.79		2.707		37.6		3.54				23.44		300	6.04
8:48	5.79		2.607		34.1		3.46				23.31		300	6.09
<u> </u>														
Stabilization Criteria	+/- 0	0.2 SU	+/- 3% of	Reading	+/- 20	) mV**_	+/- 0.2	 mg/L**	+/- 10% (	of Reading	+/-	0.2°C	N	I

* Not to exceed 500 ml/min

## We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F Date: 8 Weather: Well No.:	ioods, Inc., N BILG (1 SUM	Nottingham 6 1-1 80 MW-14D	, PA 0			Field Perso Pump: Peri Meter: Mu Screened I	nnel: E staltic Pump Itiparamete nterval:	D D27 o r With Flow	Cell 15 to 25 ft.	C 10		6.22	Pro	
Well Depth	1:	25 ft.				Depth To V	Water Befor	e Pump Ins	tallation:	5.40	100	5.12	567	
Well Diame	eter:	2-inch	<u> </u>		<u> </u>	Pump Inta	ke Depth:		20 ft.		Sample Tin	ne: (	40	
Time	p (S Reading	H U) Change	Condu (mS/ Reading	ctivity (cm) Change	OI (m Reading	RP V) Change	D (m) Reading	O g/L) Change	TE (g/ Reading	OS /L) Change	Ter (°	np. C)	Pumping Rate*	Depth To Water
9:20	5.16	NA	1.658	NA	167.5	NA	2.15	NA		NA	20.39	NA	350	7.19
9:24	5.05		1.644		179.9		1.83				19.92		300	7.28
9:27	4.42		1.598		222.2		1.42				18.95		300	7,76
9:31	4.46		1.606		222.5		1.55				18.79		300	7.76
9:35	4.58		1.620		216.1		2.24				18.76		300	2.74
9:38	4.68		1:639		210.4		2.26				18.74		300	7,70
														<u> </u>
						 					ļ		ļ	
Stabilization Criteria	+/- (	).2 SU	+/- 3% 0	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/-	0.2°C	1	 NA

* Not to exceed 500 ml/min

<b>RETTERN</b>	LOW-FLOW PURGUIN	ig
We answer to you.	DATA S	He
e: Herr Foods, Inc., Nottingham, PA	Field Personnel:	E

#### AND SAMPLING EET

Site: Herr F Date: Weather:	Boods, Inc., N BIIGI	Nottingham 16 14 80	, PA			Field Perso Pump: Peri Meter: Mu	staltic Pump Itiparamete	D DZ		Z				
Well No.:		MW-14D				Screened I	nterval:		15 to 25 ft.	1	0.0			
Well Depth	1:	25 ft.				Depth To V	Vater Before	e Pump Ins	tallation:	6.21	9.50	2		
Well Diam	eter:	2-inch				Pump Inta	ke Depth:		20 ft.		Sample Tin	ne: 10:	17	
Time	p (S	H U)	Condu (mS/	ctivity (cm)	OF (m	RP V)	D (mg	0 ;/L)	TI (g, Reading	DS /L)	Ter (°	np. C)	Pumping Rate* (ml/min)	Depth To Water
9:59	5 55	NA	444	NA	112.7	NA	1.16	NA	incut ing	NA	19.10	NA	500	2:03
10:04	5.49		1.447		(15.8		1.19				19.08		300	8.60
10:09	5.54		1.475		110.8		0.62				19.50		300	8.25
10:13	5-86		6.487		110.0		0.50				19.60		300	8.18
10:17	5.57		1.492		110.6		0.44				19.61		300	8.17
<u> </u>								 						
					·									
								-						
									·					
Stabilization Criteria	+/- 0	).2 SU	+/- 3% o	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/-10% (	of Reading	+/-	0.2°C	N	1A

* Not to exceed 500 ml/min

R		EW	SM	20	LOW-FLC	DW PUF D/	GUING ATA SHE	AND SA ET	MPLING					
Site: Herr F Date: C Weather:	oods, Inc., I 71161 SUNA	Nottingham	, PA			Field Perso Pump: Peri Meter: Mu	innel: E istaltic Pump Iltiparamete	か Dマ 、 r With Flow	Cell	SIZ				
Well No.: Well Depth Well Diame	eter:	MW-14S 10 ft. 2-inch				Screened II Depth To V Pump Intal	nterval: Vater Before ke Depth:	e Pump Inst	3 to 10 ft. tallation: 8 ft.	6.13	ر م Sample Tim	:40 ne: 10:	56	
Time	p (S Reading	H U) Change	Condu (mS/ Reading	ctivity /cm) Change	OR (m	tP V) Change	Do (mg Reading	D (/L) Change	TE (g/ Reading	05 (L) Change	Ten (°C	np. C) Change	Pumping Rate* (ml/min)	Depth To Water
10:42	6.11	NA	2.391	NA	-43.3	NA	2.60	NA		NA	24-5Å	NA	300	6.65
10:40	6.09		2.449		-42A		1.26				24.08		300	6.94
10:50	6.09	a.	2.470		- 44.8		0.79				23.82		300	7.07
10:53	6.10		2.461		- 47.3		0.56				23.68		300	7.16
10:55	6.10	-	2,455		- 48.8		0.45				23.58		300	7.19

×

* Not to exceed 500 ml/min

Stabilization

Criteria

** Resolution accuracy of multiparameter meter

+/- 0.2 SU

+/- 3% of Reading

+/- 20 mV**

+/- 0.2 mg/L**

+/- 10% of Reading

+/-0.2°C

NA

R	answer	to you	SM		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING					
Site: Herr F	oods, Inc., l	Nottingham	n, PA			Field Perso	onnel: Par	io-an (	Ernell	(STL)	6093063			1
Date: 10	14/16					Pump: Peri	staltic Pump	Proact	rue Ale	<u>ک</u> ت ج	Deborah Han	num		
Weather:	Cloudy	67°F				Meter: Mu	ltiparamete	r With Flow	Cell Haim	ng HI 9	19194		-	
Well No.:		MW-3				Screened I	nterval:		5 to 25 ft.					
Well Depth	1:	25 ft.	de 1990 Madagebachts als and 61 a as 180 adorbitishing anothe	ant, anna dh' Baille, bha stara ann t' shellan an anna dha antar basachan y bha		Depth To V	Vater Befor	e Pump Ins	tallation: 6	.05	Start Pu	nge: 1210		Radours de l'est abar con e acta anna anna debara
Well Diame	eter:	2-inch			r	Pump Intal	ke Depth:		11 ft.		Sample Tin	ne: 10/4/14	1242	
	р (S	oH SU)	Condu (mS,	ictivity /cm)	OI (m	RP IV)	D (mg	O g/L)	тс (g/	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1215	6.08	NA	0.975	NA	-83.4	NA	1-65	NA	0_483	NA	22_33	NA	375	6.34
1220	6.02	0-06	0.928	0.017	-96.6	13.2	1.63	0.02	0.465	0.018	21.73	0.60	375	6.48
1225	6.11	0.09	0-967	D.039	-115.9	19.3	1-69	0.06	0-484	0.019	21.60	0.07	375	6.54
1230	6.15	0.04	0-981	0_014	- 122.4	6.5	1-71	0.02	0.491	0.007	21.60	0.06	375	6.54
1235	6.19	0.04	0.985	0.007	-128.0	5.6	1-73	0.02	0.493	0.002	21.54	0.06	375	6.54
1240	6.21	0.02	0-987	0.001	-130.8	2.8	1-74	0.0(	0-495	0.002	21.53	0:01	375	6.54
	-													
												-		
					· · · ·									
Stabilization Criteria	+/- C	.2 SU	+/- 3% 0	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% o	of Reading	+/- (	0.2°C	N	A

** Resolution accuracy of YSI 556

Total Purgod 2-97 gorla

-03

R We	)//// answer	to you	т sм I.		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	3				
Site: Herr I	oods, Inc.,	Nottingham	, PA			Field Perso	onnel: Do	norman	Correl	I (STL)	) 6093063			
Date: <i> の </i>	4/16					Pump: Per	istaltic Pum	p Pinga	firm Al	avre	Deborah I	Hannum		
Neather:	Cloud	167°F	<del>.</del>			Meter: Mu	ltiparamete	er With Flow	Cell Han	na HE 9	8194			
Well No.:		MW-4				Screened I	nterval:		0 to 19 ft.					
Vell Deptl	1:	19 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: /	G.C.				
Vell Diam	eter:	2-inch	alalan an tao an an tao an		n a nach-dhainn an - achainn chuinn chuidh dha - a ha	Pump Inta	ke Depth:		10 ft.		Start Pu Sample Tin	ne: 10/4/	0	•
	p (S	и и Н	Condu (mS	ıctivity /cm)	OI (m	RP NV)	D	0 7/1 )		DS (1)	Ter	np.	Pumping Pato*	Donth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
255	6_54	NA	0.734	NA	-136.7	NA	1-72	NA	0.367	NA	Z1.95	NA	375	7.25
300	6.53	0.01	0-735	0.001	- 139.1	Z. 4	1-71	0.01	0.368	0.001	21.98	0.03	375	7.30
1305	6.51	0.0Z	0-744	0.009	-140.2	1.[	l-7(	0	0.373	0.005	21-76	0.22	375	7.38
310	6-49	0.02	0-747	0_00 3	-139-1	l. (	1-72	0.01	0.377	0	21.62	0.14	375	7.42
315	6.45	0.04	0-752	0005	-136.6	2.5	1.72	0	0.376	0.003	21.49	0.13	1375	7.47
320	6.45	0	0_753	0.001	-135.9	0_7	1-72	0	0.377	0.001	21-42	0.07	375	7.48
tabilization Criteria	+/- 0	.2 SU	+/- 3% of	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	f Reading	+/- (	).2°C	N	A

** Resolution accuracy of YSI 556

-04

R We	answer	to you	SM		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	6				
Site: Herr F	oods, Inc.,	Nottingham	n, PA			Field Perso	onnel: Dov	novain (	Correll	(STL)	6093063			
Date: 10	2/4/16					Pump: Peri	staltic Pum	Prode	tive Al	exis	Deborah Har	inum		
Weather:	Sunny 5	90 F				Meter: Mu	ltiparamete	r With Flov	VCell Hai	nng HI	98194	+		
Well No.:		MW-5				Screened I	nterval:		7 to 27 ft.					
Well Deptl	1:	27 ft.				Depth To V	Vater Befor	e Pump Ins	tallation:	5.37		0071	<b>1</b> 4	al any year barratanan any any any any any any any any any
Well Diam	eter:	2-inch	-			Pump Intal	ke Depth:		10 ft.		Sample Tin	ne: <u>10 4  </u>	6 090	2
	p (S	iH iU)	Condu (mS,	ictivity /cm)	OI (m	RP IV)	D (mį	O g/L)	T (g	DS /L)	Tei (°	тр. С)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
0840	4-60	NA	0-050	NA	47.1	NA	1-72	NA	0.426	NA	23.40	NA	<i>`375</i>	9.88
0845	4.60	0	0-873	0.023	37.9	10.8	1-67	0.05	0.437	0_011	23.54	0.14	375	5.90
0850	4.61	0.01	0.877	0.004	66.6	8.7	1-67	0	0.439	0.002	23.49	0.05	375	5.94
0855	4.62	0-01	0.870	0.007	74.7	8-1	1-62	0.05	0.434	0.005	23.47	0.02	375	5.95
D900	4.65	<i>д.03</i>	0-867	0.003	80.8	6.1	1-63	0.01	0.433	0.001	23.43	0.04	375	9-96
· · · · · · · · · · · · · · · · · · ·														
Stabilization														
Criteria	+/- 0	).2 SU	+/- 3% 0	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/-(	0.2°C	N	A

R	) answer	to you	SM		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING						
<b>ite:</b> Herr F	oods, Inc., I	Nottingham	<i>,</i> PA			Field Perso	nnel: D <i>on</i>	oran Co	ell (5	rl) 609	<b>118 1111 1111 11</b> 3063				
Date: 1 <i>0[</i>	4110					Pump: Peri	staltic Pum	froget	ive Alex	Deb 175	orah Hannum				
/eather:	Sunny 6	2°F				Meter: Mu	ltiparamete	r With Flow	Cell Han	na HI9	8194				
Vell No.:		MW-7				Screened I	nterval:		3 to 20 ft.						
ell Deptl	1:	20 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 7	7.12	Start Pur	a: 0915			
ell Diam	eter:	2-inch				Pump Inta	ke Depth:		8 ft.		Sample Tin	ne: 10/4/1	16 -094:	2	
	p (S	н U)	Condu (mS/	ictivity /cm)	OF (m	RP V)	D (mį	0 g/L)	TI (g,	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To	
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1940	507		0.403	NA 6.04.0	- []~ /	NA	1.12	NA Dat	0.201	NA	0.61	NA	370	1.82	
925	4.93	0.14	0-398	0.00 5	-14.8	0.9	1-71	0.01	0.199	0.002	20.23	0.38	200	1.91	
1930	7.76	0_01	0-343	0.003	-15.9	1.7	1,77	0.00	0.198	0.001	19-96	0.27	310	1.97	
9935	4.84	0.02	0.399	0.004	-13.8	0.4	1.71	0	0.119	0.00[	19-99	0.12	310	804	
				Meter: Multiparameter With Flow Cell $H_{GMMg}$ # $f 1 99/94$ Screened Interval: 3 to 20 ft.           Depth To Water Before Pump Installation: 7. [2           Start Purge - 0915           Pump Intake Depth: 8 ft. Sample Time: 10/4//6 - 0949           Conductivity         ORP         DO         TDS         Temp.         Pumping model           (mS/cm)         (mV)         (mg/L)         (g/L)         Conductivity         ORP         DO         TDS         Temp.         Pumping mate*           eading         Change         Reading         Change         Pumping mate*           (mS/cm)         (mV)         (mg/L)         (g/L)         Pumping mate*           eading         Change         Reading         Change         Pumping mate*           (mS/cm)         (m/L)         Pumping mate*           G.00 \$\Sigma - 15.7         NA         0.201         0.002         20.23         0.37											
tabilization Criteria	+/- 0	0.2 SU	+/- 3% of	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- (	).2°C	N	<u>а</u>	

** Resolution accuracy of multiparameter meter

A.9

-0x

We	answer	to you	вм		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	]				
<b>ite:</b> Herr F	oods, Inc., I	Nottingham	, PA			Field Perso	nnel: <i>Dan</i>	oran G	mell (s	TTL)				
Date: (0/3	8/16					Pump: Peri	staltic Pum	Proact	Fire Ales	ci \$	6093063 Deborah H	lannum		
Veather:	Sunny	71° F				Meter: Mu	ltiparamete	r With Flow	VCell Han	noi Hja	17197	·		
Vell No.:		MW-9				Screened I	nterval:		3 to 20 ft.					
Vell Depth	:	20 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 5	10	start Ru	rap. 113	75	
Vell Diame	eter:	2-inch				Pump Intal	e Depth:		10 ft.		Sample Tin	ne: 10/3/1	6 1352	2
	р (S	H U)	Condu (mS/	ctivity /cm)	OI (m	RP IV)	D (m	0 g/L)	TI (g	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth Tc
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
330	4-79	NA	2.901	NA	175.5	NA	1.72	NA	1.46 Z	NA	18.45	NA	<b>B</b> 15	5.40
335	4-86	,0.07	3.018	0-117	178.7	えて	1.71	0.01	1_509	0.047	18.19	0.26	375	5.59
340	Pump: Peristaltic Pump Proc of ice Alexis       B000003 Debond Hamum         ther:       Sungy 71° F       Meter: Multiparameter With Flow Cell Hamma III 97 (177         No.:       MW-9       Screened Interval:       3 to 20 ft.         Depth:       20 ft.       Depth To Water Before Pump Installation: $5.10$ $5fer + flarge:$ $01926$ Diameter:       2-Inch       Pump Intake Depth:       10 ft.       Sample Time: $10/3/6$ 13 5         pH       Conductivity (mS/cm)       ORP (mV)       DO       TDS       Temp. (g/L)       Pumping Rate* (m//min $30$ $4.774$ NA $2.901$ NA $175.5$ NA $1.72$ NA $1.462$ NA $18.45$ NA $975$ $35$ $4.56$ $0.07$ $3.015$ $0.117$ $178.7$ $3.2$ $1.71$ $0.01$ $1.509$ $0.047$ $8.26$ $3.75$ $40$ $4.962$ $0.01$ $3.033$ $0.85$ $179.6$ $0.91$ $1.509$ $0.047$ $8.26$ $3.75$ $4.542$ $0.001$ $3.033$ $0.85$ $179.6$ $0.91$ $1.509$ $0.047$ $8.26$													
1745	4.862	- 0.0(	3.04Z	0,009	178-7	0.9	1.73	0.01	1-519	0.002	17.59	0-26	375	5.75
350	4.90	0.04	3_0[1	0.031	175.9	2.8	1.73	0	1.504	0.015	17.5 (	0.08	375	5.78
							· · ·							
tabilization	+/- 0	.2 SU	+/- 3% of	Reading	+/- 20	m\/**	+/-0.2	mg/l **	+/- 10% c	of Reading		) 2°C		

R	answer	E to you	SM		LOW-FL	OW PUF D/	GUING ATA SHE	AND SA ET	MPLING	· · · · · · · · · · · · · · · · · · ·				
<b>Site:</b> Herr F	oods, Inc., I	Nottingham	i, PA			Field Perso	nnel: Com	oran Co	mell	(STL)	6093063			
Date: 10	<i> 3 16</i>					Pump: Peri	staltic Pump	Proact	The Alex	575	Deborah Hann	um		
Weather:	Sunny 1	68°F				Meter: Mu	ltiparamete	r With Flow	/Cell Han	ng HI	98194	· · · · · ·		· · · · ·
Well No.:		MW-10				Screened I	nterval:		3 to 20 ft.		<i></i>			
Well Depth	1:	20 ft.			1	Depth To V	Vater Befor	e Pump Ins	tallation: $Q$	_94	Paras	tat: 12	75	
Well Diame	eter:	2-inch				Pump Intal	e Depth:		10 ft.	•	Sample Tin	ne: 10/3/1	6 1302	
	p (S	H 11)	Condu	ctivity (cm)	Ol (m	RP	D	0	TC	DS (L)	Ter /°	np.	Pumping Bate*	Denth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1230	5.35	NA	1.593	NA	86.4	NA	1-80	NA	0.799	NA	14.18	NA	375	5.11
1235	5.31	0.04	1.602	0.009	88.1	1.7	1-68	0.1Z	0.802	0.003	23.92	0.26	375	5.15
1240	5.27	0.04	1-597	0.005	94.7	6.6	1-62	0.06	0.799	0_003	73.32	0.60	375	5,21
1245	5-30	0.03	1-584	0-013	89.8	4.9	1.62	0	0.79°Z	0.007	23.08	0_ 24	375	5:22
1250	5.29	0.01	1-577	0.007	89-5	0.8	1.60	0.02	0.788	0.004	22.94	0-14	375	522
1255	5.29	0	1.500	0.017	86.8	Z.7	1.62	0.0Z	0.780	6.008	22.70	0.24	375	5,22
1300	5.30	0.01	1553	0.007	84-4	2.4	1.61	0-01	0-776	0.004	22.64	0.06	375	5.22
							÷							
				-										
Stabilization	+/- 0	.2 SU	+/- 3% of	f Reading	+/- 20	) mV**	+/-02	mg/l **	+/- 10% c	f Reading	+/- (	ן ז זיר	<u>۸</u>	۱۸

** Resolution accuracy of multiparameter meter

-12

We Site: Herr F Date: [0]	answer	to you	sм I. , РА		LOW-FL	OW PUF D/ Field Persc Pump: Per	RGUING ATA SHE onnel: Dave	AND SA ET Novan	MPLING Connell of time A	CSTL. lexis	6093063 Deborah Han				
Weather:	Sunny	72°F				Meter: Mu	Iltiparamete	r With Flow	v Cell Han	na HI "	18194				
Well No.:		MW-11				Screened I	nterval:		2 to 12.5 ft	•					
Well Depth	epth:12.5 ft.Depth To Water Before Pump Installation: 0.38Start Pumpe:1410iameter:2-inchPump Intake Depth:11.5 ft.Sample Time:10/3/161432														
Well Diam	th:     12.5 ft.     Depth To Water Before Pump Installation: 0.38     start Purge:     1410       neter:     2-inch     Pump Intake Depth:     11.5 ft.     Sample Time:     0/3/16     1432       pH     Conductivity     ORP     DO     TDS     Temp.     Pumping														
Time	p (S Beading	H U)	Condu (mS,	ictivity /cm)	Ol (m	RP IV)	D (mg	O g/L)	TI (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To	
1415	6.03	NA	0.564	NA	137.0	NA	2.30	NA	nz74	NA	1794	NA	270	N 70	
1420	5.92	0.11	0.548	0 DÍ 6	132.2	48	2.09	0.21	02 75	0.001	17.23	0.01	370	0.13 neli	
1425	5.94	0.02	0.547	0.001	128.7	3.5	2.08	0.01	0.273	0.002	17.24	0.01	370	0.86	
1430	5.94	0	0.547	0	127.5	1.2	2.10	0.02	0-272	0.00	17.24	0	370	0.88	
								₹¥ię.							
	<u> </u>														
Stabilization	+/- 0	.2 SU	+/- 3% o [.]	f Reading	+/- 20	 mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/-(	) 2°C	N	Δ	

 $\sim 2$ 

** Resolution accuracy of multiparameter meter

VIR

R We	M answer	Т to you	Т sм		LOW-FLOW PURGUING AND SAMPLING DATA SHEET										
Site: Herr F Date: 10 Weather:	Foods, Inc., I 13/[6 <u>5nnny</u>	Nottingham	n, PA		Field Personnel: Donaran Correll (STL) Pump: Peristaltic Pump Froactire Alexis Meter: Multiparameter With Flow Cell Hanna HI 98194										
Well No.: Well Depth Well Diam	n: eter:	MW-12 12 ft. 2-inch			Screened Interval: 2 to 12 ft. Depth To Water Before Pump Installation: 5,47 sta Pump Intake Depth: 9 ft. Sar							$4\pi\sqrt{-f_{urge}} = 1050$			
	p (S	H U)	Condu (mS,	ctivity /cm)	OI (m	RP IV)	D (mք	O g/L)	TI (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To	
1055	Reading	Change NA	Reading	Change NA	Reading	Change NA	Reading	Change NA	Reading のの2石	Change NA	Reading	Change NA	(ml/min) つって	Water	
1100	4-37	0.01	0.077	0.001	303.5	47.0	3.37	0.26	0.039	0	17.47	011	375	5 57	
1105	4-98	0.11	0-077	0	311.5	8.0	3.5 (	0.06	0.039	0	17.36	0-11	375	5.54	
11 10	4-83	0-35	0-077	0	301.2	10.3	326	0.05	0.039	0	17.56	0.20	375	5.58	
1115	5.07	0.24	0.077	0	219-6	1.6	3.23	0.03	0.038	0.001	17.37	0.19	375	5-61	
1120	497	0-1	0.077	0	306.2.	6.6	2.28	0.05	0-039	6.00 l	17.40	0.03	375	5-62	
Stabilization Criteria	+/- 0	.2 SU	+/- 3% of	Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% o	f Reading	+/- (	).2°C	N	Α	

** Resolution accuracy of multiparameter meter

2

Total Purged 2.97 gal.

R	B			B		F SM
We	e ar	ารพ	/er	to	you	

Site: Herr Foods, Inc., Nottingham, PA

Date: 10/3/16

#### LOW-FLOW PURGUING AND SAMPLING

#### **DATA SHEET**

Field Personnel: Donoran Correll (STL)



Deborah Hannum

Pump: Peristaltic Pump Pragotive Alexis Meter: Multiparameter With Flow Cell Hanna HT 98194 Weather: Sanny 66°F Well No.: MW-13 Screened Interval: 2 to 12 ft. Well Depth: 12 ft. Depth To Water Before Pump Installation: 6.63Paras 54 += 1140 Well Diameter: 2-inch Pump Intake Depth: 9 ft. Sample Time: 10/3/16 17/2 pН Conductivity ORP DO TDS Temp. Pumping (SU) (mS/cm) (mV)(mg/L)(g/L) (°C) Rate* Depth To Reading Reading Time Change Change Reading Change Reading Change Reading Change Reading Change (ml/min) Water 507 5.09 1145 NA 0.205 NA 289.4 NA NA 0.103 17.81 NA 370 6.95 NA 303.6 5.04 0.05 0.101 17.73 0.25 0.203 142 370 1150 0.002 0.08 698 0.002 1155 488 0-11 0203 294.4 9.7 4.88 0 0.16 0.102 370 0.37 6.99 18.05 0.00 296.5 4 94 4.90 0.02 0.204 0.06 1200 0.001 2.1 0.102 17.68 0.37 7.02 370 0 6.08 4.82 0-204 0 299.5 1205 3.0 4.88 0.06 O.PZ D 17.84 370 0.16 7:03 0.204 4.10 D 1210 0.08 294.8 4-89 4.7 0-01 0-10Z 17-89 Û 0.05 370 704 Stabilization +/- 0.2 SU +/- 3% of Reading +/- 20 mV** +/- 0.2 mg/L**

* Not to exceed 500 ml/min

Criteria

Total Purged 2.93 gal.

NA

+/-0.2°C

** Resolution accuracy of multiparameter meter

+/- 10% of Reading

			т											
R					LOW-FL		RGUING	AND SA	MPLING					
			SM			D	ATA SHE	ET			an a		а	
vve	answer	lo you	<b>.</b>		ar ta a bara dan di kacamatan da kata da		. 0	an a	1	Ist1		┼┫╾┼┫╎╡┫┫╌┤┤╎┼┤╌┫╻╋┤	<b>┃<b>╶</b>╏╎╏╏╶╎╎╎╴╎╏╏╎╴</b>	
te: Herr H	-00ds, Inc., I 1	Nottingham	і, РА			Field Perso	onnel: <i>Por</i>	o-an	Correll	() ()	Deborah Hannu	m		
ate: 10/ Ioothor:	4110 C (	HOE				Pump: Peri	Istaltic Pump	) <i>Proact</i> r With Flow	The Ale	XIS HTO	ÎC 1911			
	Junny 6	<u> </u>	n nh Mall			Coreened L			Open inter	na 11 L 1	0 faat			
/ell No.:		Former Sup	ppiy weii			Screened I	nterval: Notos Dofos	- D	Open Inter	vai/4 to 21	.U teet			
ell Depti	1:	210 ft.		-		Depth IOV	vater Betor	e Pump ins		-17	Start Pur	30: 1000	1 48901	
					<u> </u>	r unip nita							<u>~ 1028</u>	
	р (S	H U)	Condu (mS	uctivity /cm)	0 (n	RP 1V)	D (mg	O g/L)	ті (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
005	1.19	NA	1.011	NA	-171.0	NA	1-66	NA	0.505	NA	18-85	NA	900	7.20
010	7.2	0.02	1-010	0.001	-171.7	0.007	1.67	0.01	0.505	0	18.86	0.01	400	7-24
D15	1.24	0.03	1.008	0.002	-171.3	0.004	1.66	0-01	0.504	0.001	18.77	0.09	400	7.24
020_	7-25	0.01	1.005	0.003	-1 11-9	0.001	1.66	0	0.503	0.001	18.71	0.06	400	7.24
025	7.26	0-0(	1-003	0.00.2	-71.6	0.002	1-66	0	0.50	0.002	18-63	0.06	400	7.24
•				· · · · ·										
tabilization	+/- (		+/- 3% 0	f Reading	+/- 20	) mV**	+/-02	mg/l **	+/- 10% (	f Reading	+/-	0.2°C	<u> </u>	I
Criteria			1 ., 5,00					- 10' -		. neading	·/ ·/	<u>ন</u>	Γ <u>΄</u> Γ΄	,

2. 25

* Not to exceed 500 ml/min

R We Site: Herr F Date: <i> 0 </i>	answer $\cos ds$ , Inc., I	to you Nottingham	ы I. , РА		LOW-FLOW PURGUING AND SAMPLING DATA SHEET Field Personnel: Danavan Cornell (STL) Pump: Peristaltic Pump Progetive Alexis									
Weather:	Cloudy	670			Meter: Multiparameter With Flow Cell Hanna HI 98104									
Well No.:		MW-14S			n <mark>an ann an A</mark>	Screened I	nterval:							
Well Depth	1:	10 ft.			Depth To Water Before Pump Installation: $5_{2}7$							1131	2	
Well Diame	eter:	2-inch		40 ·····		Pump Inta	ke Depth:		8 ft.		Sample Tin	ne: 10/4/	16 .1158	
	p (S	H U)	Condu (mS/	ictivity /cm)	OF (m	RP IV)	D (mք	O g/L)	TI (g,	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
[135	6.27	NA	1.919	NA	- 106.6	NA	1.58	NA	0.960	NA	23.62	NA	300	6.25
1140	6221	0_06	1.933	0.014	- 103.9	2-7	1.57	0.01	0.967	0.007	23.79	0.17	300	6.31
11:45	6-19	0.02	1-978	0.045	- 103.7	0.Z	1.57	0	0.990	0.023	23.62	0.17	300	6.49
1150	6.19	0	1.992	0-014	-103.6	0_ 1	1.57	0	0.995	0.005	23-49	0.13	300	6.61
1155	6.20	0.01	1-992	0	-103,5	0.1	1-57	0	0.997	0.00Z	23.47	0.02	300	6.67
						-								
Stabilization Criteria	ⁿ +/- 0.2 SU +/- 3% of Reading +/- 20 mV** +/- 0.2 mg/L** +/- 10% of Reading									+/- (	0.2°C	N	A	

=

** Resolution accuracy of multiparameter meter

Total Purgard 1.975 gal.

8

R	M answer	EW to you	Г эм		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING					
<b>ite:</b> Herr F	oods, Inc., I	Nottingham	, PA			Field Perso	onnel: Dana	wan Cor	rell (51	⁻ L) ⁻ ⁻ ¹¹	93063			
ate: <i>10</i> /4	116					Pump: Per	istaltic Pum	Proac	tive Ale	Di Di	eborah Hannum			
Veather: (	landy	63° F				Meter: Mu	Itiparamete	r With Flow	Cell Han	na HI g	18194			
/ell No.:		MW-14D				Screened I	nterval:		15 to 25 ft.		- <u></u>			
/ell Depth	:	25 ft.				Depth To \	Water Befor	e Pump Ins	tallation: 6	41	10 10	1066		
/ell Diame	eter:	2-inch				Pump Inta	ke Depth:	-	20 ft.	2 • 1	Sample Tin	ne: 10/4/11	112Z	
	p (S	H U)	Condu (mS)	ctivity /cm)	0 (m	RP 1V)	D (m	0 z/L)		DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	, Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
100	5.58	NA	1.195	NA	75,5	NA	1-83	NA	0.598	NA	18.92	NA	400	7.26
105	5.54	0.04	1.207	0-012	84.7	9.2	1.77	0.06	6.604	0-006	18.87	0.05	400	7.62
10	5.55	0.01	1-213	<i>0.006</i>	86-1	1-4	1.76	0.01	0.607	0.003	18.76	0 U	400	7.71
1115	5.56	0.01	1.221	0.008	87.6	1.5	1.75	0.04	0-611	0-004	18.68	0.08	400	7.75
1/20	5-57	0.01	1.236	0.615	92-1	4.5	1.75	0	0.618	0.007	18.58	0.10	400	7.78
		<i>i</i>												
				- (1+1+2+++++++++++++++++++++++++++++++++										
- hilling the														
Criteria	+/- 0	.2 SU	+/- 3% 0	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/-	0.2°C	N	IA

** Resolution accuracy of multiparameter meter

-19

#### LOW-FLOW PURGUING AND SAMPLING **DATA SHEET** We answer to you. 6122510 Alana Kopicz Field Personnel: Ponovan Correll (STL) Site: Herr Foods, Inc., Nottingham, PA Date: 12/19/16 Pump: Peristaltic Pump Proactine Alexis Weather: Sunny 25°F Meter: Multiparameter With Flow Cell Hanna HI 98194 Runger State: 0925 0 to 19 ft. Well No.: MW-4 Screened Interval: Depth To Water Before Pump Installation: 7.51 7.70 19 ft. Well Depth: Well Diameter: 2-inch Pump Intake Depth: 10 ft. Sample Time: 1020 рΗ Conductivity ORP DO Pumping TDS Temp. (SU) (mS/cm) (mV) (mg/L)(g/L) (°C) Rate* Depth To Time Reading Change Reading Change Reading Change Reading Change Reading (ml/min) Water Reading Change Change 12.05 0930 NA 22.62 NA NA NA 11.22 NA 8.41 NA 17.H 400 49.5 25.96 11.4 304 12.02 0.03 2 400 8.58 0435 7207 0.55 61 29.00 0.16 11.06 733 014 12.03 0_01 64.4 11.36 0_30 0940 0.43 32 0.52 17.51 400 72 50 29.52 0.18 8.65 12.04 0.53 12.07 23.93 30.05 17.30 0945 0.04 1.43 738 9.4 0.68 0.21 400 8.91 12.08 81.2 28.52 24.23 53 12.38 0.34 400 8.91 0950 B-OL 0.30 74 17.45 0.15 4 44 0995 12.12 0.04 26.39 216 91:6 10.4 24.08 13.13 0.75 17.33 8.97 0.12 400 93.7 2 Ta 13 0.23 12.12 26.60 13.95 13.36 9.02 Õ 0-21 17.40 0.07 400 1000 26-41 97.5 4.45 13-66 17.36 12.13 0.01 0.19 38 5.68 0.30 0.04 9.08 1005 400 0.13 17-45 12.15 26.45 102.8 53 2.77 65 13.53 0.09 9-12 0.07 0.04 400 1010 2.68 0.09 17.42 12.12 26.48 0.03 0.9 13.45 9_16 103.7 0.08 400 1015 0.03 0.03

* Not to exceed 500 ml/min

Stabilization

Criteria

** Resolution accuracy of YSI 556

+/- 0.2 SU

+/- 0.2 mg/L**

+/- 10% of Reading

+/- 0.2°C

NA

Total Purged 5.3 gals

+/- 20 mV**

+/- 3% of Reading

## We answer to you.

#### LOW-FLOW PURGUING AND SAMPLING **DATA SHEET**



· •• ...

6122519 Alana Kopicz

Site: Herr F	oods, Inc., l	Nottingham	, PA			Field Personnel: Donoron Cornell (STL)									
Date:  2/1	9/16					Pump: Peristaltic Pump Proactime. Alexis									
Weather:	Sunny	26°F				Meter: Multiparameter With Flow Cell Hanna HI98194									
Well No.:		MW-5				Screened Interval: 7 to 27 ft.									
Well Depth	n:	27 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 🔏	86	Phras.	Start:	1135		
Well Diame	eter:	2-inch				Pump Intal	e Depth:		10 ft.		Sample Tin	ne: 120	'5		
	р (S	oH SU)	Condu (mS,	ictivity /cm)	0 (m	RP 1V)	D (mj	0 g/L)	TI (g	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To	
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1140	4.90	NA NA	0.813	NA	372.7	NA NA	1-84	NA	0.406	NA.	18-87	NA	-375-	7.10	
1145	4.44	0.46	0.825	0.012	391-1	0.518.4	1.87	0:03	0.412	0.006	18.83	0.02	375	7-12	
1150	4-38	0.06	0.830	0.005	397.2	6.1	1.85	0.02	0-415	0.003	18.81	0.02	375	7.13	
1155	4.2Ő	0.18	0.836	0.006	398.4	1-2	1.84	0.01	0.418	0.003	18.68	0.13	375	7.14	
1200	4-20	0	0.836	Ö	396.4	2.0	1.83	0.01	0.417	0.001	18.65	0.03	375	7-14	
	••••••••••••••••••••••••••••••••••••••														
Stabilization															
Criteria	+/- (	).2 SU	+/- 3% 0	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10%	of Reading	+/-	+/- 0.2°C NA			

* Not to exceed 500 ml/min

# REFIEW LOW-FLOW PURGUING AND SAMPLING DATA SHEET



Total Purged 2.5 gals.

6122519 Alana Kopicz

Site: Herr I	-oods, Inc., I	Nottingham	, PA			Field Perso	onnel: <i>Dov</i>	novan (	orrell	(STL					
Date: 12	19/16					Pump: Peri	istaltic Pum	Proge	tive A	lexis					
Weather:	Sunny	26°F	-			Meter: Mu	Iltiparamete	r With Flow	Cell Ha	hng HI	93194				
Well No.:		MW-14S				Screened Interval: 3 to 10 ft.									
Well Dept	h:	10 ft.				Depth To Water Before Pump Installation: 6.30 Start Pares 1305									
Well Diam	eter:	2-inch				Pump Intake Depth: 8 ft.					Sample Tin	ne: 133	5		
	p (S	ρΗ LU)	Condu (mS	uctivity /cm)	0	RP NV)	D	DO (mg/l)		TDS		Temp.		Depth To	
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1310 -	5.58	NA	2.814	NA	.34.3	NA	2.44	NA	1_347	NA NA	16.71	NA	375	6.53	
1315	5.45	0.13	2.538	0.276	38.Z	3.9	2.00	0.44	1.272	0.075	1650	0.21	375	6.72	
1320	5 53 0.08 2.729 0-191 3					3.8	1-77	0-23	1.372	0.100	16.64	0-14	375	6.81	
1325	25 563 010 2.990 0.261					1.7	1.75	0.02	1.506	0-134	16.95	0.31	375	6.84	
1330	5_67	0.04	3.161	0.171	37.4	1_3	1.75	0	1.580	0.074	16.98	0-03	375	6.89	
-															
											-				
Stabilization Criteria	+/- (	).2 SU	+/- 3% c	of Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/-	0.2°C	N	١A	

* Not to exceed 500 ml/min

R We a	answer	E.W.	SM	I	LOW-FL	DW PUR D/	GUING ATA SHE	AND SA ET	MPLING	6122519 Alana Kopicz					
Site: Herr F	oods, Inc., I	Nottingham	<i>,</i> PA			Field Perso	nnel: Don	Lovan (	Torrell	(STL)					
Date: 12/	ialic					Pump: Peristaltic Pump Pro active Alexis									
Weather: 🤉	Sunny	26°F				Meter: Multiparameter With Flow Cell Hanna HI98194									
Well No.:		MW-14D				Screened I	nterval:		15 to 25 ft.						
Well Depth	:	25 ft.				Depth To V	Vater Befor	e Pump Ins [,]	tallation:	5.85	Start Pri	-ae: 122	5		
Well Diame	eter:	2-inch				Pump Intal	ke Depth:		20 ft.		Sample Tim	1e: 125	5		
- {	p (S	H U)	Condu (mS _/	ıctivity /cm)	OF (m	₹P (V)	D (mg	0 g/L)	ті (g	DS /L)	Ten (°(	np. C)	Pumping Rate*	Depth To	
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1230	537	NA	1-171	NA	193.9	NA	1-92	NA	0.591	NA	17.12	NA	400	7.83	
1235	5.47	0.10	1.205	0.024	169.5	24.4	1.80	0.02	0.602	0_011	17-20	0-08	400	8.09	
1240	5.48	0-01	1.209	0.004	163.8	5.7	1.81	0.01	0-605	0.003	17.04	0.16	400	8:14	
1245	5.47	0.0(	1.219	0.010	155.7	8.1	1.82	0.01	0.610	0.005	16.99	0.05	400	8.17	
1250	5.47	0	1.223	0.004	151.8	3.9	1.82	0	0612	0.002	17.05	0.06	400	8-18	
Stabilization Criteria	+/- (	).2 SU	+/- 3% 0	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	·+/- C	).2°C	N	IA	

** Resolution accuracy of multiparameter meter

Total Purged 2.6 gals

#### LOW-FLOW PURGUING AND SAMPLING **DATA SHEET** We answer to you. Alana Konicz Field Personnel: Donoroun Convell (StL) Site: Herr Foods, Inc., Nottingham, PA Pump: Peristaltic Pump Pro active Alexis Date: 12/19/16 Meter: Multiparameter With Flow Cell Hanna H198194 Weather: Sunny 250F Well No.: OW-1 Screened interval: 3 to 15 ft. Start Ringe: 1035 15 ft. Depth To Water Before Pump Installation: 7.69 Well Depth: Well Diameter: 2-inch Pump Intake Depth: 10 ft. Sample Time: 110 Conductivity ORP DO TDS Pumping pН Temp. Rate* (SU) (mS/cm) (mV)(mg/L)(g/L)(°C) Depth To Reading Change Reading Change Reading Change Reading Change Reading Change Reading Change (ml/min) Water Time 41.93 .167.4 12.15 NA NA NA 82 NA 70.78 NA NA 375 17.35 8.15 1040 31.72 1.89 15.73 12.07 155.9 11.5 505 375 17.28 0.07 8.55 1045 008 1021 0.07 131 Tubing pepped of bottom of 11-84 0,260 197.3 31.02 1-87 0.00 1669 0.02 0-20 8-74 1055 0.04 60 15.53 17.02 0-26 379 12 11 30-04 0-98 160.5 1.89 375 1495 4 0.02 0.58 17.17 0.15 9.01 12.10 0.01 1100 1105 12.09 29.95 159.7 0.8 .91 14.89 0.06 375 9.15 0.07 0.02 17.21 0.04 12.01

Flowcell.

Reddingsort

1050 void

+/- 20 mV**

+/- 3% of Reading

* Not to exceed 500 ml/min

Stabilization

Criteria

** Resolution accuracy of multiparameter meter

+/- 0.2 SU

+/- 0.2 mg/L**

+/- 10% of Reading

+/-0.2°C

NA

Total Purged 3.0 gals.

R	answer	E to you	SM		LOW-FL	LOW PURGUING AND SAMPLING DATA SHEET						6122519 Alana Kopicz			
Site: Herr F	oods, Inc., N	Nottingham	<i>,</i> PA			Field Personnel: Donavan Connell (STL)									
Date: 12	19/10					Pump: Peristaltic Pump Proce time Alexis									
Weather:	Sunny	2501	F			Meter: Mu	Meter: Multiparameter With Flow Cell Hanna HIggigh								
Well No.:		OW-2				Screened I	nterval:		3 to 15 ft.		Start	Purget	1345		
Well Depth	:	15 ft.				Depth To V	Vater Befor	e Pump Ins	tallation:	7.00	Start P.	10001 1	-46		
Well Diame	eter:	2-inch				Pump Inta	ke Depth:		10 ft.		Sample Tin	ne: 1415			
	p (S	H U)	Condu (mS,	ictivity /cm)	OI (m	RP IV)	D (mg	O g/L)	TI (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To	
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1350	9-88	NA	7.363	NA	- 72 7	NA	5.47	NA	2.512	NA	11 67	NA	375	7.50	
1355	9.97	0_01	1.232	0.131	-19.7	14.7	5.14	0.33	2.665	0.013	16.52	0.91	375	7.83	
1400	10.08	0_21	8-40%	1_174	-1.9	17.8	521	0.07	4.270	0.605	16.61	0.22	375	8-10	
1405	10.35	0_27	9.570	1-164	14.4	16.3	5.67	0.46	4-826	0.556	16.89	0-28	375	8.14	
1410	10-38	0.03	10.18	0.61	22.1	7.7	5_71	0.04	4.839	0,013	16.92	0.03	375	8-18	
					4										
Stabilization Criteria	ation +/- 0.2 SU +/- 3% of Reading +/						+/- 0.2	mg/L**	+/- 10%	of Reading	+/-	0.2°C	Ν	NA	

** Resolution accuracy of multiparameter meter

Total Purged 2.5 gals.
<b>R</b> We	answer	EW to you	5M •		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	ì				
Site: Herr F	oods, Inc., I	Nottingham	, PA			Field Perso	onnel: To	ivlor 1	Jolfe	$(\pi)$				
Date: / Weather:	2·30·1 Sunny	6340	- 78W			Pump: Per Meter: Mu	istaltic Pum Iltiparamete	P Preact	ive Al Cell H	(SIL) Lexis	ΗI	98194	{	
Well No.:	i	MW-4				Screened I	nterval:		0 to 19 ft.		Purge «	start.	0940	
Well Depth	):	19 ft.				Depth To V	Nater Befor	e Pump Inst	allation:	7,59	000		0110	
Well Diamo	eter:	2-inch				Pump Inta	ke Depth:		10 ft		Sample Tin	ne:	1030	
	р (S	H U)	Condu (mS)	ıctivity /cm)	01 (4,9 (m	RP IV)	D	0 z/L)	TI (g	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
0945	8.63	NA	8,25	NA	49.8	NA	23,95	NA	4.146	NA	15.86	NA	400	8.06
0950	9.14	0.51	9.69	1.44	63.6	1.3	22.82	1.13	4,846	0.7	16.41	0.55	n	8,22
0955	10.66	1.52	25.20	15.51	82.1	18.5	26.59	3,77	12.72	7.87	17.45	1.04	. ji	8:32
1000	10.24	0.42	21.90	3,3	101.2	19.1	27.95	1,36	11.07	1.65	17.31	0.14	u	8.52
1005	10.31	0.107	21.72	0.18	107,9	6.7	28.42	0.47	10.91	0.16	17.24	0.00	н	8.70
1010	10.37	0.06	21,95	0,23	1115	3.6	29,61	1.19	11.67	0.16	17.34	Orlo	41	8.82
1015	10.44	0.07	22.48	0.53	117.6	6.1	29.46	0.15	11.23	0.16	17.40	0.06	"	8.91
1020	10.52	0,08	22.93	0.45	122.1	4.5	28.53	0,93	1.53	6,30	17.52	0.12	"	9.00
1025	10.59	0.07	2301	0.78	124.3	2.2	28.01	0.52	11.84	0.29	17,50	0.02	u	9.02
Stabilization Criteria	+/- 0	0.2 SU	+/- 3% o	f Reading	+/- 20	mV**	+/- 0.2	 mg/L**	+/- 10% c	of Reading	+/- (	0.2°C	N	 IA
Stabilization Criteria	+/- 0	0.2 SU	+/- 3% 0	f Reading	+/- 20	9 mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- (	0.2°C	tal pu	ia rged

** Resolution accuracy of YSI 556

RI		EW	5M		LOW-FLO	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	ì				
Site Horr E		Nottingham	ΡΔ			Field Perso	nnel: Ta	ster l	Jolf					
Date: )	1.3011	(s	, , ,			Pump: Peri	staltic Pum		الم المحمد	1 exic				
Weather:	340	FCL	oudy			Meter: Mu	ltiparamete	ィングののC r With Flow	Cell +	lanna	I/+ ]	98192	l	
Well No.:		MW-5				Screened I	nterval:		7 to 27 ft.					~
Well Depth	:	27 ft.				Depth To V	Vater Befor	e Pump Inst	allation:	6.17		start	1425	
Well Diame	eter:	2-inch				Pump Intal	ke Depth:		10 ft.		Sample Tin	ne: )L	155	
	р (S	H U)	Condu (mS)	ictivity /cm)	OF (m	RP IV)	D (mj	0 ;/L)	TC (g/	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1430	4.13	NA	0.723	NA	347,5	NA	1-80	NA	562	NA	18.29	NA	360	6.35
1435	4.03	0.(0	0.733	0,010	355,5	5.8	1.80	0	367	5	18.05	0.19	360	6.37
1440	3,92	0.11	0.737	0.004	562.8	1.5	1.80	0	360	. [	18.05	0.02	360	6-38
1445	3,86	0,00	0.741	0.004	361.5	4,5	1.09	0,04	370	4	18-01	0.DL	360	6.40
1950	3,86	0	0.143	0.007	368.2	0.09	1.81	D.UL	312	2	18-0Z	0.01	360	10.41.
			<b></b>											
Stabilization	+/- 0		+/- 3% 0	f Reading	+/- 20	 mV**	+/- 0.2	mg/L**	+/- 10% c	f Reading	+/-	0.2°C		I IA
Criteria * Not to ex	ceed 500 m	l/min							,		<u> </u>	Total	Purgeo	1 1 2

** Resolution accuracy of multiparameter meter

## RETTEW We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

eather:	SUNN	1 59	34			Meter: Mu	ltiparamete	r With Flow	Cell A	anna	HT 78	194		
ell No.:		MW-14S				Screened I	nterval:		3 to 10 ft.	1.111	:	start	1335	
ell Depti	):	10 ft.				Depth To V	Vater Befor	e Pump Inst	tallation:	6114	Comula Tin			
ell Diam	eter:	2-Inch				Pump Inta			8π.			ne:	<u> 405_</u>	· · ·
	p	н	Condu	ictivity	01	RP	D	0	ТІ	DS	Ter	np.	Pumping Bata*	Donth To
Time	(S Reading	Change	Reading	Change	(m Reading	V) Change	Reading	Change	Reading	Change	Reading	C) Change	(ml/min)	Water
340	5.71	NA	2.41	NA	22.8	NA	2.37	NA	1.20	NA	15.11	NA	360	65
345	5.59	0.12	250	0,09	25.6	2,8	2.37	0,00	1.25	0.05	15.12	0.01	ĸ	6174
1350	5.64	0:05	2.59	0.09	7,5	18.1	1.97	6,40	1.30	0,05	15.23	0.11	ų	6.92
1355	5.67	0.03	2,65	0.06	0,2	7.3	1.80	0.17	1.35	0.03	15,70	0.47	ι(	6.99
1400	5.66	0.01	2.73	0.08	-3.4	3.2	1.72	0.08	1.37	0,04	15.84	0.14	4	6198
		× .												
		: 												
														<u>  </u>
ilization	+/- 0	.2 SU	+/- 3% 0	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/-	0.2°C		I NA

* Not to exceed 500 ml/min ** Resolution accuracy of multiparameter meter

R We Site: Herr F Date: 12	answer	to you Nottingham	ы , ра ц ФФ		LOW-FL	OW PUI D/ Field Perso Pump: Per Mater: Mi	RGUING ATA SHE onnel:	AND SA ET "any lor l p Proac	MPLING Notfe	(STL) Alexis	) `4T 95	2190		
Well No.: Well Depth Well Diam	vate: 12.30.16Pump: Peristaltic Pump Broactive AlexisVeather:Sunny 34°FMeter: Multiparameter With Flow CellHanna HI 98194Vell No.:MW-14DScreened Interval:15 to 25 ft.Vell Depth:25 ft.Depth To Water Before Pump Installation:6,17Start:Vell Diameter:2-inchPump Intake Depth:20 ft.Sample Time:1320pHConductivity (rmS/cm)ORP (rmV)DO (rmg/L)TDS (g/L)Temp. (°C)Pumping Rate*Depth													
Time	p (S Reading	H U) Change	I-14DScreened Interval:15 to 25 ft.t.Depth To Water Before Pump Installation: $6+17$ Start *:1255chPump Intake Depth:20 ft.Sample Time:1320ConductivityORPDOTDSTemp.(mS/cm)(mV)(mg/L)(g/L)(°C)Rate*nangeReadingChangeReadingChangeReadingChangeNA1.70NA2:17/NA2:09NA0.650NA77.57NA4.07									Depth To Water		
1300	6:48	NA	1.20	NA	2:17.1	Pump Intake Depth:     20 ft.     Sample Time:     1320       ORP     DO     TDS     Temp.     Pumping Rate*       (mV)     (mg/L)     (g/L)     (°C)     Rate*       ading     Change     Reading     Change     Reading     Change     (ml/min)       17. (     NA     2.09     NA     0.50     NA     17.57     NA     400								
1305	5:33	1.15	1.20	0.00	178.5	3816	2.10	0.01	0.60	2	17,60	0.09	400	8.10
1310	5,23	0,10	1.20	0,00	170.0	8.5	2.00	0.10	0.60	2	17,50	0.10	400	8.16
1315	5,30	0.07	1.22	0.02	1601	9.9	1.93	0.07	0.61	8	17.48	0.02	400	8.12
										-				
			· · · · · ·											
							-					•		
							<u> </u>							

Stabilization

Criteria

** Resolution accuracy of multiparameter meter

+/- 0.2 SU

+/- 3% of Reading

+/- 20 mV**

+/- 0.2 mg/L**

+/- 10% of Reading

+/- 0.2°C

NA

Total Ruged 2gal

Rite: Herr F Date: 4 Weather: Well No.: Well Depth	answer oods, Inc., M 2 1 30 1 ( 0 100 d : :	to you Nottingham, Cast OW-1 15 ft. 2-inch	н , ра <u>37⁰F</u>		LOW-FL	OW PUF D/ Field Perso Pump: Peri Meter: Mu Screened In Depth To V Pump Intal	RGUING ATA SHE onnel: To istaltic Pump Itiparamete nterval: Vater Before ke Depth:	AND SA ET Wer W Proac r With Flow	MPLING $O Ve ( ) (Cell + 1) 3 to 15 ft. tallation: 10 ft.$	5TL) Alexis Lanna 7,54	کم HI 98) Sample Tin	194 5+ ne:	art / 1135	055		
Time	Depth:       15 ft.       Depth To Water Before Pump Installation:       7,54       Junt 1000         Diameter:       2-inch       Pump Intake Depth:       10 ft.       Sample Time:       1135         pH       Conductivity       ORP       DO       TDS       Temp.       Pumping         (SU)       (mS/cm)       (mV)       (mg/L)       (g/L)       (°C)       Rate*       Depth To         me       Reading       Change       Rea															
lime	9.74	NA	10,50	$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
1105	10.40	0,66	11,48	0.90	81.4	26,90	28.28	0.09	5,74	0.13	16.09	0,31	4	8,70		
1110	10,54	0.14	12.22	0.34	90,9	9,50	29.10	0,82	6.16	0.42	16.52	0.43	4	9.04		
1115	10.69	0.15	13.66	1.44	105.7	14.80	30.56	1.46	6,80	0.64	16.8)	0,29	ц	9.40		
1120	10,35	0.34	14.59	0,93	113,5	7,80	31.41	0.85	7.21	0.41	16.89	0,08	ų	9.61		
1125	10.64	0.29	14.73	0,14	137.5	24.0	28,36	3.65	7,35	0.14	16.39	0,50	ц	9.70		
1130	10.44	0.20	17,35	2.62	141.7	4.20	32.40	4.04	8.69	1.34	17.12	0173	ti	2,89		
Stabilization Criteria	+/- 0	.2 SU	+/- 3% of	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/-	0.2°C	N	I		

** Resolution accuracy of multiparameter meter

Total purged: 3.5 gals

R We Site: Herr F Date: Weather:	answer oods, Inc., I 12 - 30	to you	ын 1. , РА <u>З6 ° Р</u>		LOW-FL	OW PUF DA Field Perso Pump: Peri Meter: Mu	RGUING ATA SHE nnel: T staltic Pum Itipáramete	AND SA ET ay loc o pro r With Flow	MPLING Wolk active	G (S Aler Hann	TZ) xis	L981°	<i>د</i> ل	
Well No.:		OW-2				Screened I	nterval:	• Dumme la •	3 to 15 ft.	1.71		start	- 126	5
Well Deptr	: eter:	2-inch				Pump Intal	vater Befor ke Depth:	e Pump Ins	10 ft.	6,70	Sample Tin	ne:	1235	
	р (S	H U)	Condu (mS	uctivity /cm)	Oi (m	RP IV)	D (mj	0 g/L)	TI (g	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
205	7.94	NA	4.02	NA	182.1	NA	7.57	NA	2005	NA	16.42	NA	400	7.13
1210	7.97	0.03	7.33	0.31	46.2	135.9	3,77	3.8	2181	176	16.48	0.06	400	7.63
1215	0.30	0.33	4.43	0.61	1(.5	37.7	3.06	0.71	2496	315	16.04	0.94	700	7.94
1220	8,54	0.24	5.61	0.72	15.2	3,7	3.01	0.05	2853	557	16.34	0.30	400	814
1225	0,11	0.17	6,75	0.78	22.5	7.5	7.02	0.01	3276	475	16,50	0,16	400	0'-25
1233	9.06	0,35	1,70	0.95	flid	4.+	5.1+	0.15	3732	476	16.19	0.19	400	8.42
1233	7.17	0.08	1.01	D.d.t	61.3	0.[	2.41	0.09	5849	117	16 F(	0.0.7	700	8.54
														-
										<u> </u>				
										<u> </u>				
											<u> </u>			
														<u> </u>
Stabilization	+/- 0		+/- 3% 0	f Reading	+/- 20		+/- 0.2	mg/L**	+/- 10%	of Reading	+/-	L 0.2°C		↓

** Resolution accuracy of multiparameter meter

# BBUTTEW

We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



Alana Kopicz

Site: Herr F	⁻ oods, Inc.,	Nottingham	i, PA			Field Perso	onnel:Dou	iovan (	Eurell (	STL)				
Date: [·/	18/17					Pump: Per	istaltic Pumj	p Proac	tire Al	ekis				
Weather:	Cloudy	430F				Meter: Mu	ıltiparamete	r With Flov	v Cell Hai	nna HI	98194			
Well No.:		MW-3				Screened I	nterval:		5 to 25 ft.					
Well Depth	ו:	25 ft.				Depth To \	Nater Befor	e Pump Ins	stallation: 6	45	Start Ru	. : 112c	>	
Well Diame	eter:	2-inch				Pump Inta	ke Depth:		11 ft.		Sample Tin	ne: ·//45	?	
	pH (SU)     Conductivity (mS/cm)     Reading       Reading     Change     Reading       ℓ. ℓ. C     NA     1 - 1573			Oi (m	RP nV)	D (mi	νΟ g/L)	TI (g	) ) /L)	Ter (°	mp. °C)	Pumping Rate*	Depth To	
Time	(SU)     (mS/cm)       Reading     Change     Reading       Change     Reading     Change       & 6 0     NA     1 - 15 3       NA     -124-			Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1(25	660	NA	1-153	(ms/cm)         (ms/cm)           Reading         Change         Reading           . 1573         NA         -124.3           . 176         0.023         - 117.2			0-78	NA	0.576	NA	15.39	NA	380	6.72
1130	6.49	NA 1-153 NA -124.3 0.11 1-176 0.023 -117.2			-117.2	7. (	0,74	0_04	0.588	0.12	15:5 (	0.12	380	6.81
1135	6.45	49 0.11 1.176 0.023 -117. 45 0.04 1.184 0.008-116.			-116.8	1.6	0.74	0	0.593	0.005	15:57	0.06	380	6.85
1140	6.44	6.49 0-11 1-176 0.023 -117. 6.45 0-04 1-184 0.008 -116. 6.44 0.01 1.203 0.019 -118.			-118.4	1.6	0.74	0	0601	0,008	15.70	0.13	380	6-87
1145	6.41	0-03	1.204	0.001	-119_5	1.1	074	0	0.60 7	0.006	15.80	0-10	380	6-90
									,					
									Marra a					
									Ĩ					
		1												
					·									
										-				
Stabilization	+/- 0	).2 SU	+/- 3% o	f Reading	+/- 20	• mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/-(	0.2°C	N	IA

* Not to exceed 500 ml/min

** Resolution accuracy of YSI 556

Total Purged - 2.5 gals

R We a	answer	to you	вм 1.		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	ì	7012602 Alana Kop	iicz		
Site: Herr F	oods, Inc., l	Nottingham	i, PA			Field Perso	nnel: Da-	10-00-	Correll	(STL)	)			
Date: 1/1	7/17					Pump: Peri	staltic Pump	Proac	stire A	Flexis				
Weather: (	Cloudy	37°F				Meter: Mu	ltiparamete	r With Flow	Cell 1+a	nna HI	98194			
Well No.:		MW-4				Screened I	nterval:		0 to 19 ft.					
Well Depth	:	19 ft.				Depth To V	Vater Befor	e Pump Ins [.]	tallation: 🦷	7.67	Stort Re	: 1120		
Well Diame	eter:	2-inch				Pump Intal	ke Depth:		10 ft.		Sample Tin	ne: 1218	7	
	p (S	H U)	Condu (mS,	uctivity /cm)	OI (m	RP IV)	D (mį	O g/L)	TC (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
lime	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(mi/min)	water
1125	1-61	0.07	9 256		11-6		1-14		2271	INA I DI G	15.01	()	215	0.02
1120	1-41	0.04	12 570	2-185	742	10.5	444	1.30	7.616	1-76-1	1540	1 20	375	8-19
1133	1-46	0,03	12-530	7,217	10-1	13.6	551	1.47	7440	1-1012	1557	0.57	275	0-40
1190	1. 52	0.01	14.870	1.340	el (. 6	12.4	125	1-03	1.77>	1 1000	15 16	0-12	2/5	1.42
1145	1.36	0.03	1 1 250	4.580	14_1	2.5	6-38	0-82	8-643	1.193	17.6(	0.11	2/5	0-78
1150	1.41	0-05	19-62	2_380	91.6	2-3	1.25	0-87	7.818	1.11)	17.05	0-19	315	8.50
1155	1.75	0-34	21.420	1.790	79.8	1-8	1-24	0.99	10.71	0-892	12.75	0.01	315	8.51
1200	8.0.2	0.27	22.400	0.98	16.8	13	9.14	090	11-21	0.5	16-13	0-18	315	8.51
1205	8,29	0.26	23.990	1.59	65. (	11-7	10.47	1-33	12.02	0.81	16-25	0-12	375	9.51
1210	8.34	0.06	24.050	0_09	62.7	2_4	10.51	0.04	12-14	0.12	16.28	0.03	375	8.52
1215	8.30	0.04	24.180	0.100	61-4	1-3	10.64	0-13	12.21	0.07	16-29	0.01	375	8.52
						-	-							
Stabilization	+/- (	).2 SU	+/- 3% o	of Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% 0	of Reading	+/-	0.2°C	N	A

** Resolution accuracy of YSI 556

H:\Projects\10172\101722001\GS\Site Characterization\Low-Flow Data Sheet.xlsx

Total Purged - 5.45 gals.

K We a	answer	to you	944 •		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	6	7012602 Alana Kop	bicz.		
Site: Herr F	oods, Inc., I	Nottingham	<i>,</i> PA			Field Perso	nnel: <i>Der</i>		Correll	(STL	) )			
Date: 1/1	7/17					Pump: Peri	istaltic Pump	Proac	tire Al	lexis	,			
Weather:	Cloudy	37°F				Meter: Mu	ltiparamete	r With Flow	/Cell Har	nna#I 9	\$194			
Well No.:		MW-5				Screened I	nterval:		7 to 27 ft.					
Well Depth	:	27 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 6	07	Start bu	me: 09:	30	
Well Diame	eter:	2-inch	terre and the second			Pump Inta	ke Depth:		10 ft.		Sample Tin	ne: 1004		
	р (S	H U)	Condu (mS,	ictivity /cm)	OI (m	RP IV)	D (mg	O g/L)	TI (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
Time 1935	Reading	Change	Reading	Change NA	Reading	Change NA	Reading	Change NA	Reading	Change NA	Reading	Change NA	(ml/min)	Water
0940	6. 1-1	0.58	1574	2 001	1000 2	10.0	0.93	DOI	0.787	0 001	16.91	0 07	375	636
BALLE	6.02	0,14	1561	6 013	200.6	10.0 17 u	000	0.01	6.779	1 008	16 97	1.01	370	6.31
0950	5.86	0.16	1.544	0.017	742.7	76	0.58	0.04	0.771	0.000	16 85	0.07	375	6.76
0955	5 87	0.04	1-541	0.003	2434	0.7	6.87	0.01	6.770	0.001	16.70	0.15	375	637
1000	5.79	0.03	1.520	0.021	245.7	2.3	0.85	0.02	0.770	0	16_74	0.04	375	6-37
3														
Stabilization	+/- 0	).2 SU	+/- 3% o	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/- (	0.2°C	N	 JA

Criteria

** Resolution accuracy of multiparameter meter

TATIVITY INTO IT

,

Total Purged - 2.97 gals.

# RETTEW

We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



7012602 Alana Kopicz

Site: Herr F	oods, Inc., I	Nottingham	n, PA			Field Perso	onnel: <i>Don</i>	ovan C	orrell (	STL)				
Date: ///	7/17					Pump: Per	istaltic Pum	Proac	time Al.	exis	<i>.</i>			
Weather:	Cloudy	37°F				Meter: Mu	Iltiparamete	r With Flow	v Cell Ha	nng HI	98194	f 1		anna hanna ar inne de sa
Well No.:		MW-7		•		Screened I	nterval:		3 to 20 ft.					
Well Dept	ı:	20 ft.				Depth To \	Water Befor	e Pump Ins	tallation: 7	795	start Pu	ne: 08	to	
Well Diam	eter:	2-inch				Pump Inta	ke Depth:		8 ft.		Sample Tin	ne: 091	ų	
	р . (S	H U)	Condu (mS,	ctivity /cm)	OI (m	RP IV)	D (m)	oO g/L)	Ti (g	DS /L)	Ter (°	тр. С)	Pumping Rate*	Depth To
Time	(SU)     (mS/cm)       Reading     Change     Reading       6.85     NA     6.524     NA					Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
0845	Reading     Change     Reading     Change     Read       6.55     NA     6.524     NA     32.1       6.58     0.03     0.525     6.001     32.2					NA	0.84	NA	0.262	NA	14.74	NA	350	7.98
0850	6.98 0.03 0.525 0.001 32.2					0-1	0.82	0.02	0.265	0.002	14.81	0.07	350	8.05
0855	6.98 0.03 0.525 0.001 32.2 6.97 0.01 0.527 0.02 31.0					1.2	0.79	0.03	0263	0.002	15.17	0.36	350	8.10
0900	6.87 0.01 0.527 0.02 31.0 6.87 0 0.527 0 34.7				34.7	3.7	0.77	0.02	6.263	0	15.31	0-14	350	8,11
0905	6.57	0	0.526	0.001	41.5	6.8	0.77	0	0.263	0	15.43	0.12	350	8.12
0910	6.87	0	0.526	0	43.1	1.6	0.76	0	0.263	0	15.47	0.04	350	8.12
Stabilization	+/- 0	).2 SU	+/- 3% o	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10%	of Reading	+/-	0.2°C	N	NA NA

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Puryed - 2.77 gals

R We	answer	EW to you	т sm 1.		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	i	701260 Alana K	2 opicz		
Site: Herr F	oods, Inc., I	Nottingham	n, PA			Field Perso	onnel: Dan	aran C	orrell	(STL)				
Date: 1/10	117					Pump: Per	istaltic Pump	Proac	true Ale	หเริ				
Weather:	Cloudy	<u>30°F</u>				Meter: Mu	ltiparamete	r With Flow	Cell Han	natt 9	8194			
Well No.:	,	MW-9				Screened I	nterval:		3 to 20 ft.					
Well Depth	n:	20 ft.				Depth To \	Vater Befor	e Pump Ins [.]	tallation:	525	Start Pur	ge: 1400	7	
Well Diame	eter:	2-inch				Pump Inta	ke Depth:		10 ft.		Sample Tin	ne: 1429	8	
	թ (Տ	H U)	Condu (mS,	ctivity /cm)	OI (m	RP V)	D (mք	0 ;/L)	т: (g,	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1405	6.90	NA	3.087	NA	-0.8	NA	0-81	NA	1.545	NA	13.32	NA	380	5.61
1410	6.90	0	3.089	0.002	-8-8	8.0	0.77	0-04	1.542	D.003	13-54	0.22	380	5_65
1415	6.90	0	3.088	0.001	-13.4	4-6	0.76	0.01	1-544	0-002	13.71	0,17	380	5.66
1420	6.90	0	3.089	0.001	-11-4	2.0	0.78	0.02	1-544	0	13.91	0.20	380	5.66
1425	6.90	0	3.101	0.012	-13-1	1-7	6.74	0.04	1-551	0.007	14.03	0_12	380	5-67
								i						
Stabilization Criteria	+/- 0	.2 SU	+/- 3% o	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/-(	0.2°C	Ν	A

** Resolution accuracy of multiparameter meter

96. 85

Total Purged: 2.5 gal.

R	answer		SM 1.		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	ì	7012602 Alana Ko	2 ppicz		
Site: Herr F	oods, Inc., l	Nottingham	i, PA			Field Perso	onnel: Da.	rovan	Correll	(STL	)			······ ·· · · ·
Date:     [	6/17					Pump: Per	istaltic Pum	Proac	true Al	ex1 5	,			
Weather:	Cloudy	30°F				Meter: Mu	ltiparamete	r With Flow	vCell Han	ing HI	98191	4		
Well No.:	1	MW-10				Screened I	nterval:		3 to 20 ft.					
Well Depth Well Diamo	n: eter:	20 ft. 2-inch				Depth To V Pump Intal	Vater Befor ke Depth:	e Pump Ins	tallation: <u>5</u> 10 ft.	215	Start Rug Sample Tim	<i>9^{e :} 1315</i> 1e: 1349		
	p (S	H U)	Condu (mS/	ctivity /cm)	Oi (m	RP IV)	D (mį	0 g/L)	TC (g/	DS /L)	Ter (°(	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1320	6.87	NA	2.011	NA	38.7	NA	0-76	NA	1.006	NA	15.56	NA	375	5.44
1325	6.86	0.01	2.011	Ø	38-9	0.2	0-76	0	1.006	0	15.83	0.27	375	5.49
1330	6.86	0	2-010	0.00 (	40.2	1.3	0.75	0.01	1.005	0.001	15:83	0	375	5.51
1335	6.43	0.43	2.000	0.010	41.0	0.8	0.73	0.02	0,997	0.008	16.07	0_24	375	5,54
1340	6-24	0.19	1.985	0.085	40.1	0.9	0.72	0.01	0.991	0.006	16-19	0.12	375	5.55
1345	6.20	0.04	1.974	0.011	38.3	1-8	0.72	0	0.987	0.004	16.22	0-03	375	5.56
										-				
Stabilization Criteria	+/- (	0.2 SU	+/- 3% 0	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- (	D.2°C	N	IA

** Resolution accuracy of multiparameter meter

Total Purged: 2.97 gals.

R	answer	EW to you	Т вм І.		LOW-FL	OW PUF D/	RGUING ATA SHE	AND SA ET	MPLING	ì	701260 Alana K	2 opicz		
Site: Herr F	oods, Inc., I	Nottingham	n, PA			Field Perso	nnel: Pon	ovorn (	formell (	(STL)				
Date: 1/1	6/17		and and a second se			Pump: Peri	istaltic Pump	Prode	time A	lexi 5				
Weather:	<u>Cloudy</u>	30°F				Meter: Mu	ltiparamete	r With Flow	Cell Har	ing HI	9819	+		
Well No.:		MW-11				Screened I	nterval:		2 to 12.5 ft					
Well Depth	1: eter:	12.5 ft. 2-inch				Depth To V Pump Intal	Vater Before	e Pump Ins	tallation: ()	- 39	Start Ru Sample Tin	nge: 123	0	
	p (S	HU)	Condu (mS,	ctivity /cm)	OI (m	RP IV)	D (mg	0 g/L)	TI.S IC.	DS /L)	Ter (°	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
12.35	683	NA	0.746	NA	236.4	NA	· .5	NA	0.374	NA	10.52	NA	375	D.71
1240	684	0.01	0.775	0.029	222.5	13.6	1.22	0.29	0.389	0-015	10-63	0.11	375	0.71
1245	6.84	0	6.802	0.027	199.5	23,3	1.08	0_14	0.402	0.013	10-85	0.22	375	0,74
1250	6.84	0	0.809	0.006	1.73-1	26-4	1.06	0.02	0403	0.001	0_84	0.01	375	0-75
1255	6.84	0	0810	0.002	177.0	3.9	1-10	0.04	0.404	0.001	11.01	0.17	375	0.76
1300	6.84	0	A.799	0-011	159-1	17.9	1.06	0.04	0.400	0.004	10.97	0.04	375	0.77
-														
Stabilization Criteria	· +/- C	).2 SU	+/- 3% 0	f Reading	+/- 20	) mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- (	0.2°C	N	A

** Resolution accuracy of multiparameter meter

Total Purged: 2.97 gals.

# RETTEW

We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



Alana Kopicz

Site: Herr F	Herr Foods, Inc., Nottingham, PA					Field Perso	nnel: Dov	lovan (	Correll	(STL)				
Date:  -	6-17					Pump: Peri	istaltic Pum	Proac	tive Al	exis				
Weather:	Sunny	30°F	-			Meter: Mu	ltiparamete	r With Flow	VCell Har	ng H	Tasia	4	<del></del>	
Well No.:		MW-12				Screened I	nterval:		2 to 12 ft.		<i>,</i> , , , , , , , , , , , , , , , , , ,			
Well Depth	<b>1</b> :	12 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: भ	-16	Start Pu	roe: 111	5	
Well Diame	eter:	2-inch				Pump Inta	ke Depth:		9 ft.		Sample Tin	ne: <u> -</u>  6-	17 1144	1
	p (S	oH (U)	Condu (mS	(ctivity	OI (m	RP NV)	D	0 7/1)	TI (g	DS /L)	Tei (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1120	6.78	NA	0.119	NA	154.8	NA	2.79	NA	0.059	NA	10.50	NA	375	4-35
1125	6.78	0	0.114	0.005	211-7	56.9	2-75	0_01	0.057	Ó.002	10.61	0.11	375	4-35
1130	6-78	0	0.113	0-001	237.5	25.8	2-77	0.01	0.057	0	[0.57	0.04	375	4-35
1135	6.78	0	0-113	0	258-7	21.2	2-76	0-01	0-05-7	0	10-65	0.05	375	4.35
il 40	6.78	0	0.112	0.001	273,3	14.G	2-78	0-02	0.056	0.001	10.73	0.08	375	4.35
													·	
				ļ										
Stabilization Criteria	+/- (	).2 SU	+/- 3% o	f Reading	+/- 20	) mV**	+/- 0.2	 mg/L**	+/- 10% (	of Reading	+/-	0.2°C	N	<u> </u> ја

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Purged: 2.47 gals.

# RETTEN

We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET



Alana Kopicz

Site: Herr F	oods, Inc.,	Nottingham	, PA			Field Perso	onnel: $\mathcal{D}_{\sigma}$	ovan (	Correll	(STL)				
Date:  ///	(17					Pump: Peri	istaltic Pump	Proad	stive t	flexi-s				
Weather:	Snnny	30°F				Meter: Mu	ltiparamete	r With Flow	vCell Ha	nna HI	5 98194			
Well No.:	,	MW-13				Screened I	nterval:		2 to 12 ft.					
Well Deptł	ו:	12 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 5	<u>92</u>	Start Pun	ae · 1155		
Well Diam	eter:	2-inch				Pump Intal	ke Depth:		9 ft.		Sample Tin	ne: 1219		
	4 2)	оН 6U)	Condu (mS)	Conductivity (mS/cm)     ORP (mV)       Reading     Change     Reading     CI       Ø. 2.3.3     NA     2.98.4     CI			D (mg	O g/L)	TI (g	DS /L)	Ter (°	тр. С)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1200	6.79	NA	0.233	NA	298.4	NA	4.50	NA	2117	NA	11-28	NA	375	6.05
1205	6.80	0.01	0.23 5	0.002	2816	16.8	4.49	0 01	6.118	0.001	11-17	0-11	375	6.05
1210	6.80	0	0-233	0.00 Z	287.4	5.5	4-51	0.02	0116	0.002	11-15	0.02	375	6.05
1215	6.80	0	0.237	0.00 4	294.0	6-6	4-56	0.05	6.119	0.003	11.07	0.08	375	6_05
									-					
Stabilization Criteria	+/- (	0.2 SU	+/- 3% o	f Reading	+/- 20	0 mV**	+/- 0.2	mg/L**	+/- 10% (	of Reading	+/-	0.2°C	N	 IA

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Purgod: 1.98 gals.

# **RETTEW.**

### We answer to you.

## LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F	oods, Inc.,	Nottingham	, PA			Field Perso	nnel: Por	oran	Correll	(STL)				
Date: 1/17	7/17					Pump: Peri	istaltic Pumj	Proac	tive Al	exi5				
Weather: (	Cloudy	37°F				Meter: Mu	ltiparamete	r With Flow	Cell Han,	A HI98	194			
Well No.:		MW-14S				Screened I	nterval:		3 to 10 ft.					
Well Depth	ו:	10 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 🥼	. 16	Start R.		r	
Well Diam	eter:	2-inch				Pump Intai	ke Depth:		8 ft.		Sample Tin	ne: 1408	> ~	
	р (S	6H 5U)	Condu (mS,	ductivity     ORP       IS/cm)     (mV)       Change     Reading       Change     Reading       Change     Reading       O.078     -64.4       O.078     -64.4		RP IV)	D (mį	0 ;/L)	TI (g,	DS /L)	Tei (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1330	6.30	NA	3.303	NA	-57.0	NA	0.83	NA	1-656	NA	14.31	NA	380	6.45
1335	6.39	0.09	3.381	0-078	-64.4	7.4	0.81	0.02	(_688	0.032	14.19	0.12	380	6.68
1340	6.42	0.03	3.380	0-001	-68.1	3.7	0.81	0	1-691	<u>0.003</u>	14.23	0.04	380	6.81
1345	6.44	0.02	3.428	0.038	- 77.3	5-2	0.80	0.01	1-715	0.024	14-33	0.10	350	6-94
1350	6.46	0.02	3-488	0.060	- 75. 0	1.7	0.80	0	1-745	0.030	14.35	0.02	380	7.02
1355	6.47	0.01	3.560	0-072	-77.0	2.0	0.80	0	1-781	0-036	14-43	0.08	380	7.11
1460	6-49	0.02	3-624	0.064	-78.3	1-3	0.80	0	1-814	0.033	14.50	0.07	380	7-20
1405	6.49	0	3.675	0.051	-78:4	0.1	0-80	0	1-841	0.027	14-53	0.03	380	7.24
Stabilization Criteria	+/- 0	).2 SU	+/- 3% of	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/-	0.2°C	N	IA

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Purged- 4.0 gals.

## **RETTERN** We answer to you.

## LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F	oods, Inc., I	r Nottingham	, PA			Field Perso	nnel: Pa	novan	Corre	.11 (ST	L)			
Date:	7/17					Pump: Peri	staltic Pum	Pro ac	strue A	lexrs				
Weather:	Cloudy	. 370F				Meter: Mu	ltiparamete	r With Flow	Cell Har	ng HI	98194			
Well No.:		MW-14D				Screened l	nterval:		15 to 25 ft.					
Well Depth	ı:	25 ft.				Depth To V	Vater Befor	e Pump Ins	tallation: 6	.36	start Pr	1240	2	
Well Diame	eter:	2-inch				Pump Intal	ke Depth:		20 ft.		Sample Tin	ne: 1314		
	pH     Conductivity       (SU)     (mS/cm)       me     Reading     Change       Reading     Change     Reading       4 5     6-08     NA       1.691     NA     141				Oi (m	RP IV)	D (m)	0 ;/L)	TI (g,	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	IngChangeReadingChangeReading9NA1.691NA1.41.590.081.6860.0051.27.9			Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water	
1245	6-08	NA	1.691	NA	141.5	NA	0.86	NA	0.844	NA	16.74	NA	380	7.55
1250	6.00	0.08	1-686	0.005	127.9	13.0	0.83	0.03	0.843	0.001	16.81	0.07	380	7.75
1255	5.96	0.04	1-689	0.003	125.6	23	0.83	0	0-845	0.002	16.80	0.01	380	7.80
1300	5.93	0.03	1.705	0.016	119.3	6.3	0.81	0.02	0-853	0.008	16.86	0.06	380	7-88
1305	5.93	0	1.707	0.002	117-4	1-9	0.80	0.01	0.854	0.001	16.90	0.04	380	7.90
1310	5.93	0	1-711	0.004	(14_1	3.3	0.80	0	0.855	0.001	16.89	0.01	380	7.91
											_			
											1			
Stabilization Criteria	+/- 0		+/- 3% 0	f Reading	+/- 20	u 0 mV**	+/- 0.2	L mg/L**	+/- 10% (	of Reading	+/- (	0.2°C	- N	IA

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Purged - 3.0gals.

## **RETTERN** We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F	oods, Inc.,	Nottingham	i, PA			Field Perso	onnel: Por	aran Ca	orrell (	STL)				
Date: 1/n	<b>t</b>  17					Pump: Per	istaltic'Pum	p Proad	time Al	exis				
Weather:	6 londy	rain 3	7°F			Meter: Mu	Iltiparamete	r With Flow	Cell Ha	nna H1	98/94			
Well No.:	•	OW-1				Screened I	nterval:		3 to 15 ft.					
Well Dept	ו:	15 ft.				Depth To V	Nater Befor	e Pump Ins	tallation: 7	44	CL. LP.	1 LAVE		
Well Diam	eter:	2-inch				Pump Inta	ke Depth:		10 ft.		Sample Tin	ne: 1109		_
	P (S	ын Ю)	Condu (mS,	ıctivity /cm)	OI (m	RP 1V)	D (m)	O g/L)	TI (g	DS /L)	Ter	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
10:20	7.z3	NA	16.900	NA	39.4	NA	28.65	NA	8.209	NA	15.35	NA	350	7.89
1025	7-24	0.01	15.836	1-070	55.0	16.2	27-63	1.02	7.905	0-304	14.74	0.61	350	8.30
1030	7.25	0.01	17-130	1-300	66.5	16.9	28.57	0.94	8.355	0.450	14.44	0	350	8.53
1035	7-23	0.02	16.860	0-270	76.0	9.5	30.06	1-49	8.365	0-010	14-90	0.16	350	8.70
1040	7.25	0.02	17.966	1-100	92.6	16.6	31-88	1-82	9-084	0-719	15-25	0.35	350	9.00
1045	7.27	0.02	19-200	1-240	101.2	8.6	37.38	0.50	9-384	0-300	15.75	0.03	350	9.07
1050	7-29	0.02	19-230	0.030	107.7	6.5	31.90	0.48	9-648	0264	15.43	0.15	350	9.16
1055	7-30	0.01	19.530	0300	113.2	5.5	31-26	0.64	9.820	0.128	15.50	6.07	350	9.22
1100	7-31	0.01	19.560	0.030	118.9	5_7	31-17	0-09	9.971	6-151	15.57	0.07	350	9.31
1105	7-32	0.01	19-570	0.010	120.4	1-5	31.14	0.03	9.989	0.018	15.61	0.04	350	9-75
								_						
Stabilization Criteria	+/- 0	).2 SU	+/- 3% o	f Reading	+/- 20	/ mV**	+/- 0.2	mg/L**	+/- 10% a	of Reading	+/- (	0.2°C	N	IA

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Purgod - 4-6 gals.

# **RETTEW**

### We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F Date:	Foods, Inc., 1 8/17	Nottingham	n, PA		-	Field Perso Pump: Peri	onnel: <i>Do</i> istaltic Pum	novan p <i>Proa</i> c	Correll true Al	(STL) = x15				
Weather:	Cloud	1 430F				Meter: Mu	Itiparamete	r With Flow	vCell Har	nna HI	98194			
Well No.:		OW-2				Screened I	nterval:		3 to 15 ft.					
Well Depth	<b>1</b> :	15 ft.				Depth To V	Nater Befor	e Pump Ins	tallation: 6	.70	Start Pr	-092	20	
Well Diame	eter:	2-inch				Pump Intal	ke Depth:		10 ft.		Sample Tin	ne: 100	8	
	р (S	H U)	Condu (mS)	ıctivity /cm)	OI (m	RP IV)	D (mi	O g/L)	Ti (g.	DS /L)	Ter (°	mp. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
0925	6.93	NA	4-306	NA	66.1	NA	0.77	NA	2.150	NA	14.76	NA	350	7.41
6930	6-96	0.03	4.436	0.130	50.3	15.8	0.75	0.02	2-227	0.017	14-74	0.02	350	7.59
0935	7.06	0-10	4-762	0-326	21.7	28.6	0.73	0.0Z	2-388	0.161	14.84	0.10	350	7-81
0940	7-25	0-19	5.110	0-348	14.3	7_4	0-72	0-01	2.566	0-178	15.00	0-16	350	7.98
0945	7-54	0-29	5-767	0.657	15.5	1.Z	0-71	0-01	Z-900	0- 334	15-13	0.13	350	8.11
0950	7.69	0.15	6-165	0-398	16.8	1-3	0.70	0.01	3.097	0.197	15-29	0.16	350	8.20
0955	7-85	0.16	6-567	0-402	20.3	3-5	0.70	0	3.289	0.192	15-42	0-13	350	8.29
1000	7.96	0-11	6-697	0-130	27.7	2.4	0.71	0.01	3.360	0-071	15.43	0.01	350	8.35
1005	8.02	0.06	6-718	0-021	20.8	1.9	0.71	0	3-401	0.041	15.52	1.09	350	8.41
Stabilization Criteria	+/- 0	0.2 SU	+/- 3% o	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/-(	0.2°C	N	IA

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

total Purged - 4.2 gals.

## **RETTERN** We answer to you.

### LOW-FLOW PURGUING AND SAMPLING DATA SHEET

Site: Herr F	oods, Inc., I	Nottingham	, PA			Field Perso	nnel: Do .	novan (	Correll (	(STL)				
Date:       8	117					Pump: Peri	staltic Pump	Road	stive A	le KITS				
Weather: (	clondy	43°F				Meter: Mu	ltiparamete	r With Flov	v Cell I-lan	ina HI	98194			
Well No.:		Former Sup	oply Well			Screened I	nterval:		Open inter	val 74 to 21	.0 feet			
Well Depth	:	210 ft.				Depth To V	Vater Befor	e Pump Ins	stallation: 7	. 55	eta + A	con 1 1 7	5	
Well Diame	eter:	6-inch				Pump Intal	ke Depth:		18 ft.		Sample Tin	ne: 1059	ì	
	pH (SU)Conductivity (mS/cm)neReadingChangeReading0717NA155.7NA5716001155.40003-23.7				OF (m	RP V)	D (m	0 ;/L)	TI (g/	DS /L)	Ter (*	np. C)	Pumping Rate*	Depth To
Time	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	Water
1030	7.17	NA	1.557	NA	-30.0	NA	1-20	NA	0.778	NA	14.04	NA	400	7.57
1035	7.16	0.01	1.554	0.003	-23.7	6-3	1-16	0.04	0.777	0.001	14.07	0.03	400	7.57
1040	7-16	0	1-553	0.001	-26.1	2.4	1.15	0.01	0.776	0.001	14.10	0.03	400	7.58
1045	7-18	0-02	1-546	0.007	-35.	9.0	1-11	0.04	0.773	0.003	14.21	0.11	400	7.58
1050	7.19	0.01	1-550	0.004	-45.0	9.9	-  3	0.02	0.775	0.00Z	14.16	0.05	400	7.59
10:55	7-22	0.03	1.540	0-010	-53.9	8.9	1-10	0-03	0.770	6.005	14.19	0.03	400	7.59
						_								
Stabilization Criteria	+/- 0	.2 SU	+/- 3% 0	f Reading	+/- 20	mV**	+/- 0.2	mg/L**	+/- 10% c	of Reading	+/- (	0.2°C	N	JA AI

* Not to exceed 500 ml/min

** Resolution accuracy of multiparameter meter

Total Punged - 3.2 gals.

18 Location_ <u>Herr</u>	- Food s	Date//16/	17	Locatio	n	•	Date	19	
Project / Client _K	etten								
Wells	Static (Ftb	TOC)							~
-MW-1	7.14						7012602 Alana Kopicz		
Min-5	6.07					 			
MW-6	4.25					 			
MW-7	7.45					 			
1 mw-9	5.25								
1 mw-10	5.15					 			
1 MW-8	4-70								
MW-14D	6.49		· · · · · · · · · · · · · · · · · · ·						
MW-145	6.20								
OW-Z	6-84								
ow-l	7.48								
MW-4	1-62	-							
MW-M_	250								
Endinall	7,58								
NAVAC 17	416		•						
MANG-13	597					 r			
MW-3	6.55*					 			
XE MIN-3 War	ter level was	tatten int	-he			 			
a finance	a drie to ine	ell vault 1	řd			 			
born a f	nozen.					 			
					No Sports to serve a Provide	e za star na star star star star star star star sta	a na ana ana ana ana ana ana ana ana an		<b>P</b>

an di Sangadi

## **APPENDIX G**

Groundwater Sample Laboratory Analytical Reports



Order ID: 6064766

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603			Project: Herr Fo	ods- Monito	oring W	ells July 20	16		
Attn: Ed Dziedzic		R	egulatory ID:						
Sample Number: 6064766-01	Site: M	/W 1		Sa	mple II	D:			
Collector: DRC-STL	Collect	Date: 07/11/20	)16 11:38 am	Sa	imple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A		1	07/11/16	BAK	07/11/16 11:38	DRC
Static Water Level (ft)	3.54	N/A	N/A		1	07/11/16	BAK	07/11/16 11:38	DRC
Total Volume Purged (gal)	1.69	N/A	N/A N/A		1	07/11/16	BAK	07/11/16 11:38	
Well Diameter (in)	2.00	N/A	N/A		1	07/11/16	BAK	07/11/16 11:38	DRC
Inorganics									
Nitrate as N	2.34	mg/L	EPA 300.0	1.00	1	07/12/16	MRW	07/12/16 1:56	MRW
Sulfate	7.62	mg/L	EPA 300.0	5.00	1	07/12/16	MRW	07/12/16 1:56	MRW
Metals									
Iron, Dissolved	< 0.100	mg/L	EPA 200.8	0.100	1	07/19/16	RPV	07/19/16 23:37	RPV
Sample Number: 6064766-03	Site: M	1VV 3		Sa	mple II	D:			
Collector: DRC-STL	Collect	Date: 07/12/20	016 12:28 pm	Sa	imple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	11.0	N/A	N/A		1	07/12/16	BAK	07/12/16 12:28	DRC
Static Water Level (ft)	4.45	N/A	N/A		1	07/12/16	BAK	07/12/16 12:28	DRC
Total Volume Purged (gal)	2.25	N/A	N/A		1	07/12/16	BAK	07/12/16 12:28	DRC
Iotal Well Depth (ft)	25.0	N/A	N/A		1	07/12/16	BAK	07/12/16 12:28	DRC
weil Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/10 12:28	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	123	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:04	CEM
Isopropylbenzene	41.1	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:04	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:04	CEM
Naphthalene	149	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:04	CEM
ı,ə,ə-i rimetnyidenzene	137	µg/∟	211 940 9500R	0.5	1	07/21/16	CEM	0//21/16 12:04	CEM

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014



Page 1 of 38



Sample Number: 6064766-03	Site: N	1W 3		Sa	Imple I	D:			
Collector: DRC-STL	Collect	Date: 07/12/20	016 12:28 pm	Sa	Imple ⊺	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
							-		-
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued) Ethyl Benzene	704	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 7:49	SUBUR
1,2,4-Trimethylbenzene	375	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 7:49	SUBUR BAN\o
Xylenes, Total	3640	μg/L	SW 846 8260B	10.0	10	07/21/16	CEM	07/22/16 7:49	SUBUR BAN\o
Toluene	4880	µg/L	SW 846 8260B	10.0	20	07/21/16	CEM	07/22/16 11:22	SUBUR BAN\o
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	45.5	µg/L	SW 846 8260B	91%	1	72-13	6	07/21/16 12:04	
Surrogate: 1,2-Dichloroethane-d4	47.6	µg/L	SW 846 8260B	95%	1	79-13	5	07/21/16 12:04	
Surrogate: Toluene-d8	51.1	µg/L	SW 846 8260B	102%	1	88-11	2	07/21/16 12:04	
Surrogate: Bromofluorobenzene	57.9	µg/L	SW 846 8260B	116%	1	75-11	7	07/21/16 12:04	
Surrogate: Dibromofluoromethane	51.6	µg/L	SW 846 8260B	103%	10	72-13	6	07/22/16 7:49	
Surrogate: 1,2-Dichloroethane-d4	49.1	µg/L	SW 846 8260B	98%	10	79-13	5	07/22/16 7:49	
Surrogate: Toluene-d8	50.6	µg/L	SW 846 8260B	101%	10	88-11	2	07/22/16 7:49	
Surrogate: Bromofluorobenzene	58.3	µg/L	SW 846 8260B	117%	10	75-11	7	07/22/16 7:49	
Surrogate: Dibromofluoromethane	53.3	µg/L	SW 846 8260B	107%	20	72-13	6	07/22/16 11:22	
Surrogate: 1,2-Dichloroethane-d4	49.2	µg/L	SW 846 8260B	98%	20	79-13	5	07/22/16 11:22	
Surrogate: Toluene-d8	50.3	µg/L	SW 846 8260B	101%	20	88-11	2	07/22/16 11:22	
Surrogate: Bromofluorobenzene	58.5	μg/L	SW 846 8260B	117%	20	75-11	7	07/22/16 11:22	
Sample Number: 6064766-04	Site: M	1W 4		Sa	Imple I	D:			
Collector: DRC-STL	Collect	Date: 07/12/20	016 1:15 pm	Sa	imple 7	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Conventional Chemistry Parameters by	SM/EPA Methods								
W-TOC									
Total Organic Carbon	9.79	mg/l	SM 5310 C-11	5.00	10	07/18/16	bdw	07/19/16 11:44	bdw
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A		1	07/12/16	BAK	07/12/16 13:15	DRC
Static Water Level (ft)	5.34	N/A	N/A		1	07/12/16	BAK	07/12/16 13:15	DRC
Total Volume Purged (gal)	2.70	N/A	N/A		1	07/12/16	BAK	07/12/16 13:15	DRC
Total Well Depth (ft)	19.0	N/A	N/A		1	07/12/16	BAK	07/12/16 13:15	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/16 13:15	DRC
Inorganics									
Chemical Oxygen Demand	50.0	mg/L	SM 5220-D	5.00	1	07/15/16	KLS	07/15/16 12:54	KLS
Nitrate as N	< 1.00	mg/L	EPA 300.0	1.00	1	07/13/16	MRW	07/13/16 7:42	MRW
Report	Generated On: 07/2 STL_Resu	2/2016 4:34 pm Ilts Revision #1.6	n 6064766 6 Effective: 07/0	9/2014					





Page 2 of 38



Sample Number: 6064766-04 Collector: DRC-STL	Site: M Collect	IW 4 Date: 07/12/20	016 1:15 pm	Sa Sa	mple I mple 1	D: īype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Inorganics (Continued)									
Sulfate	< 5.00	mg/L	EPA 300.0	5.00	1	07/13/16	MRW	07/13/16 7:42	MRW
Metals									
Iron, Dissolved	33.3	mg/L	EPA 200.8	0.500	5	07/19/16	RPV	07/19/16 23:42	RPV
Volatiles									
VOA, 8260, USTUnleaded									
Isopropylbenzene	57.6	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:31	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:31	CEM
Naphthalene	218	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 12:31	CEM
Benzene	528	μg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 10:53	CEM
Ethyl Benzene	522	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 10:53	CEM
Toluene	1730	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 10:53	CEM
1,3,5-Trimethylbenzene	105	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 10:53	CEM
1,2,4-Trimethylbenzene	416	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 10:53	CEM
Xylenes, Total	2270	µg/L	SW 846 8260B	10.0	10	07/21/16	CEM	07/22/16 10:53	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	40.4	µg/L	SW 846 8260B	81%	1	72-13	6	07/21/16 12:31	
Surrogate: 1,2-Dichloroethane-d4	47.3	µg/L	SW 846 8260B	95%	1	79-13	5	07/21/16 12:31	
Surrogate: Toluene-d8	48.4	µg/L	SW 846 8260B	97%	1	88-11	2	07/21/16 12:31	
Surrogate: Bromofluorobenzene	57.6	ua/L	SW 846 8260B	115%	1	75-11	7	07/21/16 12:31	
Surrogate: Dibromofluoromethane	49.1	ua/l	SW 846 8260B	98%	10	72-13	6	07/22/16 10:53	
Surrogate: 1 2-Dichloroethane-d4	45.2	µg/l	SW/ 846 8260B	90%	10	79-13	5	07/22/16 10:53	
Surrogate: Toluene-d8	40.6	µg/L	SW 946 9260B	99%	10	88-11	2	07/22/16 10:53	
Surrogate: Bromofluorobenzene	57.4	μg/L	SW 846 8260B	115%	10	75-11	7	07/22/16 10:53	
Sample Number: 6064766-05	Site: N	IW 5		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 07/12/20	016 11:04 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A		1	07/12/16	BAK	07/12/16 11:04	DRC
Static Water Level (ft)	4.29	N/A	N/A		1	07/12/16	BAK	07/12/16 11:04	DRC
Total Volume Purged (gal)	2.85	N/A	N/A		1	07/12/16	BAK	07/12/16 11:04	DRC
Total Well Depth (ft)	27.0	N/A	N/A		1	07/12/16	BAK	07/12/16 11:04	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/16 11:04	DRC
Volatiles									
Benzene	267	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	SUBUR BAN\o
Repor	t Generated On: 07/22	2/2016 4:34 pn	n 6064766						

STL_Results Revision #1.6

Effective: 07/09/2014

Page 3 of 38



Sample Number: 6064766-05 Collector: DRC-STL	Site: M Collect	W 5 Date: 07/12/20	016 11:04 am	Sa Sa	mple I mple ⊺	D: ſype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Ethyl Benzene	229	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	SUBUR
Isopropylbenzene	9.7	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	
Methyl-t-butyl ether (MTBE)	6.8	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	
Naphthalene	40.1	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	SUBUR BAN\o
Toluene	203	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	SUBUR BAN\o
1,3,5-Trimethylbenzene	21.0	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	SUBUR BAN\o
1,2,4-Trimethylbenzene	94.4	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:25	SUBUR
Xylenes, Total	538	μg/L	SW 846 8260B	1.0	1	07/21/16	CEM	07/22/16 6:25	BAN\o SUBUR BAN\o
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	47.7	µg/L	SW 846 8260B	95%	1	72-13	36	07/22/16 6:25	
Surrogate: 1,2-Dichloroethane-d4	46.1	µg/L	SW 846 8260B	92%	1	79-13	35	07/22/16 6:25	
Surrogate: Toluene-d8	51.0	µg/L	SW 846 8260B	102%	1	88-11	2	07/22/16 6:25	
Surrogate: Bromofluorobenzene	58.8 V	µg/L	SW 846 8260B	118%	1	75-11	7	07/22/16 6:25	
Sample Number: 6064766-06	Site: T	RIP BLANK DA	Y 1 OF SAMPLING	s Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 07/11/20	016 6:35 am	Sa	imple 7	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
Naphthalene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
Toluene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:09	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	07/21/16	CEM	07/21/16 11:09	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	56.7	μg/L	SW 846 8260B	113%	1	72-13	36	07/21/16 11:09	
Surrogate: 1,2-Dichloroethane-d4	54.2	μg/L	SW 846 8260B	108%	1	79-13	35	07/21/16 11:09	
Surrogate: Toluene-d8	48.5	μg/L	SW 846 8260B	97%	1	88-11	2	07/21/16 11:09	
Surrogate: Bromofluorobenzene	49.9	µg/L	SW 846 8260B	100%	1	75-11	7	07/21/16 11:09	

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 4 of 38



Sample Number: 6064766-06	i	Site: TRIP BLANK DA	Y 1 OF SAMPLING	S	ample I	D:			
Collector: DRC-STL		Collect Date: 07/11/2	016 6:35 am	Si	ample 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
Sample Number: 6064766-07		Site: MW 6		Si	ample I	D:			
Collector: DRC-STL		Collect Date: 07/11/2	016 12:22 pm	Sa	ample 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A		1	07/11/16	BAK	07/11/16 12:22	DRC
Static Water Level (ft)	2.66	N/A	N/A		1	07/11/16	BAK	07/11/16 12:22	DRC
Total Volume Purged (gal)	2.31	N/A	N/A		1	07/11/16	BAK	07/11/16 12:22	DRC
Total Well Depth (ft)	20.0	N/A	N/A		1	07/11/16	BAK	07/11/16 12:22	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/11/16	BAK	07/11/16 12:22	DRC
Inorganics									
Nitrate as N	6.86	mg/L	EPA 300.0	1.00	1	07/12/16	MRW	07/12/16 8:43	MRW
Sulfate	< 5.00	mg/L	EPA 300.0	5.00	1	07/12/16	MRW	07/12/16 8:43	MRW
Metals									
Iron, Dissolved	0.142	mg/L	EPA 200.8	0.100	1	07/19/16	RPV	07/19/16 23:48	RPV
Sample Number: 6064766-08	i i	Site: MW 7		S	ample I	D:			
Collector: DRC-STL		Collect Date: 07/12/2	016 11:48 am	S	ample 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8.00	N/A	N/A		1	07/12/16	BAK	07/12/16 11:48	DRC
Static Water Level (ft)	5.55	N/A	N/A		1	07/12/16	BAK	07/12/16 11:48	DRC
Total Volume Purged (gal)	2.37	N/A	N/A		1	07/12/16	BAK	07/12/16 11:48	DRC
Total Well Depth (ft)	20.0	N/A	N/A		1	07/12/16	BAK	07/12/16 11:48	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/16 11:48	DRC
Inorganics									
Nitrate as N	< 1.00	ma/l	EPA 300 0	1 00	1	07/13/16		07/13/16 6:23	MPW
Sulfate	< 1.00 31.8	mg/L	EPA 300.0	5.00	1	07/13/16	MR\//	07/13/16 6:23	MRW
Gunate	01.0	mg/L	EI A 300.0	5.00		07/13/10		07/13/10 0.23	
<u>Metals</u>									
Iron, Dissolved	30.9	mg/L	EPA 200.8	0.500	50	07/19/16	RPV	07/20/16 16:42	RPV
Volatiles									
VOA, 8260, USTUnleaded									
Isopropylbenzene	86.6	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 13:26	CEM
	Report Generated Or	· 07/22/2016 4.24 p	m 6064766						
	Report Ocherated Of	i. 0//22/2010 4.34 pi	0004700						

 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com



Page 5 of 38



Sample Number: 6064766-08	Site: M	/W 7 · Date: 07/12/20	16 11:48 am	Sa	mple l mple T	D: īvņe: Grab			
Department / Test / Parameter	Result	Units	Method		DF	Pren Date	By	Analysis Date	By
	Roout	onto	incurou	11.2.	51		2,	Analysis Bute	
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 13:26	CEM
Naphthalene	332	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 13:26	CEM
1,3,5-Trimethylbenzene	274	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 13:26	CEM
Benzene	1370	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 8:46	SUBUR BAN\o
Ethyl Benzene	669	μg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 8:46	SUBUR BAN\o
Toluene	1170	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 8:46	SUBUR BAN\o
1,2,4-Trimethylbenzene	658	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 8:46	SUBUR BAN\o
Xylenes, Total	4260	µg/L	SW 846 8260B	10.0	10	07/21/16	CEM	07/22/16 8:46	SUBUR BAN\o
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	41.4	μg/L	SW 846 8260B	83%	1	72-13	6	07/21/16 13:26	
Surrogate: 1,2-Dichloroethane-d4	44.6	µg/L	SW 846 8260B	89%	1	79-13	5	07/21/16 13:26	
Surrogate: Toluene-d8	51.3	µg/L	SW 846 8260B	103%	1	88-11	2	07/21/16 13:26	
Surrogate: Bromofluorobenzene	59.4 V	µg/L	SW 846 8260B	119%	1	75-11	7	07/21/16 13:26	
Surrogate: Dibromofluoromethane	48.5	µg/L	SW 846 8260B	97%	10	72-13	6	07/22/16 8:46	
Surrogate: 1,2-Dichloroethane-d4	46.0	µg/L	SW 846 8260B	92%	10	79-13	5	07/22/16 8:46	
Surrogate: Toluene-d8	48.1	µg/L	SW 846 8260B	96%	10	88-11	2	07/22/16 8:46	
Surrogate: Bromofluorobenzene	57.2	μg/L	SW 846 8260B	114%	10	75-11	7	07/22/16 8:46	
Sample Number: 6064766-10	Site: N	/W 9		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 07/12/20	016 9:38 am	Sa	mple 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A		1	07/12/16	BAK	07/12/16 9:38	DRC
Static Water Level (ft)	3.41	N/A	N/A		1	07/12/16	BAK	07/12/16 9:38	DRC
Total Volume Purged (gal)	4.16	N/A	N/A		1	07/12/16	BAK	07/12/16 9:38	DRC
Total Well Depth (ft)	20.0	N/A	N/A		1	07/12/16	BAK	07/12/16 9:38	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/16 9:38	DRC
Volatiles									
VOA 8260 USTUnleaded									
Benzene	4.6	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	SUBUR
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	SUBUR BAN\o

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014



Page 6 of 38



Sample Number: 6064766-10 Collector: DRC-STL	Site: M Collect	W 9 Date: 07/12/2	016   9:38 am	Sa Sa	mple I mple ⊺	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Isopropylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	SUBUR
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	SUBUR
Naphthalene	5.8	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	BAN\o SUBUR
Toluene	0.6	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	BAN\o SUBUR
		10							BAN\o
1,3,5-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	SUBUR BAN\o
1,2,4-Trimethylbenzene	0.6	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 6:53	SUBUR
Xylenes, Total	1.7	µg/L	SW 846 8260B	1.0	1	07/21/16	CEM	07/22/16 6:53	SUBUR
									BAN\o
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	51.1	µg/L	SW 846 8260B	102%	1	72-13	36	07/22/16 6:53	
Surrogate: 1,2-Dichloroethane-d4	49.5	µg/L	SW 846 8260B	99%	1	79-13	35	07/22/16 6:53	
Surrogate: Toluene-d8	50.3	µg/L	SW 846 8260B	101%	1	88-11	2	07/22/16 6:53	
Surrogate: Bromofluorobenzene	54.9	µg/L	SW 846 8260B	110%	1	75-11	7	07/22/16 6:53	
	<u> </u>								
Sample Number: 6064766-11	Site: M	W 10		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 07/12/2	016 8:34 am	Sa	mple 7	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Conventional Chemistry Parameters by	SM/EPA Methods								
W-TOC									
Total Organic Carbon	5.29 2a	mg/l	SM 5310 C-11	0.500	1	07/18/16	bdw	07/19/16 11:59	bdw
General Method									
Monitor Well Sampling	10.0	N1/A	NI/A		4	07/10/16	DAK	07/10/16 9:24	DDC
Statio Water Lovel (ft)	TU.U 5 99	N/A	N/A		1	07/12/10		07/12/10 0.34	
Total Volume Purged (gal)	2 70	N/A	N/A		1	07/12/16	BAK	07/12/16 8:34	DRC
Total Well Depth (ft)	20.0	N/A	N/A		1	07/12/16	BAK	07/12/16 8:34	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/16 8:34	DRC
Inorganics									
Chemical Oxygen Demond	47.0	ma/l	SM 5000 D	E 00	1	07/15/16	KIG	07/15/16 12.54	KIC
Nitrate as N	47.U	mg/L	51VI 5220-D	1.00	1	07/13/16	NLO MDM/	07/13/16 7.59	NDM/
Sulfate	< 5.00	mg/L	EPA 300.0	5.00	1	07/13/16	MRW	07/13/16 7:58	MRW

Metals 1 4 1

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

Page 7 of 38



Sample Number: 6064766-11 Collector: DRC-STL	Site: M Collect	1W 10 Date: 07/12/20	016 8:34 am	Sa Sa	mple I mple T	D: ſype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals (Continued)									
Iron, Dissolved	17.3	mg/L	EPA 200.8	0.100	1	07/19/16	RPV	07/19/16 23:58	RPV
Volatiles									
VOA, 8260, USTUnleaded									
Ethyl Benzene	7.0	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
Isopropylbenzene	17.2	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
Methyl-t-butyl ether (MTBE)	72.9	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
Naphthalene	30.0	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
Toluene	7.7	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
1,3,5-Trimethylbenzene	2.0	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
1,2,4-Trimethylbenzene	1.7	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 14:21	CEM
Xylenes, Total	9.8	μg/L	SW 846 8260B	1.0	1	07/21/16	CEM	07/21/16 14:21	CEM
Benzene	1340	µg/L	SW 846 8260B	5.0	10	07/21/16	CEM	07/22/16 9:14	SUBUR BAN\o
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	46.2	ua/L	SW 846 8260B	92%	1	72-13	6	07/21/16 14:21	
Surrogate: 1.2-Dichloroethane-d4	45.0	ua/L	SW 846 8260B	90%	1	79-13	5	07/21/16 14:21	
Surrogate: Toluene-d8	51.8	µg/L	SW 846 8260B	104%	1	88-11	2	07/21/16 14:21	
Surrogate: Bromofluorobenzene	57.5	µg/l	SW 846 8260B	115%	1	75-11	7	07/21/16 14.21	
Surrogate: Dibromofluoromethane	49.4	µg/=	SW 846 8260B	99%	10	72-13	6	07/22/16 9.14	
Surrogate: 1 2-Dichloroethane-d4	43.4	µg/L	SW/ 846 8260B	96%	10	79-13	5	07/22/16 9:14	
Surrogate: Toluene_d8	47.0	µg/L	SW 846 8260B	95%	10	88-11	2	07/22/16 0:14	
Surrogate: Bromofluorobenzene	52.1	μg/L	SW 846 8260B	104%	10	75-11	7	07/22/16 9:14	
Sample Number: 6064766-12	Site: T	RIP BLANK DA	Y 2 OF SAMPLING	i Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 07/11/20	)16 6:35 am	Sa	mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
Isopropylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
Naphthalene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/21/16 11:37	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	07/21/16	CEM	07/21/16 11:37	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	57.4	µg/L	SW 846 8260B	115%	1	72-13	6	07/21/16 11:37	

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014







PADEP 06-00208



Sample Number: 6064766-12 Collector: DRC-STL	Site: T Collect	RIP BLANK DA Date: 07/11/2	Y 2 OF SAMPLING 016 6:35 am	) Sa Sa	ample I ample 1	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued	d)								
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery)	Analysis Date	
Surrogate: 1,2-Dichloroethane-d4	54.0	µg/L	SW 846 8260B	108%	1	79-13	35	07/21/16 11:37	
Surrogate: Toluene-d8	49.4	µg/L	SW 846 8260B	99%	1	88-11	2	07/21/16 11:37	
Surrogate: Bromofluorobenzene	51.1	μg/L	SW 846 8260B	102%	1	75-11	17	07/21/16 11:37	
Sample Number: 6064766-13	Site: M	W 11		Sa	ample I	D:			
Collector: DRC-STL	Collect	Date: 07/12/2	016 10:15 am	Sa	ample 7	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Conventional Chemistry Paramet	ers by SM/EPA Methods								
W-TOC									
Total Organic Carbon	0.831	mg/l	SM 5310 C-11	0.500	1	07/18/16	bdw	07/19/16 12:16	bdw
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	11.5	N/A	N/A		1	07/12/16	BAK	07/12/16 10:15	DRC
Static Water Level (ft)	0.840	N/A	N/A		1	07/12/16	BAK	07/12/16 10:15	DRC
Total Volume Purged (gal)	1.84	N/A	N/A		1	07/12/16	BAK	07/12/16 10:15	DRC
Total Well Depth (ft)	12.5	N/A	N/A		1	07/12/16	BAK	07/12/16 10:15	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/12/16	BAK	07/12/16 10:15	DRC
Inorganics									
Chemical Oxygen Demand	< 5.00	mg/L	SM 5220-D	5.00	1	07/15/16	KLS	07/15/16 12:54	KLS
Nitrate as N	2.35	mg/L	EPA 300.0	1.00	1	07/13/16	MRW	07/13/16 8:14	MRW
Sulfate	< 5.00	mg/L	EPA 300.0	5.00	1	07/13/16	MRW	07/13/16 8:14	MRW
Metals									
Iron, Dissolved	< 0.100	mg/L	EPA 200.8	0.100	1	07/19/16	RPV	07/20/16 0:04	RPV
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	14.7	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	SUBUR
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	BAN\o SUBUR
Isonronvihenzene	~ 0.5	uo/I	SW/ 846 8260P	0.5	1	07/21/16	CEM	07/22/16 7.21	BAN\o
юфгорушендене	~ 0.0	μ9/⊏	011 040 0200B	0.5		07721/10		01122110 1.21	BAN\o
Methyl-t-butyl ether (MTBE)	12.5	μg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	SUBUR BAN\o
Naphthalene	5.8	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	SUBUR BAN\o

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

Page 9 of 38



Sample Number: 6064766-13 Collector: DRC-STL	Site: MW Collect Da	11 te: 07/12	/2016 10:15 am	Sa Sa	ample I ample 7	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	SUBUR
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/21/16	CEM	07/22/16 7:21	SUBUR
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	07/21/16	CEM	07/22/16 7:21	SUBUR BAN\o
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery)	Analysis Date	;
Surrogate: Dibromofluoromethane	54.0	µg/L	SW 846 8260B	108%	1	72-13	36	07/22/16 7:21	
Surrogate: 1,2-Dichloroethane-d4	50.6	µg/L	SW 846 8260B	101%	1	79-13	35	07/22/16 7:21	
Surrogate: Toluene-d8	49.0	µg/L	SW 846 8260B	98%	1	88-11	2	07/22/16 7:21	
Surrogate: Bromofluorobenzene	52.2	µg/L	SW 846 8260B	104%	1	75-11	17	07/22/16 7:21	
Sample Number: 6064766-14	Site: MW	12		Sa	ample I	D:			
Collector: DRC-STL	Collect Da	te: 07/11/	/2016 10:58 am	Sa	ample 7	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A		1	07/11/16	BAK	07/11/16 10:58	DRC
Static Water Level (ft)	3.71	N/A	N/A		1	07/11/16	BAK	07/11/16 10:58	DRC
Total Volume Purged (gal)	2.11	N/A	N/A		1	07/11/16	BAK	07/11/16 10:58	DRC
Total Well Depth (ft)	12.0	N/A	N/A		1	07/11/16	BAK	07/11/16 10:58	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/11/16	BAK	07/11/16 10:58	DRC
Inorganics									
Nitrate as N	3 74	ma/l	EPA 300.0	1 00	1	07/12/16	MRW	07/12/16 8.58	MRW
Sulfate	< 5.00	mg/L	EPA 300.0	5.00	1	07/12/16	MRW	07/12/16 8:58	MRW
Metals									
Iron, Dissolved	< 0.100	mg/L	EPA 200.8	0.100	1	07/19/16	RPV	07/20/16 0:25	RPV
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Naphthalene	< 0.5 B	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Re	port Generated On: 07/22/20	16 4:34	pm 6064766						

STL_Results Revision #1.6

Effective: 07/09/2014





Sample Number: 6064766-14 Collector: DRC-STL	Site: M Collect	W 12 Date: 07/11/2	016  10:58 am	Sa Sa	mple I mple ⊺	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:09	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	07/14/16	CEM	07/14/16 14:09	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery	) Analysis Date	
Surrogate: Dibromofluoromethane	56.8	µg/L	SW 846 8260B	114%	1	72-13	36	07/14/16 14:09	
Surrogate: 1,2-Dichloroethane-d4	53.6	µg/L	SW 846 8260B	107%	1	79-13	35	07/14/16 14:09	
Surrogate: Toluene-d8	50.0	µg/L	SW 846 8260B	100%	1	88-11	12	07/14/16 14:09	
Surrogate: Bromofluorobenzene	47.0	µg/L	SW 846 8260B	94%	1	75-11	17	07/14/16 14:09	
Sample Number: 6064766-15	Site: M	W 13		Sa	mple I	D.			
Collector: DBC-STI	Collect	Date: 07/11/2	016_10 [.] 08 am	Sa	mnle 1	 Ivne: Grah			
				04	imple				
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A		1	07/11/16	BAK	07/11/16 10:08	DRC
Static Water Level (ft)	5.02	N/A	N/A		1	07/11/16	BAK	07/11/16 10:08	DRC
Total Volume Purged (gal)	2.70	N/A	N/A		1	07/11/16	BAK	07/11/16 10:08	DRC
Total Well Depth (ft)	12.0	N/A	N/A		1	07/11/16	BAK	07/11/16 10:08	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/11/16	BAK	07/11/16 10:08	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
Isopropylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
Naphthalene	< 0.5 B	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 14:37	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	07/14/16	CEM	07/14/16 14:37	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery	) Analysis Date	
Surrogate: Dibromofluoromethane	58.5	µg/L	SW 846 8260B	117%	1	72-13	36	07/14/16 14:37	
Surrogate: 1,2-Dichloroethane-d4	54.2	µg/L	SW 846 8260B	108%	1	79-13	35	07/14/16 14:37	
Surrogate: Toluene-d8	49.4	µg/L	SW 846 8260B	99%	1	88-11	12	07/14/16 14:37	
Surrogate: Bromofluorobenzene	46.6	µg/L	SW 846 8260B	93%	1	75-11	17	07/14/16 14:37	

Report Generated On: 07/22/2016 4:34 pm STL_Results Revision #1.6

6064766 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

Page 11 of 38



Sample Number: 6064766-16	Site: S	W		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 07/11/20	016 1:28 pm	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	100	N/A	N/A		1	07/11/16	BAK	07/11/16 13:28	DRC
Static Water Level (ft)	5.85	N/A	N/A		1	07/11/16	BAK	07/11/16 13:28	DRC
Total Volume Purged (gal)	5.35	N/A	N/A		1	07/11/16	BAK	07/11/16 13:28	DRC
Total Well Depth (ft)	0.00	N/A	N/A		1	07/11/16	BAK	07/11/16 13:28	DRC
Well Diameter (in)	0.00	N/A	N/A		1	07/11/16	BAK	07/11/16 13:28	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Isopropylbenzene	29.0	µg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 15:03	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 15:03	CEM
1,3,5-Trimethylbenzene	88.6	μg/L	SW 846 8260B	0.5	1	07/14/16	CEM	07/14/16 15:03	CEM
Benzene	2080	μg/L	SW 846 8260B	5.0	10	07/20/16	CEM	07/21/16 5:09	CEM
Ethyl Benzene	1160	μg/L	SW 846 8260B	5.0	10	07/20/16	CEM	07/21/16 5:09	CEM
Naphthalene	142	μg/L	SW 846 8260B	5.0	10	07/20/16	CEM	07/21/16 5:09	CEM
Toluene	2830	μg/L	SW 846 8260B	5.0	10	07/20/16	CEM	07/21/16 5:09	CEM
1,2,4-Trimethylbenzene	508	μg/L	SW 846 8260B	5.0	10	07/20/16	CEM	07/21/16 5:09	CEM
Xylenes, Total	2440	µg/L	SW 846 8260B	10.0	10	07/20/16	CEM	07/21/16 5:09	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery	) Analysis Date	
Surrogate: Dibromofluoromethane	46.0	μg/L	SW 846 8260B	92%	1	72-13	6	07/14/16 15:03	
Surrogate: 1,2-Dichloroethane-d4	46.3	µg/L	SW 846 8260B	93%	1	79-13	5	07/14/16 15:03	
Surrogate: Toluene-d8	51.1	µg/L	SW 846 8260B	102%	1	88-11	2	07/14/16 15:03	
Surrogate: Bromofluorobenzene	54.0	µg/L	SW 846 8260B	108%	1	75-11	7	07/14/16 15:03	
Surrogate: Dibromofluoromethane	50.5	µg/L	SW 846 8260B	101%	10	72-13	6	07/21/16 5:09	
Surrogate: 1,2-Dichloroethane-d4	47.5	µg/L	SW 846 8260B	95%	10	79-13	5	07/21/16 5:09	
Surrogate: Toluene-d8	48.0	µg/L	SW 846 8260B	96%	10	88-11	2	07/21/16 5:09	
Surrogate: Bromofluorobenzene	61.7 V	µg/L	SW 846 8260B	123%	10	75-11	7	07/21/16 5:09	

**Data Qualifiers:** 

The RPD result exceeded the QC control limits for the duplicate, LCSD or MSD sample analyzed. Data accepted based on additonal batch QC.
 The target analyte was detected in the Method Blank, Dilution Water Blank, or Sterility Check at or above the method Reporting Limit or applicable method, client, or regulatory requirement.
 The surrogate associated with this sample was not within the established acceptance criteria.

#### Work Order Memo

SUB: SM 5310 C-11 performed by Lab ID# 07-0062.

Report Generated On: 07/22/2016 4:34 pm 606 STL_Results Revision #1.6 Effe

6064766 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Page 12 of 38



All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By: Deborah Hannum

Project Manager

Deboah M. Hansum





1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Page 13 of 38



#### Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other (Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)

ORDER ID: 6064766

Client Name / A	ddress:
-----------------	---------

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603 Phone: (717) 394-1063 Fax: Project Name / Address:

Herr Foods- Monitoring Wells July 2016

Client Project Manager: Ed Dziedzic

Payment / P.O. Info:

Project Description:

Order Comments: Monitoring Well Collection = \$65/hour; Travel time to/from site = \$40/hour; Equipment Rental = \$115 flat fee per event;

Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
064766-01	-MW 1		7/11/16 1138	ORC	Non-potable	Grab	
Containe	er Type / Preservation		Preservation Check	Analysis -	Method		Field Results
None		Α		General Monitor	<b>Method</b> Well Sampling - N/A		i tola results
500 mL P	Plastic	В		Inorgani	cs		
Field Sen	vices	C		Nitrate a Sulfate -	s N - EPA 300.0 EPA 300.0		
500 mL P	Plastic - Cool to 6 C	D		Metals Iron, 200	.8, Dissolved - EPA 200.8		
The second second							
	1			Unassigi Admin, N Sample (	<b>1ed</b> /iscellaneous - N/A Collection, Custom 3 - SL0015		
064766-03	MW 3		7/12/16 1228	Unassign Admin, N Sample (	ned Miscellaneous - N/A Collection, Custom 3 - SL0015 Non-potable	Grab	
064766-03 Containe	MW 3		7     12     12     12       Preservation Check	Unassign Admin, N Sample ( DR Analysis -	ned Miscellaneous - N/A Collection, Custom 3 - SL0015 Non-potable Method	Grab	Field Results
064766-03 Containe Field Serv	MW 3 er Type / Preservation vices	A	7/12/16 1229 Preservation Check	Unassigi Admin, N Sample ( DRC Analysis - General I Monitor V	ned Miscellaneous - N/A Collection, Custom 3 - SL0015 Non-potable Method Method Vell Sampling - N/A	Grab	Field Results
064766-03 Containe Field Sen 40 ml VO,	MW 3 er Type / Preservation vices A - Cool to 6 C & Ascorbic Acid & HCI	A	7/12/16 1228 Preservation Check	Unassign Admin, N Sample ( DR Analysis - General I Monitor V Volatiles	ned Miscellaneous - N/A Collection, Custom 3 - SL0015 Non-potable Method Method Well Sampling - N/A	Grab	Field Results
064766-03 Containe Field Sen 40 ml VO, 40 ml VO,	MW 3 er Type / Preservation vices A - Cool to 6 C & Ascorbic Acid & HCI A - Cool to 6 C & Ascorbic Acid & HCI	A B C	7/12/16 1229 Preservation Check	Unassigi Admin, M Sample ( DR Analysis - General I Monitor V Volatiles VOA, 826	hed Miscellaneous - N/A Collection, Custom 3 - SL0015 Non-potable Method Method Well Sampling - N/A 50, USTUnleaded - SW 846 82	Grab	Field Results

PLEASE NOTE FOR FIELD TEAM: TAKE WATER LEUELS ONLY AT MW-2, MW-8 ENDWALL NO ANHLYSES. RECORD ON FIELD COG. PMH 6/28/16 :

Page 1
						ORDER ID: 6064766			
Sample Number Sample Description - Site ID	Sampling Location	Collect	Sampler's		Sample	Composite			
6064766-04 MW 4	camping Location	7/12/16 1315	Initials	Matrix	Туре	Start Date / Time			
Container Type / Preservation		Preservation Check		Non-potable	Grab				
500 mL Plastic - Cool to 6 C & H2SO4 to pH<2			Ganaral	- Method		Field Results			
500 mL Plastic	[?[	te C	Monitor	Well Sampling - N/A					
	В		Inorgani	CS					
Field Services	C	COD - SM 5220-D Nitrate as N - EPA 300.0 Sulfate - EPA 300.0 TOC - SM 5310-C							
500 mL Plastic - Cool to 6 C	D								
250 ml Glass Amber Cool to C.O. & USOO (			Metals						
200 mL Glass Amber - Cool to 6 C & H2SO4 to pH<2	EPI	Iron, 200.8, Dissolved - EPA 200.8							
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	F		VOIAtiles VOA, 82						
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI									
	6								
40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI	Н								
64766-05 MW 5		7/2/16 1104	ORC	Non-notable					
Container Type / Preservation		Preservation Check	Analysis	Method	Grab				
Field Services	A		General M	Method		Field Results			
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	ь	VOA, 8260, USTUnleaded - SW 846 8260B							
10 IVe: 2	5								
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	C								
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	D								
4766-06 TRIP BLANK DAY 1 OF SAMPLING		2/11/10/20	00						
Container Type / Preservation		/////////////////////////////////	VRC	Non-potable	Grab				
Field Services			Analysis - N	Aethod		Field Results			
	~		Volatiles VOA, 826	0, USTUnleaded - SW 846 826	i0B				
40 mil VOA - Cool to 6 C & Ascorbic Acid & HCI	В		- 01, 0200, 001 01/04040 - 300 046 8260B						
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	С								
40 ml VOA - Cool to 6 C & Ascorbio Acid & Liou									
	D								

Г

, 0 5

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time		
064766-07 MW 6	3		7/11/16 1222	DRC	Non-potable	Grab			
Container Type	/ Preservation		Preservation Check	Analysis -	Method		Field Results		
500 mL Plastic		Α	General Method Monitor Well Sampling - N/A						
Field Services		В							
500 mL Plastic -	Cool to 6 C	C		Sulfate -	EPA 300.0				
				Metals Iron, 200	.8, Dissolved - EPA 200.8				
064766-08 MW 7			7/12/16 1149	ORC	Non-potable	Grab			
Container Type	/ Preservation		Preservation Check	Analysis -	Method		Field Results		
500 mL Plastic		A							
Field Services		В		Inorganic	S				
500 mL Plastic - (	Cool to 6 C	C							
40 ml VOA - Coo	ol to 6 C & Ascorbic Acid & HCI	D							
40 ml VOA - Coo	ol to 6 C & Ascorbic Acid & HCI	E		VOIATIIES VOA, 826	60, USTUnleaded - SW 846 8	260B			
40 ml VOA - Coo	ol to 6 C & Ascorbic Acid & HCI	F							
064766-10 MW 9			7/12/16 0938-	DRC	Non-potable	Grab	[		
Container Type	/ Preservation		Preservation Check	Analysis -	Method		Field Results		
Field Services		В		General N Monitor V	<b>/lethod</b> Vell Sampling - N/A		Field Results		
40 ml VOA - Cool	ol to 6 C & Ascorbic Acid & HCI	D	Volatiles						
40 ml VOA - Cool	ol to 6 C & Ascorbic Acid & HCI	E		VUA, 626	o, 03 i Unieaueu - 5VV 846 8;	2008			
40 ml VOA - Cool	ol to 6 C & Ascorbic Acid & HCI	F							

c · · · · ·

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
064766-11 N	MW 10		7/12/16 0834	DRC	Non-potable	Grab	
Container	Type / Preservation		Preservation Check	Analysis -	Method		Field Results
500 mL Plas	stic - Cool to 6 C & H2SO4 to pH<2	A ptt-	\$2	General Monitor	<b>Method</b> Well Sampling - N/A		
500 mL Pla	stic	В		Inorganio	cs		
Field Servic	265	C		COD - Si Nitrate as	M 5220-D s N - EPA 300.0		
500 mL Plas	stic - Cool to 6 C	D		Sulfate - TOC - SN	EPA 300.0 M 5310-C		
250 mL Gla	ss Amber - Cool to 6 C & H2SO4 to pH<2	E pH	«Z	Ivietais Iron, 200	.8, Dissolved - EPA 200.8		
40 ml VOA -	- Cool to 6 C & Ascorbic Acid & HCI	F		VOIATILES VOA, 826	60, USTUnleaded - SW 846 82	60B	
40 ml VOA -	- Cool to 6 C & Ascorbic Acid & HCI	G					
40 ml VOA -	- Cool to 6 C & Ascorbic Acid & HCI	Н					
64766-12 T	RIP BLANK DAY 2 OF SAMPLING		7/11/10 0635	DRC.	Non-potable	Grab	1
Container T	Type / Preservation		Preservation Check	Analysis - I	Method		Field Results
Field Service	es	A	<u> </u>	Volatiles			
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	В		VOA, 826	50, US I Unleaded - SW 846 820	60B	
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	C					
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	D					

Sample Number	Sample Description - Site ID	Sampling Locatio	n	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time	
064766-13 M	/W 11		7/12/16 1015		Non-potable		Grab		
Container T	Type / Preservation		Pr	reservation Check	Analysis -	Analysis - Method			
500 mL Plas	stic - Cool to 6 C & H2SO4 to pH<2	А	pH=2						
500 mL Plas	stic	В	l		Inorgani	CS			
Field Service	es	C		СОР - эм 5220-0 Nitrate as N - ЕРА 300,0 Sulfate - ЕРА 300,0					
500 mL Plas	stic - Cool to 6 C	D			TOC - S	M 5310-C			
250 mL Glas	ss Amber - Cool to 6 C & H2SO4 to pH<2	E	pHez		Iron, 200.8, Dissolved - EPA 200.8				
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	F	( "		VOA, 82	260, USTUnleaded - SW 846 8	260B		
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	G							
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	Н							
1766-14 M	1W 12			7/11/16 10.58	DRC	Non-potable	Grab		
Container T	ype / Preservation		Pr	eservation Check	Analysis -	Method		Field Results	
500 mL Plast	tic	А			General Monitor	Method Well Sampling - N/A			
Field Service	95	В			Inorgani	<b>CS</b>			
500 mL Plast	tic - Cool to 6 C	C			Sulfate -	EPA 300.0			
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	D			iron, 200	0.8, Dissolved - EPA 200.8			
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	E			VOA, 82	60, USTUnleaded - SW 846 82	260B		
40 ml VOA -	Cool to 6 C & Ascorbic Acid & HCI	F	A.(	7/11/16					
1766-15 M	IW 13		7-1(-16	7/11/16 1008	DRC	Non-potable	Grab		
Container Ty	ype / Preservation		Pro	eservation Check	Analysis -	Method		Field Results	
Field Service	35	A			General I				
40 ml VOA - 1	Cool to 6 C & Ascorbic Acid & HCI	В			Volatiles				
40 ml VOA - (	Cool to 6 C & Ascorbic Acid & HCI	C			VUA, 826	ou, US I Unieaded - SVV 846 82	(60R		
40 ml VOA - 1	Cool to 6 C & Ascorbic Acid & HCI								

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
64766-16	SW		7/11/16 1328	ORC	Non-potable	Grab	
Containe	er Type / Preservation		Preservation Check	Analysis -	- Method		Field Results
Field Sen	vices	A		General Monitor	<b>Method</b> Well Sampling - N/A		
40 ml VO	A - Cool to 6 C & Ascorbic Acid & HCI	В		Volatiles VOA, 82	; 260, USTUnleaded - SW 846 8	260B	
40 ml VO	A - Cool to 6 C & Ascorbic Acid & HCI	C					
40 ml VO	A - Cool to 6 C & Ascorbic Acid & HCI	D					

Suburban Testing Labs. 1037F MacArthur Road Reading, PA 19605	
In Lab Date/Time: 7/12/16/455In Lab Temp: 3.2 Submitted with COC? 7/N Number of containers match number on COC? 7/N All Containers in tact? 7/N Tests within holding times? 7/N 40mL VOA vials free of headspace? 7/N Relinquished by: 7/N Received in Lab by: 65/67/07/07/07/07/07/07/07/07/07/07/07/07/07	PHJ DRC 7-12-16 MM-15

a kş J

Relinquished By:	Date:	Temp (°C):	Sample Conditions	Sample Type Key	Reporting Options
Received By:	Time: Date: Time:	Temp (°C): Acceptable:? Y / N	Submitted with COC?	G = Grab 8HC = 8 Hr. Composite 24HC = 24 Hr. Composite	SDWA Reporting PWSID:
Relinguished By:	18 Date: 7/11/16 Time: 1995	Temp (°C): <u>4.4</u> Acceptable:? Ø/ N	All Containers Intact?	D = Distribution S E = Entry Point D R = Raw W C = Check	☐ Email ☐ Return a copy of this form with Report ☐ Other
Received in Lab By:	Date: Time:	Temp (°C): Acceptable:? Y / N	VOC Vials Free of Headspace?	A S = Special M = Maximum Residence	
Signing this form indicates your agreement with STL's Standard Terms and	d Conditions (www.suburbantestinglabs.c	om\resources\standard-terms-and	I-conditions.html) unless otherwise specified in writing.		Shaded areas are for SWTL use only
wko_STL_Prelog_Is.rpt Deborah	Hannum	Date Created:	06/28/2016 Date Printed: 06/28/2016	6064766	Page 6 of 6

Writed en S: fe - 0820 $Wited en S: fe - 0820$ $Wite - 3.54$ $Wite - 3.54$ $Wite - 3.54$ $Wite - 3.55$ $Wite - 3.55$ $Wite - 3.55$ $Wite - 3.55$ $Wite - 3.56$ $Wite - 2.58$ $Wite - 3.56$ $Wite - 2.58$			
Well       State WL (fth TWL) $MW-1$ $3.54$ $MW-2$ $4.45$ $WW-3$ $4.45$ $WW-3$ $4.45$ $WW-3$ $4.45$ $WW-3$ $5.24$ $WW-12$ $2.66$ $WW-12$ $3.44$ $WW-12$ $3.44$ $WW-12$ $3.55$ $WW-12$ $3.76$ $WW-12$ $3.76$ $WW-12$ $3.76$ $WW-12$ $3.76$ $WW-12$ $3.555$ $WW-12$ $3.76$ $WW-12$ $5.52$ $WW-12$ $5.62$ $WW-12$ $5.67$ $WW-12$ $5.67$ $WW-12$ $5.67$ $WW-12$ $5.67$ $WW-12$ $5.67$ $WW-12$ $5.67$ $WW-12$ $5.$	W wed	on S. te - 0820	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce l	Static WL (FHD TOC)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-1-1	2.5	· · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-2	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NUV-3	4.45	~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW+4	763	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 8		
$\begin{array}{c ccccc} WW & 7 & 5 & 5 \\ WW & 8 & 3 & 4 \\ WW & 1 & 3 & 4 \\ WW & 1 & 3 & 5 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 2 & 8 & 6 \\ WW & 1 & 1 & 0 \\ WW & 1 & 2 & 1 \\ WW & 1 & 1 \\ $	M.W. 6	6	
MW-8 344 MW-9 344 MW-19 341 MW-11 0.84 (Topef stuel cashig) * MW-12 3.71 MW-12 3.71 MW-1	W - 7	S S S	
MW-12 3.74 (Topef stud cassing) * MW-12 3.71 (Topef stud cassing) * MW-12 3.71 (Topef stud cassing) * MW-12 5.02 3.71 (Topef stud cassing) *	WW+ 8	27 27 27 27	
MW-12 3.88 MW-12 3.71 (repert stad (asrig) * MW-12 3.71 (repert stad (asrig) * MW-12 3.71 (repert stad (asrig) *	NW 3		
MW-12 3.71 (Top of stad (asrig) * MW-12 3.71 (Top of stad (asrig)) * SW-12 5.02 SW-13 5.02 SW-13 5.02 SW-13 5.02 SW-12 5.85 SW-12 5.	MW- W	20	-
MW-12 3.71 SW-12 3.71 SW-13 5.02 BVE Easting Lee over the	- MA	0.84 (Top of sheel cas	*
WW-13 5.02 SW-13 5.02 Freedwalt - 3.56 Precent level over the	MW-12	3.75	>
Proceeding - 356 Proceeding - 356 Proceeding - 356	W.W-13	5.02	
Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-casho Pre-ca	S V	62	
Prèce de Mater leve over thè	shoken -	356	· · · · · · · · · · · · · · · · · · ·
Pre casho Pre casho cosho Pre casho Pre casho			-
E Cossing	* PVC -	Water level over th	<b>ŋ</b>
	6 2 2	astro	
		>	
		· · · · · · · · · · · · · · · · · · ·	

6064766



## Order ID: 6074527

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603	Project: Herr Foods- Monitoring Wells July 2016									
Attn: Ed Dziedzic			Reg	ulatory ID:						
Sample Number: 6074527-01	S	Site: MW 1	07/44/0046	44-00	Sa	mple I	D:			
			07/11/2016	5 11:38 am		mpie i	ype: Grab			
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals										
Iron F	0.124		mg/L	EPA 200.8	0.100	1	08/01/16	RPV	08/04/16 17:34	RPV
Sample Number: 6074527-02	Site: MW 4 Sample ID:									
Collector: DRC-STL	Collect Date: 07/12/2016 1:15 pm Sample Type: Grab									
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals										
Iron	47.6		mg/L	EPA 200.8	0.500	1	08/01/16	RPV	08/04/16 17:53	RPV
Sample Number: 6074527-03	5	Site: MW 6			Sa	mple I	D:			
Collector: DRC-STL	(	Collect Date: 07/11/2016 12:22 pm Sample Type: Grab								
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals										
Iron	0.261		mg/L	EPA 200.8	0.100	1	08/01/16	RPV	08/04/16 18:15	RPV
Sample Number: 6074527-04	5	Site: MW 7			Sa	mple I	D:			
Collector: DRC-STL	(	Collect Date:	07/12/2016	5 11:48 am	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals										
Iron	22.1		mg/L	EPA 200.8	0.100	1	08/01/16	RPV	08/04/16 18:23	RPV
Sample Number: 6074527-05	S	Site: MW 10			Sa	mple I	D:			
Collector: DRC-STL	(	Collect Date:	07/12/2016	6 8:34 am	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals										
Iron	16.9		mg/L	EPA 200.8	0.100	1	08/01/16	RPV	08/04/16 18:28	RPV

Report Generated On: 08/09/2016 4:26 pm STL_Results Revision #1.6

6074527 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

SUBURBAN TESTING LABS

Page 1 of 13



Sample Number: 6074527-06 Collector: DRC-STL	Site: M Collec	MW 11 t Date: 07/12/20	16 10:15 am	Sa Sa	imple II imple T	D: İype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals									
Iron	< 0.100	mg/L	EPA 200.8	0.100	1	08/01/16	RPV	08/04/16 18:34	RPV
Sample Number: 6074527-07	Site: N	/W 12		Sa	mple II	D:			
Collector: DRC-STL	Collec	t Date: 07/11/20	16 10:58 am	Sa	Imple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Metals									
Iron	0.117	mg/L	EPA 200.8	0.100	1	08/01/16	RPV	08/04/16 18:39	RPV
Data Qualifiers:									

### Work Order Memo

SUB: SM 5310 C-11 performed by Lab ID# 07-0062.

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

**Reviewed and Released By:** 

Deborah Hannum Project Manager

Deboah M. Hannum

6074527 Effective: 07/09/2014

SUBURBAN TESTING LABS



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Page 2 of 13

A See attached emails. A as per Deb H.



## Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other (Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)

Deborah Hannum

ORDER ID: 6064766

	Client Name / Address
1	enerit itanio / / lauross.

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603

Phone: (717) 394-1063 Fax: Project Name / Address: Herr Foods- Monitoring Wells July 2

Payment / P.O. Info:



Page 1 of 6

Client Project Manager: Ed Dziedzic

Project Description:

Order Comments: Monitoring Well Collection = \$65/hour; Travel time to/from site = \$40/hour; Equipment Rental = \$115 flat fee per event;

Number	Sample_Description Site ID	Sampling Location	Collect Date/Time	Sampler's	Motrix	Sample	Composite
6064766-01	-MW-1		7/11/11/20	VIVO	INIALITIX	Туре	Start Date / Time
Containe	r Type / Preservation				Non-potable	Grab	
None			Preservation Check	Analysis -	Method		Field Results
500 mL PI	lastic		reserved	General I Monitor V	<b>Method</b> /Vell Sampling - N/A		
		В	Until	Inorganic	s		
Field Serv	ices	C C	pttcd	Nitrate as Sulfate - I	s N - EPA 300.0 EPA 300.0		
500 mL Pla	astic - Cool to 6 C			Metals			
L			which is	Iron, 200.	.8, Dissolved EPA-200-8		
		Ao	n 6074527	Admin, M Sample C	iscellaneous - N/A		
5064766-03	MW 3		7/12/16 1228	DRC	Non-potable	0	
Container	Type / Preservation		Preservation Check	Analysis - N	/lethod	Grab	
Field Servic	Ces	A	Hard H ₁ -1	General M	Nothed		Field Results
40 ml VOA	- Cool to 6 C & Ascorbic Acid & HCI			Monitor W	/ell Sampling - N/A		
		В		Volatiles			
40 ml VOA	- Cool to 6 C & Ascorbic Acid & HCI	C		VOA, 8260	D, USTUnleaded - SW 846 826	60B	
40 ml VOA	- Cool to 6 C & Ascorbic Acid & HCI						
De le A	SE LOTE EGA	ELEID THE	1 Mg o				100
		PRIZED PER				ISan	npies
EWA	ATTER LEVEL	S ONLY AT	MW-2	MW-8	ENDWALC	· 7 0°	A AT A
A 1 15			. /	1	•	O I	0 = 0 / , 0
100	ANALYSES	XM4/ 1	India			)	·) '
RE	COLD ON FIELD	(0G. +117) 0	$\propto \delta / b$			6110	113 AIL
						$\sim$ $(1)$	JJ, UT
					. Dr	eserved (	V HNA-

Date Created: 06/28/2016

6064766

Sample         Sample         Sample (subscription - Site ID)         Sampling Location         Collect Determine         Sample/ Initials         Matrix Matrix         Matrix Initials         Matrix Matrix         Matrix Initials         Matrix Matrix         Matrix Initials         Matrix Matrix         Matrix Initials         Matrix Matrix         Matrix Initials         Matrix Initials         Matrix Matrix         Matrix Initials         Matrix Initinit <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ORDER ID: 6064766</th>							ORDER ID: 6064766
Container type / Preservation     Preservation Check     Non-polable     WW-4527       B30 mL Plante - Cool to 6 C A H2SO4 to pH-2     A     pH < 2.     Anabra Vet Serping - NA       B30 mL Plante - Cool to 6 C A H2SO4 to pH-2     A     pH < 2.     Anabra Vet Serping - NA       B30 mL Plante - Cool to 6 C A H2SO4 to pH-2     A     pH < 2.     Anabra Vet Serping - NA       B40 mL Plante - Cool to 6 C     B     B     Coord - Sh S22AC     Nord - Sh S22AC       S00 mL Plante     Coord - Sh S32AC     Nord - Sh S32AC     Nord - Sh S32AC       S00 mL Desk     Coord - Sh S32AC     B     Coord - Sh S32AC       S00 mL Desk     Coord - Sh S32AC     Nord - Sh S32AC     Nord - Sh S32AC       S00 mL Desk     Coord - Sh S32AC     B     Preservation Check     Nord - Sh S32AC       S00 mL Desk     Coord - Sh S32AC     B     Preservation Check     Nord - Sh S32AC       S00 mL Desk     Coord - Sh S32AC     B     Preservation Check     Nord - Sh S3AC       S00 mL Oba- Coord to 6 C & Assochic And & HCl     F     F     F     F       S00 mL Desk     F     F     F     F     F       S00 mL Desk     F     F     F     F     F       S00 mL Desk     F     F     F     F     F       S00 mL Desk <td< th=""><th>Sample Number Sample Description - Site ID 6064766-04 MW 4</th><th>Sampling Location</th><th>Collect Date/Time</th><th>Sampler's Initials</th><th>Matrix</th><th></th><th></th></td<>	Sample Number Sample Description - Site ID 6064766-04 MW 4	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix		
Preservation Check         Analysis - Method         D0/42/1           500 mL Pleatic - Cool to 6 C & H2804 to pH-2         A         PH = 2         General Method         Doluvan Humure           500 mL Pleatic         6         PH = 2         General Method         Monter Visa         Doluvan Humure           500 mL Pleatic         6         PH = 2         General Method         Monter Visa         Doluvan Humure           500 mL Pleatic         6         C         Solo mL Pleatic         F         General Method         Monter Visa           500 mL Pleatic         Cool to 6 C & H2804 to pH-2         C         Solo mL Pleatic         Monter Visa         Solo mL Pleatic         Solo mL Pleatic         Monter Visa         Solo mL Pleatic	Container Type / Preservation		7/12/16 1315	DRC N	on-potable		
BOD mL Plastic     PH+2     General Method       BOD mL Plastic     8       Feld Services     6       Solo mL Plastic     7	500 mL Plastic - Cool to 6 C & H2SO4 to nH<2	P	reservation Check	Analysis - Method		Deborah H	annum
Feld Services       Inorganics         S00 mL Plastic- Cool to 6 C & H2SO4 to get C       P         S00 mL Plastic- Cool to 6 C & H2SO4 to get C       P         S00 mL Plastic- Cool to 6 C & H2SO4 to get C       P         S00 mL Plastic- Cool to 6 C & H2SO4 to get C       P         S00 mL Plastic- Cool to 6 C & H2SO4 to get C       P         S00 mL Plastic- Cool to 6 C & H2SO4 to get C       P         S00 mL Plastic- Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       F         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       B         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       B         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       C         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       C         S00 mL VOA - Cool to 6 C & Assochic Add & HCl       C         S00	500 mL Plastic	A pH=2		General Methoc Monitor Well Sam	<b>j</b> pling - N/A		
Boo mL. Pitatis - Cool to 6 C     D     Work as an Y-EPA 300.0       250 mL. Gliass Amber - Cool to 6 C & At320X to pH-2     E       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       Field Services     Non-potable     Grab       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     F       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       40 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       61 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       62 mersal Method     Field Results       63 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       64 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       64 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       64 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       64 ml VOA - Cool to 6 C & Assochic Acid & HCl     C       64 ml VOA - Cool to 6 C & Assochic Acid & HCl     C	Field Services	C		Inorganics COD - SM 5220-D			
250 mL Glass Amber - Cool to 6 C & Al2SO4 to pH-2       E	500 mL Plastic - Cool to 6 C	b0	74527-A	Nitrate as N - EPA Sulfate - EPA 300.( TOC - SM 5310-C	300.0 D		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       F         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       G         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       H         Operationer Type / Preservation       Preservation Check       Analysis - Method         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Acid & HCl       Cool to 6 C & Ascorbic Ac	250 mL Glass Amber - Cool to 6 C & H2SO4 to pH<2	-E- p //	veseved	Metals Iron, 200.8, Dissolv	ved - EPA-200.8		
AU mi VOA - Cool to 6 C & Ascorbic Acid & HCI       G         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       H         0004768-05       MW 5       T/2/1/6       I/04       OK       Non-potable       Grab         Container Type / Preservation       Preservation Check       Analysis - Method       Field Results         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       B       Volatiles       VOA, 8260, UST Unleaded - SW 846 82605         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       Preservation Check       Analysis - Method       Field Results         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       D       Container Type / Preservation       Field Results         Field Services       A       A       VOA, 8260, UST Unleaded - SW 846 82605       VOA, 8260, UST Unleaded - SW 846 82605         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       Container Type / Preservation       Preservation Check       Analysis - Method       Field Results         Field Services       A       A       VOA, 8260, UST Unleaded - SW 848 82605       VOA, 8260, UST Unleaded - SW 848 82605         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       B       VOA, 8260, UST Unleaded - SW 848 82605       VOA, 8260, UST Unleaded - SW 848 82605	40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	F	pti	VOA, 8260, USTUn	nleaded - SW 846 8	3260B	
40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       H         Dearge-os       MW g       T/2/16       I/04       DRC       Non-potable       Grab         Container Type / Preservation       Preservation Check       Analysis - Method       Field Results         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       B       Container Type / Preservation Check       Analysis - Method       Field Results         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       D       Container Type / Preservation       Field Results         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       D       Container Type / Preservation       Grab       Volatiles         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       D       Container Type / Preservation       Grab       Field Results         40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI       D       D       Volatiles       Volatiles       Volatiles         Volatiles       Volatiles       Volatiles       Volatiles       Volatiles       Volatiles       Volatiles       Volatiles         Volatiles       Volatiles       Volatiles       Volatiles       Volatiles       Volatiles       Volatiles         Volatiles       Volatiles       Volatiles       Volatiles       Volatiles       Vola, 8260, USTUnieaded - SW 846 8260B	40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	G					
Oper/dead       Type / Preservation       Preservation       Office       Analysis       Mon-potable       Grab         Field Services       A         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       Volatiles       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       Preservation Check       Non-potable       Grab       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       Preservation Check       Non-potable       Grab       Grab         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       Preservation Check       Non-potable       Grab       Grab         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       Preservation Check       Analysis - Method       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       Volatiles       Volatiles       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       Konto Check       Analysis - Method       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       G       G       Grab       Grab         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       C       G       G       G       G   <	40 mi VOA - Cool to 6 C & Ascorbic Acid & HCI	H					
Container Type / Preservation       Preservation Check       Analysis - Method       Grab         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       General Method       Monitor Well Sampling - N/A         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       Volatiles       VOA, 8260, USTUnleaded - SW 846 8260B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       TRIP BLANK DAY 1 OF SAMPLING       7///// (// 0635)       DRC       Non-potable       Grab         60 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       Volatiles       VOA, 8260, USTUnleaded - SW 846 8260B       Field Results         60 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       Analysis - Method       Grab       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       Container Type / Preservation       Preservation Check       Analysis - Method       Grab         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       A       Volatiles       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       A       A       A         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       A       A       A         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       C       A       A       A       A	164/66-05 MW 5		7/12/16 1104	DRC			
Field Services       A       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       General Method Monitor VMA       General Method Monitor VMA         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       C         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         94768-06       TRIP BLANK DAY 1 OF SAMPLING       7/11/16       0 635       D RC       Non-potable       Grab         Field Services       A       A       Analysis - Method       Field Results       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       Analysis - Method       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       A       VOA, 8260, USTUnleaded - SW 846 8260B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       Analysis - Method       Field Results         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C       A       A       A       A         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       D       A       A	Container Type / Preservation	Pre	servation Check	Analysis - Mothod	-polable	Grab	
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D	Field Services	A		General Mothed			Field Results
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       C         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         34766-06       TRIP BLANK DAY 1 OF SAMPLING       7/////6       0 6 7 5       D R C       Non-potable       Grab         54766-06       TRIP BLANK DAY 1 OF SAMPLING       7/////6       0 6 7 5       D R C       Non-potable       Grab         54766-06       TRIP BLANK DAY 1 OF SAMPLING       7/////6       0 6 7 5       D R C       Non-potable       Grab         54766-06       TRIP BLANK DAY 1 OF SAMPLING       Preservation Check       Analysis - Method       Field Results         6       A       VOA, 2001 to 6 C & Ascorbic Acid & HCl       B       VOA, 8260, USTUnleaded - SW 846 8260B         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       VOA, 8260, USTUnleaded - SW 846 8260B	40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	В		Monitor Well Samplir	ng - N/A		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D         34766-08       TRIP BLANK DAY 1 OF SAMPLING       7/11/16       0635       DRC       Non-potable       Grab         Container Type / Preservation       Preservation Check       Analysis - Method       Field Results         Field Services       A       A       Volatiles       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       B       C       A       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl       D       D       D	40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	C		VOA, 8260, USTUnie	eaded - SW 846 82	260B	
de4/66-06       TRIP BLANK DAY 1 OF SAMPLING       7////6       0635       DRC       Non-potable       Grab         Container Type / Preservation       Preservation Check       Analysis - Method       Field Results         Field Services       A       Volatiles       Volatiles         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI       C       C         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI       C         40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI       C	40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	D					
Container lype / Preservation     Preservation Check     Analysis - Method     Grab       Field Services     A       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     B       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     C       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     C       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     D	14766-06 TRIP BLANK DAY 1 OF SAMPLING	7	11116 0635	DRC Non-			-
Field Services     A       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     B       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     C       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     C       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl     D	Container Type / Preservation	Pres	ervation Check	Analysis - Method		Grab	
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI     B       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI     C       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI     D		А		Volatiles			Field Results
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI     C       40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI     D	40 ml/0A - Cool to 6 C & Ascorbic Acid & HCI	B		VOA, 8260, USTUniea	aded - SW 846 826	30B	
D	40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	C.					
	ACID CONTROL & ASCORDIC ACID & HCI	D					

wko_STL_Prelog_is.rpt

•

٩.

Date Created: 06/28/2016

Page 2 of 6

	5		
		•	

#### Sample Collect Sampler's Number Sample Description - Site ID Sampling Location Date/Time Initials Matrix 6064766-07 MW 6 7/11/16 1227 DRC Non-potable Container Type / Preservation 6074527 **Preservation Check** Analysis - Method Deborah Hannum 500 mL Plastic A General Method Monitor Well Sampling - N/A Field Services В Inorganics preserved until Nitrate as N - EPA 300.0 500 mL Plastic - Cool to 6 C С Sulfate - EPA 300.0 PH-2 6074527 A Metals Iron, 200.8, Dissolved - EPA 200.8 6064766-08 -MW-7-7/12/16 1149 Non-potable Grab Container Type / Preservation **Preservation Check** Analysis - Method Field Results 500 mL Plastic А **General Method** Monitor Well Sampling - N/A Field Services в Inorganics eservedutil Nitrate as N - EPA 300,0 500 mL Plastic - Cool to 6 C С 6074527A Sulfate - EPA 300.0 Metals 40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI D Iron, 200.8, Dissolved - EPA 200.8 Volatiles 40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI E VOA, 8260, USTUnleaded - SW 846 8260B 40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI F 6064766-10 MW 9 7/12/16 0938 DRC Non-potable Grab Container Type / Preservation **Preservation Check** Analysis - Method **Field Results** Field Services В General Method Monitor Well Sampling - N/A 40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI D Volatiles VOA, 8260, USTUnleaded - SW 846 8260B 40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI Е 40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI F

6064766

ORDER ID: 6064766

ORDER	ID: 6	064766
-------	-------	--------

- ---

Sample         Sample Description - Site ID           6064766-11         MW 10	Sampling Location	Collect Date/Time 7/12/16/0834	Sampler's Initials ØRC	Matrix Non-potable				
Container Type / Preservation		Preservation Check	Analys	is - Method	6074527 Deborah Hannum			
500 mL Plastic - Cool to 6 C & H2SO4 to pH<2	$\wedge qt <$	2	Gener	al Method	Deboran Hannum			
500 mL Plastic	B		Inorga	nics				
Field Services	C	served until	COD Nitrat	- SM 5220-D e as N - EPA 300.0				
500 mL Plastic - Cool to 6 C	D-644	2,6074527	A TOC.	e - EPA 300.0 - SM 5310-C				
250 mL Glass Amber - Cool to 6 C & H2SO4 to pH<2	E pH=	2	Iron, 2	200.8, Dissolved - EPA 200.8	· · · · · · · · · · · · · · · · · · ·			
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	F		VOIAtile VOA,	8260, USTUnleaded - SW 846 8260B				
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	G							
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	Η							
6064766-12 TRIP BLANK DAY 2 OF SAMPLING		7/11/10 0635	DRC	Non-notable	Create			
Container Type / Preservation		Preservation-Check	Analyeie	Method	Grab			
Field Services	Α		Volatile	S	<u>, 1988 - 1987 1987 1</u> 997 1987 1987 1987 1987 1987 1987 1987 1	Field Results		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	В		VOA, 6	5200, 03 i Onleaded - SW 846 8260B				
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	С							
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	D							

wko_STL_Prelog_ls.rpt

· .

5

.

•

Sample         Sample Description - Site ID           Number         MW 11	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix		
Container Type / Preservation	1	Preservation Check		Nethod	6074527	
500 mL Plastic - Cool to 6 C & H2SO4 to pH<2	A PH-	e2.	Gener	al Method	Deborah Hannum	
500 mL Plastic	В		Inorga	ior vveil Sampling - N/A I <b>nics</b>		
Field Services	C	mand wat	COD Nitrat	- SM 5220-D e as N - EPA 300.0		
500 mL Plastic - Cool to 6 C	P - P'	H-2, 6079527	A TOC	- SM 5310-C		
250 mL Glass Amber - Cool to 6 C & H2SO4 to pH<2	E PH	eZ	Iron,	200.8, Dissolved - EPA 200.8		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	F		VOIAIII VOA,	2 <b>5</b> 8260, USTUnleaded - SW 846	8260B	
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	G					
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	H				-	
4766-14 MW 12		7/4/16 10.58	DRC	Non-potable	Grah	T
Container Type / Preservation		Preservation Check	Analysi	sMethod	Grab	
500 mL Plastic	A		Genera			rield Results
Field Services	1 <b>B</b>	accord until	Inorga			
500 mL Plastic - Cool to 6 C	c-Br	HC2 607452		e = EPA 300.0 = - EPA 300.0		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	D	100	Ivietais Iron, 2 Volotile	00.8, Dissolved - EPA 200.8		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	E		VOA, 8	5 3260, USTUnieaded - SW 846 8	3260B	
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	F	- 7/11/10				
4766-15 MW 13	7-1(-1	0 711115 1008	DRC	Non-potable	Grab	
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Beaute
Field Services	A		Genera			
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	В		Volatile			
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	С		νυΑ, ε		2608	• .
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	D					
_Preiog_is.rpt Deborah Hannum		Date Created: 06/28/2016	Date Printed: 06/	28/2016 66	064766	Page 5 of 6

ч ş

ORDER	ID:	6064766
-------	-----	---------

Sample Number 6064766-16	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials つんて	Matrix Non-potable	6074527
Containe	er Type / Preservation		Preservation Check	Analysis	s - Method	Deborah Hannum
Field Ser	rvices	Α		Genera	al Method or Well Sampling - N/A	►
40 ml VO	DA - Cool to 6 C & Ascorbic Acid & HCI	В		Volatile	95 8260   ISTUDieaded - SW 846 82	
40 ml VO	DA - Cool to 6 C & Ascorbic Acid & HCI	С		VOA,	0200, 00 / 01, 000 00 02	
40 ml VO	DA - Cool to 6 C & Ascorbic Acid & HCI	D				

Suburban Testing Labs. 1037F MacArthur Road Reading PA 19605		
In Lab Date/Time: 7/12/16 1455in Lab Temp: 3.2 Submitted with COC? 7/N Number of containers match number on COC? 7/N All Containers in tact? 7/N Tests within holding times? 7/N 40mL VOA vials free of headspace? 7/N Relinquished by: 7/N 33	PHJ DRC 7-12-16 MM-15	
Received in Lab by Kekrow		 

Relinquished By:	Date:	Temp (°C):	Sample Conditions	Sample Type Key	Reporting Options
	Time:	Acceptable:? Y / N	Submitted with COC?	G = Grab	
Received By:	Date:	Temp (°C):		24HC = 24 Hr. Composite	PWSID:
	Time:	Acceptable:? Y/N	Match Number of COC?	D = Distribution	
Relinguished By:	Date: 7/11/16 Time: 1 <b>49</b> 5	Temp (°C): <u>4.4</u> Acceptable:?	All Containers Intact?	S E = Entry Point D R = Raw W C = Check	Return a copy of this form with Report
Received in Lab By:	Date:	Temp (°C):	Tests within Holding Times?	A S = Special	
Kathron	Time:	Acceptable:? Y / N	VOC Vials Free of Headspace?	M = Maximum Residence	
Signing this form indicates your agreement with STL's Standard Terms and Co	nditions (www.suburbantestinglabs.co	m\resources\standard-terms-and-	conditions.html) unless otherwise specified in writing.		Shaded areas are for SWTL use only
wko_STL_Prelog_ls.rpt Deborah Hani	um	Date Created: 0	5/28/2016 Date Printed: 06/28/2016	6064766	Page 6 of 6



Sample Number: 6093063-04 Collector: DRC-STL	Site: M Collect	W 4 Date: 10/04/20	016 1:22 pm	Sa Sa	ample II ample T	D: jype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Monitor Well Sampling (Continued)									
Total Volume Purged (gal)	2.97	N/A	N/A		1	10/04/16	ERH	10/04/16 13:22	DRC
Total Well Depth (ft)	19.00	N/A	N/A		1	10/04/16	ERH	10/04/16 13:22	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/04/16	ERH	10/04/16 13:22	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	2030	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
Ethyl Benzene	1590	μg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
Isopropylbenzene	< 50.0	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
Methyl-t-butyl ether (MTBE)	< 50.0	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
Naphthalene	150	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
Toluene	7220	μg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
1,3,5-Trimethylbenzene	204	μg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
1,2,4-Trimethylbenzene	667	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 15:44	AMD
Xylenes, Total	5400	µg/L	SW 846 8260B	100	100	10/11/16	CEM	10/11/16 15:44	AMD
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery)	) Analysis Date	
Surrogate: Dibromofluoromethane	64.2	µg/L	SW 846 8260B	128%	100	72-13	36	10/11/16 15:44	
Surrogate: 1,2-Dichloroethane-d4	51.5	µg/L	SW 846 8260B	103%	100	79-13	35	10/11/16 15:44	
Surrogate: Toluene-d8	52.2	µg/L	SW 846 8260B	104%	100	88-11	2	10/11/16 15:44	
Surrogate: Bromofluorobenzene	51.2	µg/L	SW 846 8260B	102%	100	75-11	17	10/11/16 15:44	
Sample Number: 6002062.05	Sito: M			6.0	malall	<b>.</b>			
				30	imple ii	J.			
Collector: DRC-STL	Collect	Date: 10/04/20	016 9:02 am	Sa	imple I	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	10/04/16	ERH	10/04/16 9:02	DRC
Static Water Level (ft)	5.37	N/A	N/A		1	10/04/16	ERH	10/04/16 9:02	DRC
Total Volume Purged (gal)	2.48	N/A	N/A		1	10/04/16	ERH	10/04/16 9:02	DRC
Total Well Depth (ft)	27.00	N/A	N/A		1	10/04/16	ERH	10/04/16 9:02	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/04/16	ERH	10/04/16 9:02	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	55.2	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
Ethyl Benzene	26.9	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
Isopropylbenzene	4.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
Methyl-t-butyl ether (MTBE)	2.7	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
Naphthalene	14.6	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
Rep	ort Generated On: 10/13	3/2016 4:31 pr	n 6093063						

STL_Results Revision #1.6

Effective: 07/09/2014



Page 2 of 32



Sample Number: 6093063-05	Site: MW	5		Sa	mple I	D:			
Collector: DRC-STL	Collect Da	te: 10/04/2	2016 9:02 am	Sa	mple 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continue	ed)								
Toluene	5.0	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
1,3,5-Trimethylbenzene	5.9	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
1,2,4-Trimethylbenzene	18.6	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:15	CEM
Xylenes, Total	72.8	µg/L	SW 846 8260B	1.0	1	10/10/16	CEM	10/10/16 14:15	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Red	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	48.0	µg/L	SW 846 8260B	96%	1	72-136		10/10/16 14:15	Í
Surrogate: 1,2-Dichloroethane-d4	48.8	µg/L	SW 846 8260B	98%	1	79-135		10/10/16 14:15	
Surrogate: Toluene-d8	48.9	µg/L	SW 846 8260B	98%	1	88-112		10/10/16 14:15	
Surrogate: Bromofluorobenzene	58.4	µg/L	SW 846 8260B	117%	1	75-117		10/10/16 14:15	
				-					
Sample Number: 6093063-06	Site: TRIP	BLANK D	AY 1 OF SAMPLING	Sa	mple I	D:			
Collector: DRC-STL	Collect Da	te: 10/03/2	2016 7:20 am	Sa	mple 7	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA 8260 USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 12:55	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	10/04/16	CEM	10/04/16 12:55	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Rec	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	46.6	µg/L	SW 846 8260B	93%	1	72-136		10/04/16 12:55	Í
Surrogate: 1,2-Dichloroethane-d4	47.8	µg/L	SW 846 8260B	96%	1	79-135		10/04/16 12:55	
Surrogate: Toluene-d8	48.2	µg/L	SW 846 8260B	96%	1	88-112		10/04/16 12:55	
Surrogate: Bromofluorobenzene	49.5	µg/L	SW 846 8260B	99%	1	75-117		10/04/16 12:55	
	04 144	7				D:			
Sample Number: 6093063-08	Site: MW	1	2010 0:10	Sa	mple I				
Collector: DRC-STL	Collect Da	te: 10/04/2	2016 9:42 am	Sa	mple 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling Sampling Depth (ft)	8.00	N/A	N/A		1	10/04/16	ERH	10/04/16 9:42	DRC
I	Report Generated On: 10/13/20 STL_Results	)16 4:31 p Revision #1	m 6093063 .6 Effective: 07/09	9/2014					
					10 D.			STAP AC	CREDITE
				SUBURE	BAN	TESTIN	G	.ABS   🌔	TNI





Sample Number: 6093063-08 Collector: DRC-STL	Site: MV Collect I	W 7 Date: 10/04/2	016 9:42 am	Sa Sa	ample I ample 1	D: ⁻ ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Monitor Well Sampling (Continued)									
Static Water Level (ft)	7.12	N/A	N/A		1	10/04/16	ERH	10/04/16 9:42	DRC
Total Volume Purged (gal)	2.44	N/A	N/A		1	10/04/16	ERH	10/04/16 9:42	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	10/04/16	ERH	10/04/16 9:42	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/04/16	ERH	10/04/16 9:42	DRC
Volatiles									
VOA 8260 USTUnleaded									
Benzene	182	ua/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
Ethvl Benzene	754	ua/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
lsopropylbenzene	48.7	ua/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
Methyl-t-butyl ether (MTBE)	< 5.0	μg/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
Naphthalene	109	μg/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
Toluene	473	μg/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
1,3,5-Trimethylbenzene	144	μg/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
1,2,4-Trimethylbenzene	497	µg/L	SW 846 8260B	5.0	10	10/11/16	CEM	10/11/16 16:14	AMD
Xylenes, Total	2010	µg/L	SW 846 8260B	10.0	10	10/11/16	CEM	10/11/16 16:14	AMD
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	61.7	µg/L	SW 846 8260B	123%	10	72-13	6	10/11/16 16:14	[
Surrogate: 1,2-Dichloroethane-d4	50.2	µg/L	SW 846 8260B	100%	10	79-13	5	10/11/16 16:14	
Surrogate: Toluene-d8	52.5	µg/L	SW 846 8260B	105%	10	88-11	2	10/11/16 16:14	
Surrogate: Bromofluorobenzene	55.0	µg/L	SW 846 8260B	110%	10	75-11	7	10/11/16 16:14	
Sample Number: 6093063-10	Site M	N 9		Sa	mole I	D.			
	Calle at [	Data: 10/02/2	040 4.50 mm	66		D. Turan Orah			
		Jate: 10/03/2	016 1:52 pm	58	imple	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	10/03/16	ERH	10/03/16 13:52	DRC
Static Water Level (ft)	5.10	N/A	N/A		1	10/03/16	ERH	10/03/16 13:52	DRC
Total Volume Purged (gal)	2.47	N/A	N/A		1	10/03/16	ERH	10/03/16 13:52	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	10/03/16	ERH	10/03/16 13:52	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/03/16	ERH	10/03/16 13:52	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	1.3	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
lsopropylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
Rep	port Generated On: 10/13	/2016 4:31 pr	n 6093063						

STL_Results Revision #1.6

Effective: 07/09/2014



Page 4 of 32



Sample Number: 6093063-10	Site: MW 9 Collect Date: 10/03/2016 1:52 pm			Sample ID:					
		Date. 10/03/20	1.52 pm	58		ype. Giab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 16:36	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	10/04/16	CEM	10/04/16 16:36	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	51.9	µg/L	SW 846 8260B	104%	1	72-13	6	10/04/16 16:36	[
Surrogate: 1,2-Dichloroethane-d4	53.4	µg/L	SW 846 8260B	107%	1	79-13	5	10/04/16 16:36	
Surrogate: Toluene-d8	48.7	μg/L	SW 846 8260B	97%	1	88-11	2	10/04/16 16:36	
Surrogate: Bromofluorobenzene	45.2	µg/L	SW 846 8260B	90%	1	75-11	7	10/04/16 16:36	
						_			
Sample Number: 6093063-11	Site: T	RIP BLANK DA	Y 2 OF SAMPLING	sa Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 10/03/20	016 7:20 am	Sa	mple 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA 8260 USTUnleaded									
Benzene	< 0.5	ua/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
Isopropylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
Toluene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 13:47	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	10/10/16	CEM	10/10/16 13:47	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	56.4	μg/L	SW 846 8260B	113%	1	72-13	6	10/10/16 13:47	ĺ
Surrogate: 1,2-Dichloroethane-d4	55.7	μg/L	SW 846 8260B	111%	1	79-13	5	10/10/16 13:47	
Surrogate: Toluene-d8	48.2	μg/L	SW 846 8260B	96%	1	88-11	2	10/10/16 13:47	
Surrogate: Bromofluorobenzene	45.9	µg/L	SW 846 8260B	92%	1	75-11	7	10/10/16 13:47	
Sample Number: 6003063-12	Site: M	W/ 10		Ç.	mnla l	D.			
Collector: DRC-STL	Collect	Date: 10/03/20	)16 1:02 pm	Sa	mple 1	ype: Grab			
			r				_		
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву

General Method

Report Generated On: 10/13/2016 4:31 pm STL_Results Revision #1.6 6093063 Effective: 07/09/2014

 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 5 of 32



Sample Number: 6093063-12 Collector: DRC-STL	Site: M Collect	Site: MW 10 Collect Date: 10/03/2016 1:02 pm				D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	10/03/16	ERH	10/03/16 13:02	DRC
Static Water Level (ft)	4.94	N/A	N/A		1	10/03/16	ERH	10/03/16 13:02	DRC
Total Volume Purged (gal)	3.47	N/A	N/A		1	10/03/16	ERH	10/03/16 13:02	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	10/03/16	ERH	10/03/16 13:02	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/03/16	ERH	10/03/16 13:02	DRC
Sample Number: 6093063-13	Site: M	1W 11		Sa	Imple I	D:			
Collector: DRC-STL	Collect	Date: 10/03/2	016 2:32 pm	Sa	Imple T	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	11.50	N/A	N/A		1	10/03/16	ERH	10/03/16 14:32	DRC
Static Water Level (ft)	0.38	N/A	N/A		1	10/03/16	ERH	10/03/16 14:32	DRC
Total Volume Purged (gal)	1.95	N/A	N/A		1	10/03/16	ERH	10/03/16 14:32	DRC
Total Well Depth (ft)	12.50	N/A	N/A		1	10/03/16	ERH	10/03/16 14:32	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/03/16	ERH	10/03/16 14:32	DRC
Volatiles									
VOA. 8260. USTUnleaded									
Benzene	56.8	µg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
Isopropylbenzene	0.8	µg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
Methyl-t-butyl ether (MTBE)	83.1	µg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
Naphthalene	2.3	µg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
1,3,5-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	10/05/16	CEM	10/05/16 14:06	CEM
Xylenes, Total	1.0	μg/L	SW 846 8260B	1.0	1	10/05/16	CEM	10/05/16 14:06	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	48.5	µg/L	SW 846 8260B	97%	1	72-13	6	10/05/16 14:06	
Surrogate: 1,2-Dichloroethane-d4	49.1	µg/L	SW 846 8260B	98%	1	79-13	5	10/05/16 14:06	
Surrogate: Toluene-d8	45.1	μg/L	SW 846 8260B	90%	1	88-11	2	10/05/16 14:06	
Surrogate: Bromofluorobenzene	45.8	µg/L	SW 846 8260B	92%	1	75-11	7	10/05/16 14:06	
Sample Number: 6093063-14	Site: N	1W 12		Sa	imple I	D:			
Collector: DRC-STL	Collect	Date: 10/03/2	016 11:22 am	Sa	imple 1	Type: Grab			

Report Generated On: 10/13/2016 4:31 pm STL_Results Revision #1.6

Units

Result

6093063 Effective: 07/09/2014

Method



Ву

Analysis Date

1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Department / Test / Parameter

Fax: 610-375-4090 suburbantestinglabs.com

DF

Prep Date

Ву

R.L.



By DRC DRC DRC DRC DRC
DRC DRC DRC DRC DRC DRC
DRC DRC DRC DRC DRC
DRC DRC DRC DRC DRC
DRC DRC DRC DRC
DRC DRC DRC
DRC DRC
DRC
CEM
i
Ву
DRC
CEM
CEM
CEM

Report Generated On: 10/13/2016 4:31 pm STL_Results Revision #1.6

6093063 Effective: 07/09/2014



Page 7 of 32



Sample Number: 6093063-15 Collector: DRC-STL	Site: N Collect	/W 13 : Date: 10/03/2	016 12:12 pm	Sample ID: Sample Type: Grab					
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 18:27	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 18:27	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 18:27	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 18:27	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/04/16	CEM	10/04/16 18:27	CEM
Xylenes, Total	< 1.0	μg/L	SW 846 8260B	1.0	1	10/04/16	CEM	10/04/16 18:27	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%R	ecovery	) Analysis Date	
Surrogate: Dibromofluoromethane	55.8	µg/L	SW 846 8260B	112%	1	72-13	36	10/04/16 18:27	
Surrogate: 1,2-Dichloroethane-d4	55.7	µg/L	SW 846 8260B	111%	1	79-13	35	10/04/16 18:27	
Surrogate: Toluene-d8	46.6	µg/L	SW 846 8260B	93%	1	88-11	2	10/04/16 18:27	
Surrogate: Bromofluorobenzene	45.0	μg/L	SW 846 8260B	90%	1	75-11	7	10/04/16 18:27	
Sample Number: 6093063-16	Site: S	SW		Sa	ample I	D:			
Collector: DRC-STL	Collect	Date: 10/04/2	016 10:28 am	Sa	ample 7	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	18.00	N/A	N/A		1	10/04/16	ERH	10/04/16 10:28	DRC
Static Water Level (ft)	6.94	N/A	N/A		1	10/04/16	ERH	10/04/16 10:28	DRC
Total Volume Purged (gal)	2.75	N/A	N/A		1	10/04/16	ERH	10/04/16 10:28	DRC
Total Well Depth (ft)	210.0	N/A	N/A		1	10/04/16	ERH	10/04/16 10:28	DRC
Well Diameter (in)	6.00	N/A	N/A		1	10/04/16	ERH	10/04/16 10:28	DRC
Volatiles									
Benzene	< 0.5	ug/l	SW/ 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
Ethyl Benzene	0.9	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
Isonronylbenzene	0.6	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
Methyl-t-butyl ether (MTBF)	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
Naphthalene	1.2	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
1.3.5-Trimethylbenzene	0.7	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
1.2.4-Trimethylbenzene	1.3	ua/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 14:43	CEM
Xylenes, Total	1.8	μg/L	SW 846 8260B	1.0	1	10/10/16	CEM	10/10/16 14:43	CEM
Surrogate Recoveries	Results	Units	Method	%Recoverv	DF	Limits (%R	ecoverv	) Analysis Date	
Surrogate: Dibromofluoromethane	55.1	µa/L	SW 846 8260B	110%	1	72-13	36	10/10/16 14:43	
Surrogate: 1.2-Dichloroethane-d4	55 1	µa/L	SW 846 8260B	110%	1	79-13	35	10/10/16 14:43	
Surrogate: Toluene-d8	50.0	μg/L	SW 846 8260B	100%	1	88-11	2	10/10/16 14:43	
1									

Report Generated On: 10/13/2016 4:31 pm STL_Results Revision #1.6

6093063 Effective: 07/09/2014



Page 8 of 32

PADEP 06-00208



Sample Number: 6093063-16 Collector: DRC-STL	Site: Colle	e: SW llect Date: 10/04/2016 10:28 am		Sample ID: Sample Type: Grab					
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Bromofluorobenzene	45.8	µg/L	SW 846 8260B	92%	1	75-11	7	10/10/16 14:43	
Sample Number: 6093063-18	Site:	MW-14S		Sa	mple I	D:			
Collector: DRC-STL	Colle	ect Date: 10/04/2	2016 11:58 am	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8.00	N/A	N/A		1	10/04/16	ERH	10/04/16 11:58	DRC
Static Water Level (ft)	5.71	N/A	N/A		1	10/04/16	ERH	10/04/16 11:58	DRC
Total Volume Purged (gal)	1.98	N/A	N/A		1	10/04/16	ERH	10/04/16 11:58	DRC
Total Well Depth (ft)	10.00	N/A	N/A		1	10/04/16	ERH	10/04/16 11:58	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/04/16	ERH	10/04/16 11:58	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	6760	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
Ethyl Benzene	3380	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
Isopropylbenzene	98.0	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
Methyl-t-butyl ether (MTBE)	180	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
Naphthalene	271	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
Toluene	14400	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
1,3,5-Trimethylbenzene	544	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
1,2,4-Trimethylbenzene	1780	µg/L	SW 846 8260B	50.0	100	10/11/16	CEM	10/11/16 16:43	AMD
Xylenes, Total	13600	µg/L	SW 846 8260B	100	100	10/11/16	CEM	10/11/16 16:43	AMD
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	60.0	µg/L	SW 846 8260B	120%	100	72-13	6	10/11/16 16:43	
Surrogate: 1,2-Dichloroethane-d4	52.1	µg/L	SW 846 8260B	104%	100	79-13	5	10/11/16 16:43	
Surrogate: Toluene-d8	51.5	µg/L	SW 846 8260B	103%	100	88-11	2	10/11/16 16:43	
Surrogate: Bromofluorobenzene	53.3	µg/L	SW 846 8260B	107%	100	75-11	7	10/11/16 16:43	
Sample Number: 6003063-10	Site	MW-14D		Ç.2	mnle II	<u>.</u> .			
Collector: DRC-STL	Colle	ect Date: 10/04/2	2016 11:22 am	Sa	mple T	 ⁻ype: Grab			
Department / Test / Parameter	Recult	Unite	Method	RI	DE	Pren Date	By	Analysis Date	By

General Method

Report Generated On: 10/13/2016 4:31 pm STL_Results Revision #1.6

6093063 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

Page 9 of 32



Sample Number: 6093063-19	Site: M	Site: MW-14D				Sample ID:					
Collector: DRC-STL	Collect	Date: 10/04/2	016 11:22 am	Sa	mple T	ype: Grab					
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву		
General Method (Continued)											
Monitor Well Sampling											
Sampling Depth (ft)	20.00	N/A	N/A		1	10/04/16	ERH	10/04/16 11:22	DRC		
Static Water Level (ft)	6.41	N/A	N/A		1	10/04/16	ERH	10/04/16 11:22	DRC		
Total Volume Purged (gal)	2.75	N/A	N/A		1	10/04/16	ERH	10/04/16 11:22	DRC		
Total Well Depth (ft)	25.00	N/A	N/A		1	10/04/16	ERH	10/04/16 11:22	DRC		
Well Diameter (in)	2.00	N/A	N/A		1	10/04/16	ERH	10/04/16 11:22	DRC		
Volatiles											
VOA, 8260, USTUnleaded											
Ethyl Benzene	80.2	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
Isopropylbenzene	47.3	µg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
Methyl-t-butyl ether (MTBE)	45.6	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
Naphthalene	164	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
Toluene	10.3	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
1,3,5-Trimethylbenzene	6.2	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
1,2,4-Trimethylbenzene	19.5	μg/L	SW 846 8260B	0.5	1	10/10/16	CEM	10/10/16 16:00	CEM		
Xylenes, Total	96.1	μg/L	SW 846 8260B	1.0	1	10/10/16	CEM	10/10/16 16:00	CEM		
Benzene	335	µg/L	SW 846 8260B	2.5	5	10/12/16	CEM	10/12/16 14:01	CEM		
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	) Analysis Date			
Surrogate: Dibromofluoromethane	44.9	μg/L	SW 846 8260B	90%	1	72-13	6	10/10/16 16:00			
Surrogate: 1,2-Dichloroethane-d4	46.3	μg/L	SW 846 8260B	93%	1	79-13	5	10/10/16 16:00			
Surrogate: Toluene-d8	51.3	µg/L	SW 846 8260B	103%	1	88-11	2	10/10/16 16:00			
Surrogate: Bromofluorobenzene	56.4	µg/L	SW 846 8260B	113%	1	75-11	7	10/10/16 16:00			
Surrogate: Dibromofluoromethane	46.8	µg/L	SW 846 8260B	94%	5	72-13	6	10/12/16 14:01			
Surrogate: 1,2-Dichloroethane-d4	45.4	µg/L	SW 846 8260B	91%	5	79-13	5	10/12/16 14:01			
Surrogate: Toluene-d8	47.7	µg/L	SW 846 8260B	95%	5	88-11	2	10/12/16 14:01			
Surrogate: Bromofluorobenzene	54.0	μg/L	SW 846 8260B	108%	5	75-11	7	10/12/16 14:01			

## **Data Qualifiers:**

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

Report Generated On: 10/13/2016 4:31 pm STL_Results Revision #1.6 6093063 Effective: 07/09/2014

SUBURBAN TESTING LABS



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

PADEP 06-00208



Reviewed and Released By: Deborah Hannum Project Manager

Delinah M. Hannum

 Report Generated On:
 10/13/2016
 4:31 pm
 6093063

 STL_Results
 Revision #1.6
 Effective:
 07/09/2014



STL_Kesuits Revision #1.0

1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Page 11 of 32



## Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com

TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other ________(Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)



Client Nan Rettew - 3020 Cole Lancaste	ne / Address: Lancaster umbia Avenue er, PA 17603	Ph Fa	Phone: (717) 394-1063 Fax:				Project Name / Address: Herr Foods- Monitoring Wells Oct 2016				
Client Proj	ject Manager: Ed Dziedzic					P	aymer	nt / P.O. Info:			
Project Desc Order Comm	ription: nents: Monitoring Well Collection = \$65 Field Team: take water level rea	5/hour; Travel time to/fro dings at MW-2, MW-8 a	om site = ind Endw	\$40/hour; /all	Equipmer	nt Rental	= \$115	i flat fee per event;			
Sample Number	Sample Description - Site ID	Sampling Locatior	1	Coll Date/	lect Time	Sample Initial	er's Is	Matrix	Sample Type	Composite Start Date / Time	
6093063-01	MW 1 🗶							Non-potable	Grab		
Contair	ner Type / Preservation		Pre	eservation	Check	A	nalysis	- Method		Field Results	
None		A	ż	*		G	enera Monitor	l Method Well Sampling - N/A			
Field Se	ervices	В				Ui	<b>nassig</b> Admin, Sample	<b>gned</b> Miscellaneous - N/A Collection, Custom 3 - SL(	0015	·	
6093063-02	MW 2 💥							Non-potable	Grab		
Contair	ner Type / Preservation		Pre	servation	Check	A	nalysis	- Method		Field Results	
Field Se	ervices	A				U	nassig Sample	<b>gned</b> Collection, Custom 1 - SL(	0015	• • • • • • • • • • • • • • • • • • •	
6093063-03	MW 3			10/4/16	1242	DRC		Non-potable	Grab		
Contair	ner Type / Preservation		Pre	servation	Check	A	nalysis	- Method		Field Results	
Field Se	ervices	Α				G	enera Monitor	Well Sampling - N/A		-	
40 ml V 40 ml V	OA - Cool to 6 C & Ascorbic Acid & HCl	В				Vo	VOA, 8	<b>S</b> 260, USTUnleaded - SW 84	46 8260B		

40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI

D



Sample	Comple Description Off 1D		Collect	Sampler's		Sample	Composite				
	Sample Description - Site ID	Sampling Location	Date/Time	Initials	Matrix	lype	Start Date / Time				
6093063-04			10/4/16 1322	URC 1	Non-potable	Grab					
Contain	ner Type / Preservation		Preservation Check	Analysis	s - Method		Field Results				
Field Se	rvices	Α	General Method Monitor Well Sampling - N/A								
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	В		Volatile VOA, 8	<b>:S</b> 3260, USTUnleaded - SW 8	46 8260B					
40 ml ∨0	OA - Cool to 6 C & Ascorbic Acid & HCI	C		hann began tahun sambah baha a kanan dikakan sama diki bati dan 1988 kan dika dipat							
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	D									
6093063-05	MW 5		10/4/16 0902	ORC	Non-potable	Grab					
Contain	er Type / Preservation		Preservation Check	Analysis	- Method		Field Results				
Field Se	rvices	Α		Genera	I <b>l Method</b> r Well Sampling - N/A						
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	В		Volatile	<b>S</b> 3260. USTUnleaded - SW 8	46 8260B					
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	C		, .							
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	D									
6093063-06	TRIP BLANK DAY 1 OF SAMPLING		10/3/16 0720	DRC	Non-potable	Grab					
Contain	er Type / Preservation		Preservation Check	Analysis	- Method		Field Results				
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	А		Volatile	<b>S</b> 8260, USTUnleaded - SW 8	46 8260B					
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	В									
40 ml VC	DA - Cool to 6 C & Ascorbic Acid & HCI	C									
6093063-07	MW 6 💥				Non-potable	Grab					
Contain	er Type / Preservation		Preservation Check	Analysis	- Method		Field Results				
Field Ser	rvices	Α		Genera Monitor	I Method r Well Sampling - N/A						



Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
6093063-08	MW 7		10/4/16 0942	ORC	Non-potable	Grab	
Contain	er Type / Preservation	장님이 가 있었는 것 같은 것 같이 않	Preservation Check	Analys	is - Method		Field Results
Field Se	rvices	Α		Gener	r <b>al Method</b> tor Well Sampling - N/A		
40 mi V0	DA - Cool to 6 C & Ascorbic Acid & HCl	В		Volati VOA,	les , 8260, USTUnleaded - SW	846 8260B	Ann fang af far ferier
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	C					a and have a second and a second second second second second second second second second second second second s
40⁻ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	D					
6093063-09	MW 8	*			Non-potable	Grab	
Contain	er Type / Preservation		Preservation Check	Analys	is - Method		Field Results
Field Se	rvices	Α		Unass Samp	signed ble Collection, Custom 1 - S	L0015	
6093063-10	MW 9		10/3/16 1352	DRC	Non-potable	Grab	
Contain	er Type / Preservation		Preservation Check	Analys	is - Method		Field Results
Field Se	rvices	Α		Gener	ral Method tor Well Sampling - N/A	, ,	
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	В		<b>Volati</b> l VOA	les 8260 USTUnleaded - SW	846 8260B	
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	C					
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	D					
6093063-11	TRIP BLANK DAY 2 OF SAMPLING		19/3/16 0720	ORC	Non-potable	Grab	· · · · · · · · · · · · · · · · · · ·
Contain	er Type / Preservation		Preservation Check	Analys	is - Method		Field Results
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	Α		Volatil	l <b>es</b> 8260, USTUnleaded - SW	846 8260B	
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	В					
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	C					

с I

a 1



Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's	Matrix	Sample	Composite Start Date / Time
6093063-12	MW 10	camping coulon	10/3/11. 1302	ORC	Non-potable	Grab	
Contair	ner Type / Preservation		Preservation Check	Analysis	s - Method		Field Results
Field Se	rvices	Α	nya ana amin'ny faritr'o ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr	Genera	al Method		
40 ml V	OA - Cool to 6 C & Ascorbic Acid & HCl	B			r Well Sampling - N/A	846 8260B	
40 ml V	OA - Cool to 6 C & Ascorbic Acid & HCI	С		von, e			
40 ml V	DA - Cool to 6 C & Ascorbic Acid & HCI	D					
6093063-13	MW 11		10/3/16 1432	DRC	Non-potable	Grab	Τ
Contair	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results
Field Se	rvices	Α		Genera	I Method		
40 ml V	DA - Cool to 6 C & Ascorbic Acid & HCI	В		Volatile	es	040.00000	
40 ml V	DA - Cool to 6 C & Ascorbic Acid & HCI	С		VUA, 8	3260, US I Unleaded - SW	846 82608	
40 ml V	DA - Cool to 6 C & Ascorbic Acid & HCI	D					
6093063-14	MW 12		10/3/10 1122	DRCT	Non-potable	Grab	
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results
Field Se	rvices	A		Genera Monito	I Method		
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	ъ		Volatile	S	040 00000	······
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	C		VOA, d	szou, USTOmeaded - Sw	040 02005	
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	D					
6093063-15	MW 13		10/3/16 12 1Z	DRCT	Non-potable	Grab	
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results
Field Se	rvices	Α		Genera	I Method		
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	В		Volatile		040 00000	
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCI	C		VOA, 8	3260, US I Unleaded - SW	846 82608	
40 ml V0	DA - Cool to 6 C & Ascorbic Acid & HCl	D					

• •

.°,



Sample Sample Description - Site ID	Sampling Location		Colle Date/Ti	ct	Sampler's-	Matrix	Sample Type	Composite Start Date / Time
6093063-16 SW			10/4/16	1028	PRC	Non-potable	Grab	instrumente and a second as second and
Container Type / Preservation		Pr	eservation C	heck	Analy	sis - Method		Field Results
Field Services	A				Gene Mor	eral Method hitor Well Sampling - N/A		
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	В				Volat	. <b>iles</b> A, 8260, USTUnleaded - SW 8	346 8260B	<u> </u>
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	C			an ann an Antaine an ta commit for an an	namena a a a la mala del del del gualemente d'ante fuera fuera del del del del del del del del del del			
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	D							
6093063-17 Endwall <del>米</del>						Non-potable	Grab	
Container Type / Preservation		Pr	eservation C	heck	Analy	sis - Method		Field Results
Field Services	Α				Unas San	s <b>signed</b> nple Collection, Custom 1 - SI	_0015	
6093063-18 MW-14S			10/4/16	1158	DRL	Non-potable	Grab	
Container Type / Preservation		Pr	eservation C	heck	Analy	sis - Method	×*	Field Results
Field Services	Α				Gene Mor	eral Method hitor Well Sampling - N/A		•
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	В				Volat	<b>iles</b> A. 8260. USTUnleaded - SW 8	346 8260B	
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCl	C						· · · · · · · · · · · · · ·	
40 ml VOA - Cool to 6 C & Ascorbic Acid & HCI	D							

t a da



Sample	Comula Description _ Cita ID	Someling Logation	Collect	Sampler's	Matrix	Sample Type	Composite Start Date / Time
Number	Sample Description - Site ID	Sampling Location		muals	Wall IX	Grah	Start Bate / Time
6093063-19	MW-14D		1014116 1122	URC	Non-potable	Giab	
Contair	er Type / Preservation	P	reservation Check	Analys	sis - Method		Field Results
Field Se	rvices	Α		Gene Mon	ral Method itor Well Sampling - N/A		
40 ml V	OA - Cool to 6 C & Ascorbic Acid & HCI	В		Volati VOA	<b>les</b> , 8260, USTUnleaded - SW 8	46 8260B	
40 ml V	OA - Cool to 6 C & Ascorbic Acid & HCI	C					
40 ml V	OA - Cool to 6 C & Ascorbic Acid & HCI	D					

Suburban Testing Labs. 1037F MacArthur Road Reading, PA 19605										
te/Time:	ioluliz	1445 In La	h Tei							

1 12 - 3 2

In Lab Date/Time: <u>10[4]/6_1445</u> In Lab Temp: <u>4.4</u>
Submitted with COC?
Number of containers match number on COC? Ø/ N
All Containers in tact? ()/ N
Tests within holding times?
40mL VOA vials free of headspace?
Relinquished by: 27
Received in Lab by: <u>Ihadan 10/4/16 (4445</u>
= () $=$ ()

* See copy of Field notes for Static water levels collected on 10/3/16prc before purging any wells: 10/4/16

MM-15

Relinquished By:	Date:	Temp (°C):	Sample Conditions	Sample Type Key	Reporting Options
	Time:	Acceptable:? Y / N	Submitted with COC?	G = Grab	SDWA Reporting
Received By:	Date:	Temp (°C):	Number of Containers	24HC = 24 Hr. Composite	T Fax
	Time:	Acceptable:? Y / N	Match Number of COC?	D = Distribution	
Relinquished By: 18	Date: 0/3/16	Temp (°C): <u>4-Z</u>	All Containers Intact?	S E = Entry Point	Return a copy of this form with
	Time: 1600	Acceptable:? (Y)/ N	Tasta within Holding Times $2$ $\widehat{\mathcal{O}}/N$	W C = Check	Other
Received in Lab By:	Date: 10/3/16	Temp (°C): <u>4.2</u>		A S = Special M = Maximum Residence	
Uzthi	Time: 14:00	Acceptable:? M/N	VOC Vials Free of Headspace?		
Signing this form indicates your agreement with STL's Standard Term	s and Conditions (www.suburbante	stinglabs.com/resources/stanc	lard-terms-and-conditions.html) unless otherwise sp	ecified in writing.	Shaded areas are for SWTL use only
wko_STL_Prelog_ls.rpt Deborah Ha	nnum	Date Created: 0	9/15/2016 Date Printed: 09/30/2016	6093063	Page 17 of 32



- 17																
Date	LL A	2+ b Tac)									-					
ood s tew	Sund 63	Static (1 5, 45	6.68	6.96	5.37	7 2	- <del>1</del>	5,10	1.0 2 4 4	25	° 63	5.71	6.4	6.94	55.6	
ation <u>Hewin</u> F	Ned ther :	Nell's Miri	N W - Z	NW.4	WW-5	1W-6 1W-7	NW-8	WW-9	1W-10		111-13	M-1+5	N-140		nd wa ll	

Page 32 of 32

STREET, STREET, STREET, ST



## Order ID: 7012602

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603			Project: Herr F	Foods - Quart	erly M	Ws 2017			
Attn: Ed Dziedzic			Regulatory ID:						
Sample Number: 7012602-01	Site: MW-3			Sa	mple I	D:			
Collector: DRC-STL	Collect Date:	01/18/	/2017 11:48 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	11.00	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Static Water Level (ft)	6.45	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Total Volume Purged (gal)	2.50	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Total Well Depth (ft)	25.00	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
<u>Volatiles</u>									
VOA, 8260, USTUnleaded									
Benzene	12.6	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Ethyl Benzene	82.0 M3	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Isopropylbenzene	8.2	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Naphthalene	11.5 B1	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Toluene	70.0 M3	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
1,3,5-Trimethylbenzene	7.4	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
1,2,4-Trimethylbenzene	32.6	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Xylenes, Total	88.4	µg/L	SW 846 8260B	1.0	1	01/20/17	CEM	01/20/17 18:10	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.2	µg/L	SW 846 8260B	100%	1	72-136	6	01/20/17 18:10	
Surrogate: 1,2-Dichloroethane-d4	48.8	µg/L	SW 846 8260B	98%	1	79-13	5	01/20/17 18:10	
Surrogate: Toluene-d8	50.3	µg/L	SW 846 8260B	101%	1	88-112	2	01/20/17 18:10	
Surrogate: Bromofluorobenzene	51.9	µg/L	SW 846 8260B	104%	1	75-117	7	01/20/17 18:10	
Sample Number: 7012602-02	Site [·] MW-4			Sa	mple I	D.			
Collector: DRC-STL	Collect Date:	01/17/	/2017 12:18 pm	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Conoral Mathed									
Monitor Well Sampling	10.00	N1/4				04/47/17	DAI	04/47/47 40 15	000
Sampling Deptn (ft) Static Water Level (ft)	10.00	N/A N/A	N/A N/A		1 1	01/17/17	BAK	01/17/17 12:18	DRC
GIGILO VVALEI LEVEI (IL)	1.01	IN/A	N/A		I	01/17/17	DAN	01/11/11/12.10	DIC
	Report Generated On: 02/01/2017 STL_Results R	7 5:09 evision #	pm 7012602 1.6 Effective: 07/09	9/2014					
				SUBURF		TESTIN		ABS ABS	CREDINES



Page 1 of 33



Sample Number: 7012602-02 Collector: DRC-STL	Site: M Collect	1W-4 Date: 01/17/20	017 12:18 pm	Sa Sa	mple I mple ⁻	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Monitor Well Sampling (Continued)									
Total Volume Purged (gal)	5.45	N/A	N/A		1	01/17/17	BAK	01/17/17 12:18	DRC
Total Well Depth (ft)	19.00	N/A	N/A		1	01/17/17	BAK	01/17/17 12:18	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 12:18	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	1180	μg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Ethyl Benzene	917	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
lsopropylbenzene	54.8	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Methyl-t-butyl ether (MTBE)	< 10.0	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Naphthalene	229	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
1,3,5-I rimethylbenzene	147	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Yulenes Total	6430	µg/L	SW 040 0200D	20.0	20	01/10/17		01/18/17 17:21	
Toluene	3240	µg/L ug/l	SW 846 8260B	25.0	20 50	01/19/17		01/19/17 21:06	
	02.0	F9 [,] -		20.0		01,10,11		0.11.00	
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	46.9	µg/L	SW 846 8260B	94%	20	72-13	6	01/18/17 17:21	
Surrogate: 1,2-Dichloroethane-d4	55.9	µg/L	SW 846 8260B	112%	20	79-13	5	01/18/17 17:21	
Surrogate: Toluene-d8	46.3	µg/L	SW 846 8260B	93%	20	88-11	2	01/18/17 17:21	
Surrogate: Bromofluorobenzene	47.4	µg/L	SW 846 8260B	95%	20	75-11	7	01/18/17 17:21	
Surrogate: Dibromofluoromethane	55.2	µg/L	SW 846 8260B	110%	50	72-13	6	01/19/17 21:06	
Surrogate: 1,2-Dichloroethane-d4	54.1	µg/L	SW 846 8260B	108%	50	79-13	5	01/19/17 21:06	
Surrogate: Toluene-d8	49.1	µg/L	SW 846 8260B	98%	50	88-11	2	01/19/17 21:06	
Surrogate: Bromoliuorobenzene	50.3	µg/L	SW 846 8260B	101%	50	75-11	/	01/19/17 21:06	
Sample Number: 7012602-03	Site: M	1W-5		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/17/2	017 10:04 am	Sa	mple ⁻	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Static Water Level (ft)	6.07	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Total Volume Purged (gal)	2.97	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Total Well Depth (ft)	27.00	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC

### Volatiles

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014

Page 2 of 33



Sample Number: 7012602-03	Site: MV	N-5		Sa	mple I	D:			
Collector: DRC-STL	Collect [	Date: 01/17/2	017 10:04 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded									
Benzene	10.7	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Ethyl Benzene	4.4	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Isopropylbenzene	3.0	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Naphthalene	5.7	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Toluene	1.4	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
1,3,5-Trimethylbenzene	2.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
1,2,4-Trimethylbenzene	10.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Xylenes, Total	43.5	μg/L	SW 846 8260B	1.0	1	01/18/17	CEM	01/18/17 20:31	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Red	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.0	μg/L	SW 846 8260B	100%	1	72-136		01/18/17 20:31	
Surrogate: 1,2-Dichloroethane-d4	58.6	µg/L	SW 846 8260B	117%	1	79-135		01/18/17 20:31	
Surrogate: Toluene-d8	46.8	µg/L	SW 846 8260B	94%	1	88-112		01/18/17 20:31	
Surrogate: Bromofluorobenzene	46.2	µg/L	SW 846 8260B	92%	1	75-117		01/18/17 20:31	
Sample Number: 7012602-04	Site: M	N-7		Sa	mple I	D:			
Collector: DRC-STL	Collect [	Date: 01/17/2	017 9:14 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8 00	N/A	N/A		1	01/17/17	BAK	01/17/17 9.14	DRC
Static Water Level (ft)	7.35	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Total Volume Purged (gal)	2.77	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Volatilos									
VOA, 8260, USTUnleaded									
Benzene	510	µg/L	SW 846 8260B	2.5	5	01/20/17	CEM	01/20/17 18:39	CEM
	57.2	µg/L	SW 846 8260B	2.5	5	01/20/17	CEM	01/20/17 18:39	CEM
Nethyl-t-bulyl etner (MTBE)	< 2.0 000 P1	µg/L	SW 846 8260B	2.5	5	01/20/17		01/20/17 18:39	
	222 61	µg/L	SVV 040 020UB	2.5	5	01/20/17		01/20/17 18:39	
	ZZ4 760	µg/L	SVV 040 020UB	2.5	5	01/20/17		01/20/17 18:39	
	/ OU	µg/L	SVV 040 020UB	2.5	5 10	01/20/17		01/20/17 18:39	
	912	µg/∟	SVV 040 020UB	5.0	10	01/20/17		01/20/17 15:15	
Xylenes, Total	3210	µg/∟ µg/L	SW 846 8260B	10.0	10	01/26/17	CEM	01/26/17 15:15	CEM

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014



Page 3 of 33

PADEP 06-00208



Sample Number: 7012602-04	Site: M	1W-7		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/17/2	017 9:14 am	Sa	mple 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.9	μg/L	SW 846 8260B	102%	5	72-136	6	01/20/17 18:39	
Surrogate: 1,2-Dichloroethane-d4	48.8	μg/L	SW 846 8260B	98%	5	79-135	5	01/20/17 18:39	
Surrogate: Toluene-d8	50.7	µg/L	SW 846 8260B	101%	5	88-112	2	01/20/17 18:39	
Surrogate: Bromofluorobenzene	52.6	µg/L	SW 846 8260B	105%	5	75-117	7	01/20/17 18:39	
Surrogate: Dibromofluoromethane	48.6	µg/L	SW 846 8260B	97%	10	72-136	6	01/26/17 15:15	
Surrogate: 1,2-Dichloroethane-d4	50.2	µg/L	SW 846 8260B	100%	10	79-135	5	01/26/17 15:15	
Surrogate: Toluene-d8	48.1	µg/L	SW 846 8260B	96%	10	88-112	2	01/26/17 15:15	
Surrogate: Bromofluorobenzene	53.2	μg/L	SW 846 8260B	106%	10	75-117	7	01/26/17 15:15	
Sample Number: 7012602-05	Site: N	1W-9		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/16/2	017 2:25 pm	Sa	mple 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	NI/A	N/A		1	01/16/17	BAK	01/16/17 14.25	DRC
Static Water Level (ft)	5 25	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Total Volume Purged (gal)	2.50	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	3.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
1,3,5-Trimethylbenzene	0.6	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 15:19	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	51.5	µg/L	SW 846 8260B	103%	1	72-136	6	01/17/17 15:19	
Surrogate: 1,2-Dichloroethane-d4	59.8	µg/L	SW 846 8260B	120%	1	79-135	5	01/17/17 15:19	
Surrogate: Toluene-d8	46.2	µg/L	SW 846 8260B	92%	1	88-112	2	01/17/17 15:19	
Surrogate: Bromofluorobenzene	41.8	μg/L	SW 846 8260B	84%	1	75-117	7	01/17/17 15:19	

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 4 of 33



Sample Number: 7012602-06 Collector: DRC-STL	Site: M Collect	IW-10 Date: 01/16/2	017 1:49 pm	Sa Sa	imple II imple T	D: ⁻ ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Static Water Level (ft)	5.15	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Total Volume Purged (gal)	2.97	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Volatiles									
VOA 8260 USTUnleaded									
Ethyl Benzene	96.4	ua/l	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Isopropylbenzene	28.9	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Methyl-t-butyl ether (MTBE)	211	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Naphthalene	101	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Toluene	160	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
1,3,5-Trimethylbenzene	11.6	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
1,2,4-Trimethylbenzene	43.0	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Xylenes, Total	372	μg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 17:34	CEM
Benzene	3030	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 16:54	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	44.3	µg/L	SW 846 8260B	89%	1	72-13	6	01/17/17 17:34	
Surrogate: 1,2-Dichloroethane-d4	54.6	μg/L	SW 846 8260B	109%	1	79-13	5	01/17/17 17:34	
Surrogate: Toluene-d8	48.6	μg/L	SW 846 8260B	97%	1	88-11	2	01/17/17 17:34	
Surrogate: Bromofluorobenzene	46.4	µg/L	SW 846 8260B	93%	1	75-11	7	01/17/17 17:34	
Surrogate: Dibromofluoromethane	50.6	µg/L	SW 846 8260B	101%	100	72-13	6	01/18/17 16:54	
Surrogate: 1,2-Dichloroethane-d4	59.2	μg/L	SW 846 8260B	118%	100	79-13	5	01/18/17 16:54	
Surrogate: Toluene-d8	43.7 V	µg/L	SW 846 8260B	87%	100	88-11	2	01/18/17 16:54	
Surrogate: Bromofluorobenzene	42.1	μg/L	SW 846 8260B	84%	100	75-11	7	01/18/17 16:54	
Sample Number: 7012602-07	Site: M	I\\/_11		Sa	mnle II	 חי			
Collector: DRC-STL	Collect	Date: 01/16/2	017 1:04 pm	Sa	imple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Dopth (ft)	11 50	NI/A	NI/A		1	01/16/17	DAK	01/16/17 12:04	
Static Water Level (ft)	0.39	N/A N/A	N/A		1	01/16/17	BAK	01/16/17 13:04	DRC
Total Volume Purged (gal)	2.97	N/A	N/A		1	01/16/17	BAK	01/16/17 13.04	DRC
Total Well Depth (ft)	12.50	N/A	N/A		1	01/16/17	BAK	01/16/17 13.04	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:04	DRC
Volatiles									

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014



Page 5 of 33


Sample Number: 7012602-07	Site: M	Site: MW-11 Sample ID:							
Collector: DRC-STL	Collect	Date: 01/16/20	017 1:04 pm	Sa	mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
VOA, 8260, USTUnleaded									
Benzene	46.8	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Isopropylbenzene	0.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Methyl-t-butyl ether (MTBE)	85.4	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Naphthalene	1.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
1,3,5-I rimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
1,2,4-Irimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Xylenes, Iotal	< 1.0	µg/L	SVV 846 8260B	1.0	1	01/18/17	CEM	01/18/17 20:04	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.7	μg/L	SW 846 8260B	101%	1	72-136	6	01/18/17 20:04	
Surrogate: 1,2-Dichloroethane-d4	58.9	μg/L	SW 846 8260B	118%	1	79-135	5	01/18/17 20:04	
Surrogate: Toluene-d8	42.9 V	µg/L	SW 846 8260B	86%	1	88-112	2	01/18/17 20:04	
Surrogate: Bromofluorobenzene	40.4	µg/L	SW 846 8260B	81%	1	75-117	7	01/18/17 20:04	
Sample Number: 7012602-08	Site: N	IW-12		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/16/20	017 11:44 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
<u>General Method</u>									
Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Static Water Level (ft)	4.16	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Total Volume Purged (gal)	2.47	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Total Well Depth (ft)	12.00	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Malatilaa									
volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Methyl-t-butyl ether (MIBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
	< 0.5	µg/L	SVV 846 8260B	0.5	1	01/1//1/	CEM	01/17/17 16:40	CEM
1,2,4- i rimetnyibenzene Xvlenes. Total	< 0.5 < 1.0	µg/L µa/L	SW 846 8260B SW 846 8260B	0.5 1.0	1	01/17/17	CEM	01/17/17 16:40	CEM
	D	1·3· -				1 imit- (0/ D		Analysis Dat	
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromotluoromethane	56.2	µg/L	SW 846 8260B	112%	1	72-136	j -	U1/17/17 16:40	
Surrogate: 1,2-Dichloroethane-d4	64.8	µg/L	SW 846 8260B	130%	1	79-135	)	01/17/17 16:40	

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 6 of 33



Sample Number: 7012602-08 Collector: DRC-STL	Site: MW-12 Collect Date: 01/16/2017 11:44 am		Sample ID: Sample Type: Grab						
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Toluene-d8	45.6	µg/L	SW 846 8260B	91%	1	88-112	2	01/17/17 16:40	
Surrogate: Bromofluorobenzene	39.2	µg/L	SW 846 8260B	78%	1	75-11	7	01/17/17 16:40	
Sample Number: 7012602-09	Site: N	IW-13		Sa	mple I	D:			
Collector: DRC-STL	Collect	Collect Date: 01/16/2017 12:19 pm Sample Type: Grab							
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Static Water Level (ft)	5.92	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Total Volume Purged (gal)	1.98	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Total Well Depth (ft)	12.00	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Naphthalene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Toluene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 17:07	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	55.8	µg/L	SW 846 8260B	112%	1	72-13	6	01/17/17 17:07	
Surrogate: 1,2-Dichloroethane-d4	64.4	µg/L	SW 846 8260B	129%	1	79-13	5	01/17/17 17:07	
Surrogate: Toluene-d8	45.9	µg/L	SW 846 8260B	92%	1	88-112	2	01/17/17 17:07	
Surrogate: Bromofluorobenzene	38.9	µg/L	SW 846 8260B	78%	1	75-11	7	01/17/17 17:07	

Sample Number: 7012602-10	Site: MW-1	4S		Sa	mple ID:	:			
Collector: DRC-STL	Collect Date	: 01/17/2017	2:08 pm	Sa	mple Ty	pe: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 7 of 33



Sample Number: 7012602-10 Collector: DRC-STL	Site: M Collect	/W-14S : Date: 01/17/2	017 2:08 pm	Sa Sa	mple II mple T	D: <del>`</del> ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Static Water Level (ft)	6.16	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Total Volume Purged (gal)	4.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Total Well Depth (ft)	10.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	2570	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Ethyl Benzene	2060	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Isopropylbenzene	97.0	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Methyl-t-butyl ether (MTBE)	184	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Naphthalene	279	μg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Toluene	11900	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
1,3,5-Trimethylbenzene	337	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
1,2,4-Trimethylbenzene	1230	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Xylenes, Total	12400	µg/L	SW 846 8260B	100	100	01/18/17	CEM	01/18/17 17:48	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.8	μg/L	SW 846 8260B	102%	100	72-13	6	01/18/17 17:48	
Surrogate: 1,2-Dichloroethane-d4	58.8	μg/L	SW 846 8260B	118%	100	79-13	5	01/18/17 17:48	
Surrogate: Toluene-d8	45.3	μg/L	SW 846 8260B	91%	100	88-11	2	01/18/17 17:48	
Surrogate: Bromofluorobenzene	47.1	µg/L	SW 846 8260B	94%	100	75-11	7	01/18/17 17:48	
Sample Number: 7012602-11	Site: M	/W-14D		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/17/2	017 1:14 pm	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	20.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Static Water Level (ft)	6.36	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Total Volume Purged (gal)	3.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Total Well Depth (ft)	25.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	211	µa/L	SW 846 8260B	2.5	5	01/18/17	CEM	01/18/17 18:43	CEM
Ethyl Benzene	27.2	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Isopropylbenzene	40.0	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM

7012602 Effective: 07/09/2014





Sample Number: 7012602-11	mber: 7012602-11 Site: MW-14D S		Sa	Sample ID:					
Collector: DRC-STL	Collec	t Date: 01/17/2	017 1:14 pm	Sa	ample 7	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
<u>Volatiles</u> (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Naphthalene	137	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Toluene	5.8	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
1,3,5-Trimethylbenzene	2.8	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
1,2,4-Trimethylbenzene	4.7	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Xylenes, Total	48.0	μg/L	SW 846 8260B	1.0	1	01/18/17	CEM	01/18/17 22:47	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	49.1	μg/L	SW 846 8260B	98%	5	72-13	6	01/18/17 18:43	
Surrogate: 1,2-Dichloroethane-d4	58.1	μg/L	SW 846 8260B	116%	5	79-13	5	01/18/17 18:43	
Surrogate: Toluene-d8	45.0	μg/L	SW 846 8260B	90%	5	88-112	2	01/18/17 18:43	
Surrogate: Bromofluorobenzene	46.2	µg/L	SW 846 8260B	92%	5	75-11	7	01/18/17 18:43	
Surrogate: Dibromofluoromethane	48.0	µg/L	SW 846 8260B	96%	1	72-13	6	01/18/17 22:47	
Surrogate: 1,2-Dichloroethane-d4	56.4	µg/L	SW 846 8260B	113%	1	79-13	5	01/18/17 22:47	
Surrogate: Toluene-d8	47.7	µg/L	SW 846 8260B	95%	1	88-112	2	01/18/17 22:47	
Surrogate: Bromofluorobenzene	46.1	µg/L	SW 846 8260B	92%	1	75-11	7	01/18/17 22:47	
Sample Number: 7012602-12	Site: 0	OW-1		Sa	ample I	D:			
Collector: DRC-STL	Collec	t Date: 01/17/2	017 11:09 am	Sa	ample 1	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Static Water Level (ft)	7.44	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Total Volume Purged (gal)	4.60	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Total Well Depth (ft)	15.00	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Volatiles									
VOA 8260 USTURIaadad									
VOA, 8260, UST Unieaded	0040		014/04/000000	05.0	50	044047	0514	04/40/47 00 00	0514
	324U 360	µg/L	SW 846 8260B	25.0	50 50	01/19/17		01/19/17 22:03	
	209 < 25 0	µg/L	SW 846 8260B	25.0 25.0	50	01/19/17		01/19/17 22.03	
Nethyl-t-hutyl ether (MTRE)	~ 20.0	µy/L	SW 846 82600	20.0	50	01/10/17		01/10/17 22.03	
Nanhthalana	~ 20.0 78 0	µy/L	SW 846 82600	20.0	50	01/10/17		01/10/17 22.03	
таришанне Тошере	10.U 3020	µg/L	SW 846 8260B	20.U 25.0	50	01/19/17		01/19/17 22.03	
1 3 5-Trimethylhenzene	< 25 D	µy/∟	SW 846 82600	20.0	50	01/10/17		01/10/17 22.03	
1.2.4-Trimethylbenzene	48.0	μg/L	SW 846 8260B	25.0	50	01/10/17	CEM	01/10/17 22.03	CEM
Xylenes, Total	494	μα/L	SW 846 8260B	50.0	50	01/19/17	CEM	01/19/17 22:03	CEM
	÷ ·	r.a							

7012602 Effective: 07/09/2014





Page 9 of 33



Sample Number: 7012602-12 Collector: DRC-STL	Site: OW-1 Collect Date: 01/17/2017 11:09 am		2017 11:09 am	Sa Sa	ample I ample 1	D: ⁻ ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	54.3	µg/L	SW 846 8260B	109%	50	72-13	6	01/19/17 22:03	
Surrogate: 1,2-Dichloroethane-d4	54.0	µg/L	SW 846 8260B	108%	50	79-13	5	01/19/17 22:03	
Surrogate: Toluene-d8	48.8	µg/L	SW 846 8260B	98%	50	88-11	2	01/19/17 22:03	
Surrogate: Bromofluorobenzene	48.8	µg/L	SW 846 8260B	98%	50	75-11	7	01/19/17 22:03	
Sample Number: 7012602-13	Site: 0	W-2		Sa	ample I	D.			
Collector: DRC-STL	Collect	Date: 01/18/2	2017 10:08 am	Sa	ample 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Static Water Level (ft)	6.70	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Total Volume Purged (gal)	4.20	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Total Well Depth (ft)	15.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	6470	μg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Ethyl Benzene	956	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Isopropylbenzene	61.0	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Methyl-t-butyl ether (MTBE)	124	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Naphthalene	241	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Toluene	10200	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
1,3,5-Trimethylbenzene	214	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
1,2,4-Irimethylbenzene	819	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Xylenes, Iotal	6420	µg/L	SW 846 8260B	100	100	01/26/17	CEM	01/26/17 15:44	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	49.0	µg/L	SW 846 8260B	98%	100	72-13	6	01/26/17 15:44	
Surrogate: 1,2-Dichloroethane-d4	53.0	µg/L	SW 846 8260B	106%	100	79-13	5	01/26/17 15:44	
Surrogate: Toluene-d8	47.0	µg/L	SW 846 8260B	94%	100	88-11	2	01/26/17 15:44	
Surrogate: Bromofluorobenzene	52.9	µg/L	SW 846 8260B	106%	100	75-11	7	01/26/17 15:44	

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 10 of 33



Result		.017 10.09 alli	34	mpie I	ype. Glab			
Result				_				
	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
18.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
7.55	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
3.20	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
210.0	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
6.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
21	ua/l	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20.05	CEM
0.6	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5 B	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
2.7	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
0.6	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
2.2	μg/L	SW 846 8260B	1.0	1	01/20/17	CEM	01/20/17 20:05	CEM
Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
55.6	µg/L	SW 846 8260B	111%	1	72-13	6	01/20/17 20:05	
52.7	µg/L	SW 846 8260B	105%	1	79-13	5	01/20/17 20:05	
49.6	µg/L	SW 846 8260B	99%	1	88-11	2	01/20/17 20:05	
47.8	μg/L	SW 846 8260B	96%	1	75-11	7	01/20/17 20:05	
Site [.] T	rip Blank - Dav	1	Sa	mple I	D.			
Collect	Date: 01/16/2	017 12:00 am	Sa	mple T	ype: Grab			
Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
	18.00 7.55 3.20 210.0 6.00 2.1 0.6 < 0.5 < 0.5 < 0.5 8 2.7 < 0.5 0.6 2.2	18.00       N/A         7.55       N/A         3.20       N/A         210.0       N/A         210.0       N/A         6.00       N/A         9.6       µg/L         < 0.5	18.00       N/A       N/A         7.55       N/A       N/A         3.20       N/A       N/A         210.0       N/A       N/A         210.0       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         19.01       SW 846 8260B       8260B         0.5       µg/L       SW 846 8260B         2.7       µg/L       SW 846 8260B         2.7       µg/L       SW 846 8260B         2.2       µg/L       SW 846 8260B         2.2       µg/L       SW 846 8260B         52.7       µg/L       SW 846 8260B         49.6       µg/L       SW 846 8260B         47.8       µg/L       SW 846 8260B         47.8       µg/L       SW 846 8260B <t< td=""><td>18.00       N/A       N/A         7.55       N/A       N/A         3.20       N/A       N/A         210.0       N/A       N/A         210.0       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         19.01       SW 846 8260B       0.5         19/L       SW 846 8260B       0.5         2.7       µg/L       SW 846 8260B       0.5         2.1       µg/L       SW 846 8260B       0.5         2.2       µg/L       SW 846 8260B       1.0         Results       Units       Method       %Recovery         55.6       µg/L       SW 846 8260B       105%         49.6       µg/L       SW 846 8260B       96%</td><td>18.00       N/A       N/A       1         7.55       N/A       N/A       1         3.20       N/A       N/A       1         210.0       N/A       N/A       1         6.00       N/A       N/A       1         1       6.00       N/A       N/A       1         1       0.6       µg/L       SW 846 8260B       0.5       1         &lt;0.5</td>       µg/L       SW 846 8260B       0.5       1       1         &lt;0.5</t<>	18.00       N/A       N/A         7.55       N/A       N/A         3.20       N/A       N/A         210.0       N/A       N/A         210.0       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         19.01       SW 846 8260B       0.5         19/L       SW 846 8260B       0.5         2.7       µg/L       SW 846 8260B       0.5         2.1       µg/L       SW 846 8260B       0.5         2.2       µg/L       SW 846 8260B       1.0         Results       Units       Method       %Recovery         55.6       µg/L       SW 846 8260B       105%         49.6       µg/L       SW 846 8260B       96%	18.00       N/A       N/A       1         7.55       N/A       N/A       1         3.20       N/A       N/A       1         210.0       N/A       N/A       1         6.00       N/A       N/A       1         1       6.00       N/A       N/A       1         1       0.6       µg/L       SW 846 8260B       0.5       1         <0.5	18.00       N/A       N/A       1       01/18/17         7.55       N/A       N/A       1       01/18/17         3.20       N/A       N/A       1       01/18/17         210.0       N/A       N/A       1       01/18/17         6.00       N/A       N/A       1       01/120/17         6.00       N/A       N/A       1       01/20/17         7       ug/L       SW 846 8260B       0.5       1       01/20/17         <0.5	18.00       N/A       N/A       N/A       1       01/18/17       BAK         3.20       N/A       N/A       N/A       1       01/18/17       BAK         210.0       N/A       N/A       N/A       1       01/18/17       BAK         210.0       N/A       N/A       N/A       1       01/18/17       BAK         6.00       N/A       N/A       N/A       1       01/18/17       BAK         6.00       N/A       N/A       N/A       1       01/18/17       BAK         6.00       N/A       N/A       N/A       1       01/20/17       CEM         6.00       N/A       N/A       N/A       1       01/20/17       CEM         6.00       pg/L       SW 846 8260B       0.5       1       01/20/17       CEM         <0.5	18.00       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         3.20       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         210.0       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         210.0       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         6.00       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         6.00       N/A       N/A       N/A       1       01/120/17       CEM       01/20/17       20:5         6.00       N/A       N/A       N/A       1       01/120/17       CEM       01/20/17       20:5         6.05       µg/L       SW 846 8260B       0.5       1       01/20/17       CEM       01/20/17       20:5         <0.5

Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 12:08	CEM
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
1,3,5-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
,									

7012602 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Fax: 610-375-4090 suburbantestinglabs.com

Page 11 of 33



Sample Number: 7012602-15 Collector:	Site: 1 Collect	rip Blank - Day 1 Date: 01/16/20	17  12:00 am	Sa Sa	imple I imple T	D: ſype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continu	ed)								
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	52.5	µg/L	SW 846 8260B	105%	1	72-136	6	01/17/17 12:08	
Surrogate: 1,2-Dichloroethane-d4	60.9	µg/L	SW 846 8260B	122%	1	79-13	5	01/17/17 12:08	
Surrogate: Toluene-d8	45.6	µg/L	SW 846 8260B	91%	1	88-112	2	01/17/17 12:08	
Surrogate: Bromofluorobenzene	41.3	µg/L	SW 846 8260B	83%	1	75-117	7	01/17/17 12:08	
Sample Number: 7012602-16	Site: 1	rip Blank - Dav 2		Sa	mple I	D:			
Collector:	Collect	Date: 01/17/20	17 12:00 am	Sa	' mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
lsopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Ioluene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
1,3,5- I rimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
	< 0.5	µg/L	SVV 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Aylenes, rotai	< 1.0	µg/L	SVV 040 0200B	1.0	I	01/16/17	CEIM	01/18/17 15.21	CEIVI
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	54.0	µg/L	SW 846 8260B	108%	1	72-136	6	01/18/17 15:21	
Surrogate: 1,2-Dichloroethane-d4	62.4	µg/L	SW 846 8260B	125%	1	79-13	5	01/18/17 15:21	
Surrogate: Toluene-d8	45.7	µg/L	SW 846 8260B	91%	1	88-112	2	01/18/17 15:21	
Surrogate: Bromofluorobenzene	40.9	μg/L	SW 846 8260B	82%	1	75-117	7	01/18/17 15:21	
Sample Number: 7012602 17	Site: 1	rin Blank Day 3		S		<u></u> .			
Collector:	Collect	Date: 01/18/20	17 12:00 am	Sa	mple 1	р. Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA 8260 USTUnleaded									
Benzene	< 0.5	ug/l	SW 846 8260B	0.5	1	01/10/17	CEM	01/19/17 16:21	CEM
Ethyl Benzene	< 0.5	µg/⊏ µa/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Naphthalene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
	Report Constant Op. 02/0	1/2017 5.00 pm	7012602						
	STL Res	Ilts Revision #1.6	Effective: 07/09	9/2014					
				-				a AG	CRED

1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

SUBURBAN TESTING LABS Fax: 610-375-4090 suburbantestinglabs.com





Sample Number: 7012602-17 Collector:	Site: Trip Blank - Day 3 Collect Date: 01/18/2017 12:00 am			5	Sample II Sample T				
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
1,3,5-Trimethylbenzene	0.6	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/19/17	CEM	01/19/17 16:21	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	/ DF	Limits (%Reco	overy)	Analysis Date	
Surrogate: Dibromofluoromethane	55.1	μg/L	SW 846 8260B	110%	1	72-136		01/19/17 16:21	
Surrogate: 1,2-Dichloroethane-d4	53.3	μg/L	SW 846 8260B	107%	1	79-135		01/19/17 16:21	
Surrogate: Toluene-d8	50.0	μg/L	SW 846 8260B	100%	1	88-112		01/19/17 16:21	
Surrogate: Bromofluorobenzene	49.1	µg/L	SW 846 8260B	98%	1	75-117		01/19/17 16:21	

Data Qu	alifiers:
В	The target analyte was detected in the Method Blank, Dilution Water Blank, or Sterility Check at or above the method Reporting Limit or applicable method, client, or regulatory requirement.
B1	The target analyte was detected in the Method Blank at or above the method Reporting Limit, however it was <10% the concentration detected in the sample. Data are reportable under the 2009 TNI Standard.
M3	The Matrix Spike associated with this sample is above established acceptance criteria, indicating potential matrix interference. Results of this sample may be biased high.

V The surrogate associated with this sample was not within the established acceptance criteria.

## Sample Receipt Conditions:

All samples met the sample receipt requirements for the relevant analyses.

** This report has been Amended (Rev1) and replaces all previous reports for this order ID **

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

**Reviewed and Released By:** 

Alana Kopicz Project Manager

Alara M. Kopicz

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Fax: 610-375-4090 suburbantestinglabs.com

Page 13 of 33



## Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com

TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other ______ (Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)



Client Name / Address:		Project Name / Address:
Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603	Phone: (717) 394-1063 Fax:	Herr Foods - Quarterly MWs 2017
Client Project Manager: Ed Dziedzic		Payment / P.O. Info:

Project Description:

Order Comments: Monitoring Well Collection = \$65/hour; Travel time to/from site = \$40/hour; Equipment Rental = \$115 flat fee per event;

Sample Number Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time			
7012602-01 MW-3		1-18-17 1148	DRC-STL	Non-potable	Grab				
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & HCI	A	General Method Monitor Well Sampling - N/A Unassigned Sample Collection, Custom 1 - SI 0015							
40ml VOA & HCI	В								
40ml VOA & HCI	C		Sample	e Collection, Custom 3 - S	L0015				
Field Services	D	D VOlatiles VOA, 8260, USTUnleaded - SW 846 8260B							
7012602-02 MW-4		1-17-17 1218	MRC-STL	Non-potable	Grab				
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & HCI	General Method Monitor Well Sampling - N/A								
40ml VOA & HCI	В	Volatiles							
40ml VOA & HCI	C	VOA, 8260, USTUnleaded - SW 846 8260B							
Field Services	D								
7012602-03 MW-5		1-17-17 1004	DRC-STL	Non-potable	Grab				
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & HCI	A	-	Genera	I Method r Well Sampling - N/A					
40ml VOA & HCl	В	Volatiles							
40ml VOA & HCI	C		VOA, 8260, US I Unleaded - SW 846 8260B						
Field Services	D								

Page 1 of 4

Page 14 of 33

# ORDER ID: 7012602

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time		
7012602-04	MW-7		1-17-17 0914	DRC-STL	Non-potable	Grab			
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results		
40ml VO	A & HCI	A		Genera Monito	<b>l Method</b> r Well Sampling - N/A				
40ml VO	A & HCI	В							
40ml VO	A & HCI	C		VUA, C	5260, 0510fileaded - 5W	040 0200B			
Field Sei	vices	D							
7012602-05	MW-9		1-16-171428	PRL-STL	Non-potable	Grab			
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results		
40ml VO	A & HCI	A		Genera	al Method or Well Sampling - N/A				
40ml VO	A & HCI	В	Volatiles						
40ml VO	A & HCI	C	VOA, 8260, US I Unieaded - SW 846 8260B						
Field Sei	vices	D							
7012602-06	MW-10		1-16-17 1349	DRC-STL	Non-potable	Grab			
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results		
40ml VO	A & HCI	A		General Method					
40ml VO	A & HCI	В	Volatiles						
40ml VO	A & HCI	C		VOA, 8	8260, USTUnleaded - SW	846 8260B			
Field Sei	vices	D							
7012602-07	MW-11		1/16/17 1304	PRC-STL	Non-potable	Grab			
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results		
40ml VO	A & HCI	A		Genera	al Method or Well Sampling - N/A				
40ml VO	A & HCI	В		Volatile	es				
40ml VO	A & HCI	C		VOA, 8	8260, USTUnleaded - SW	846 8260B			
Field Se	vices	D							

L

₽,' ∴, APPENDIX H Pilot Test Laboratory Analytical Reports



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

Report Date: December 12, 2016

## **Project: Herr Foods**

Submittal Date: 11/29/2016 Group Number: 1737966 PO Number: 101722001 State of Sample Origin: PA

	Lancaster Labs
Client Sample Description	<u>(LL) #</u>
IW-1 @ 10 Ft Grab Soil	8717293
SA1-SB-INITIAL @ 10 Ft Grab Soil	8717294
MW-4 Groundwater	8717295
OW-1 Groundwater	8717296
MW-14S Groundwater	8717297
MW-14D Groundwater	8717298
OW-2 Groundwater	8717299

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To Rettew Associates

Attn: Ed Dziedzic

Respectfully Submitted,

1 fless Stacy L. Hess

Project Manager

(717) 556-7236



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Sample Description: IW-1 @ 10 Ft Grab Soil Herr Foods

## Project Name: Herr Foods

Collected: 11/28/2016 09:45 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

HERR1

CAT No.	Analysis Name		CAS Number	Dry Result		Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW	-846 8	260B	ug/kg		ug/kg	
10237	Benzene		71-43-2	1,100		25	38.88
10237	Ethylbenzene		100-41-4	200	J	50	38.88
10237	Isopropylbenzene		98-82-8	N.D.		50	38.88
10237	Methyl Tertiary Butyl E	Ether	1634-04-4	N.D.		25	38.88
10237	Naphthalene		91-20-3	N.D.		50	38.88
10237	Toluene		108-88-3	1,600		50	38.88
10237	1,2,4-Trimethylbenzene		95-63-6	63	J	50	38.88
10237	1,3,5-Trimethylbenzene		108-67-8	N.D.		50	38.88
10237	Xylene (Total)		1330-20-7	660		50	38.88
GC Vo	latiles SW	-846 8	015B	mg/kg		mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	57		8.1	791.14
GC Mi	scellaneous SW	-846 8	015B	mg/kg		mg/kg	
10941	TPH-DRO soil C10-C28 mi	Lcrowave	n.a.	N.D.		5.0	1
Wet C	hemistry SM	2540	G-1997	90		8	
00111	Moisture		n.a.	21.5		0.50	1
	Moisture represents the	loss in	weight of the	sample af	ter oven drving at		

Rettew Associates 3020 Columbia Avenue

Lancaster PA 17603-4011

as-received basis.

#### Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

## Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	R163361AA	12/01/2016 10:35	Jennifer K Howe	38.88
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201633443569	11/28/2016 09:45	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201633443569	11/28/2016 09:45	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201633443569	11/28/2016 09:45	Client Supplied	1
01637	TPH-GRO soil C6-C10	SW-846 8015B	1	16339A34A	12/06/2016 02:34	Jeremy C Giffin	791.14
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201633443569	11/28/2016 09:45	Client Supplied	n.a.
10941	TPH-DRO soil C10-C28 microwave	SW-846 8015B	1	163350021A	12/01/2016 12:20	Thomas C Wildermuth	1



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Sample Description: IW-1 @ 10 Ft Grab Soil Herr Foods

## Project Name: Herr Foods

Collected: 11/28/2016 09:45 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10 LL Group # 1737966 Account # 00721

LL Sample # SW 8717293

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

## HERR1

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time		Analyst	Dilution Factor	
10942	Microwave Extraction-DRO soils	SW-846 3546	1	163350021A	11/30/2016 17	7:15	Kate E Lutte	1	
00111	Moisture	SM 2540 G-1997	1	16336820012A	12/02/2016 01	1:56	Scott W Freisher	1	



Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Sample Description: SA1-SB-INITIAL @ 10 Ft Grab Soil Herr Foods

LL Sample # SW 8717294 LL Group # 1737966 Account # 00721

## Project Name: Herr Foods

Collected: 11/28/2016 13:15 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

HERR2

CAT No.	Analysis Name		CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW	∛-846	8260B	ug/kg	ug/kg	
10237	Benzene		71-43-2	1,700	25	38.34
10237	Ethylbenzene		100-41-4	4,800	49	38.34
10237	Isopropylbenzene		98-82-8	250	49	38.34
10237	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	25	38.34
10237	Naphthalene		91-20-3	690	49	38.34
10237	Toluene		108-88-3	24,000	490	383.44
10237	1,2,4-Trimethylbenzene		95-63-6	7,000	49	38.34
10237	1,3,5-Trimethylbenzene		108-67-8	2,200	49	38.34
10237	Xylene (Total)		1330-20-7	23,000	49	38.34
GC Vol	atiles SW	∛-846	8015B	mg/kg	mg/kg	
01637	TPH-GRO soil C6-C10		n.a.	54	4.2	407.83
GC Mis	scellaneous SW	∛-846	8015B	mg/kg	mg/kg	
10941	TPH-DRO soil C10-C28 m	icroway	ve n.a.	N.D.	5.1	1
Wet Ch	nemistry SM	1 2540	G-1997	8	8	
00111	Moisture		n.a.	22.0	0.50	1
	Moisture represents the 103 - 105 degrees Cels	e loss ius. Th	in weight of the ne moisture resul	sample after over t reported is on a	n drying at an	

Rettew Associates 3020 Columbia Avenue

Lancaster PA 17603-4011

as-received basis.

## Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

## Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	R163361AA	12/01/2016 10:58	Jennifer K Howe	38.34
10237	PA Unleaded/Diesel 8260B	SW-846 8260B	1	R163361AA	12/01/2016 11:46	Jennifer K Howe	383.44
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	1	201633443569	11/28/2016 13:15	Client Supplied	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035A	2	201633443569	11/28/2016 13:15	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846 5035A	1	201633443569	11/28/2016 13:15	Client Supplied	1
01637	TPH-GRO soil C6-C10	SW-846 8015B	1	16339A34A	12/05/2016 19:32	Jeremy C Giffin	407.83
06647	GC-5g Field Preserved MeOH	SW-846 5035A	1	201633443569	11/28/2016 13:15	Client Supplied	n.a.



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Sample Description: SA1-SB-INITIAL @ 10 Ft Grab Soil Herr Foods

## Project Name: Herr Foods

Collected: 11/28/2016 13:15 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10 LL Group # 1737966 Account # 00721 Rettew Associates

3020 Columbia Avenue

Lancaster PA 17603-4011

LL Sample # SW 8717294

HERR2

		Labora	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
10941	TPH-DRO soil C10-C28 microwave	SW-846 8015B	1	163350021A	12/01/2016	10:53	Thomas C Wildermuth	1		
10942	Microwave Extraction-DRO soils	SW-846 3546	1	163350021A	11/30/2016	17:15	Kate E Lutte	1		
00111	Moisture	SM 2540 G-1997	1	16336820012A	12/02/2016	01:56	Scott W Freisher	1		



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW - 4	Groundwater
		Herr	Foods

## Project Name: Herr Foods

Collected: 11/29/2016 08:30 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

HERR3

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
10945	Benzene	71-43-2	740	10	20
10945	Ethylbenzene	100-41-4	590	10	20
10945	Isopropylbenzene	98-82-8	27 J	10	20
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	10	20
10945	Naphthalene	91-20-3	100	20	20
10945	Toluene	108-88-3	2,200	10	20
10945	1,2,4-Trimethylbenzene	95-63-6	540	10	20
10945	1,3,5-Trimethylbenzene	108-67-8	180	10	20
10945	Xylene (Total)	1330-20-7	2,200	10	20
GC Vol	latiles SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C10	n.a.	20,000	1,000	50
GC Pet	croleum SW-846	8015B	ug/l	ug/l	
Hydrod	carbons				
08269	TPH-DRO water C10-C28 The holding time was not met	n.a.	4,700	37	1

#### Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10945	PA UST Unleaded + TMBs GC/MS VOA Water Prep	SW-846 SW-846	8260B 5030B	1 1	D163372AA	12/02/2016	08:59	Anita M Dale Anita M Dale	20	
01635	TPH-GRO water C6-C10	SW-846	8015B	1	16337B20A	12/02/2016	18:21	Marie D Beamenderfer	50	
01146	GC VOA Water Prep	SW-846	5030B	1	16337B20A	12/02/2016	18:21	Marie D Beamenderfer	50	
08269	TPH-DRO water C10-C28	SW-846	8015B	1	163430025A	12/10/2016	06:04	Thomas C Wildermuth	1	
07003	Extraction - DRO (Waters)	SW-846	3510C	1	163430025A	12/09/2016	08:00	Kayla A Yuditsky	1	

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	OW-1	Groundwater
		Herr	Foods

## Project Name: Herr Foods

Collected: 11/29/2016 09:45 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

## HERR4

LL	Sample	#	WW	8717296
LL	Group	#	173	37966
Aco	count	#	007	21

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	5,200	50	100
10945	Ethylbenzene	100-41-4	2,300	50	100
10945	Isopropylbenzene	98-82-8	61	5	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	10	5	10
10945	Naphthalene	91-20-3	400	10	10
10945	Toluene	108-88-3	11,000	50	100
10945	1,2,4-Trimethylbenzene	95-63-6	1,400	5	10
10945	1,3,5-Trimethylbenzene	108-67-8	370	5	10
10945	Xylene (Total)	1330-20-7	9,200	50	100
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C10	n.a.	75,000	1,000	50
GC Pet	croleum SW-846	8015B	ug/l	ug/l	
Hydrod	carbons				
08269	TPH-DRO water C10-C28 The holding time was not met	n.a.	5,500	36	1

#### Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

## Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D163372AA	12/02/2016	09:21	Anita M Dale	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D163372AA	12/02/2016	09:44	Anita M Dale	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D163372AA	12/02/2016	09:21	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D163372AA	12/02/2016	09:44	Anita M Dale	100
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16337B20A	12/02/2016	18:48	Marie D Beamenderfer	50
01146	GC VOA Water Prep	SW-846 5030B	1	16337B20A	12/02/2016	18:48	Marie D Beamenderfer	50
08269	TPH-DRO water C10-C28	SW-846 8015B	1	163430025A	12/10/2016	06:26	Thomas C Wildermuth	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	163430025A	12/09/2016	08:00	Kayla A Yuditsky	1



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-14	łS	Groundwater
		Herr	Fc	ods

## Project Name: Herr Foods

Collected: 11/29/2016 11:00 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

HERR5						
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10945	Benzene	71-43-2	3,500	50	100	
10945	Ethylbenzene	100-41-4	2,600	50	100	
10945	Isopropylbenzene	98-82-8	90	5	10	
10945	Methyl Tertiary Butyl Ether	1634-04-4	210	5	10	
10945	Naphthalene	91-20-3	380	10	10	
10945	Toluene	108-88-3	11,000	50	100	
10945	1,2,4-Trimethylbenzene	95-63-6	2,000	5	10	
10945	1,3,5-Trimethylbenzene	108-67-8	560	5	10	
10945	Xylene (Total)	1330-20-7	10,000	50	100	
GC Vo	latiles SW-846	8015B	ug/l	ug/l		
01635	TPH-GRO water C6-C10	n.a.	76,000	1,000	50	
GC Pet	troleum SW-846	8015B	ug/l	ug/l		
Hvdro	carbons					
08269	TPH-DRO water C10-C28 The holding time was not met	n.a.	8,500	32	1	

Rettew Associates 3020 Columbia Avenue

Lancaster PA 17603-4011

#### Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D163371AA	12/02/2016	10:41	Anita M Dale	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D163371AA	12/02/2016	11:04	Anita M Dale	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D163371AA	12/02/2016	10:41	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D163371AA	12/02/2016	11:04	Anita M Dale	100
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16337B20A	12/02/2016	19:43	Marie D Beamenderfer	50
01146	GC VOA Water Prep	SW-846 5030B	1	16337B20A	12/02/2016	19:43	Marie D Beamenderfer	50
08269	TPH-DRO water C10-C28	SW-846 8015B	1	163430025A	12/10/2016	06:48	Thomas C Wildermuth	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	163430025A	12/09/2016	08:00	Kayla A Yuditsky	1



**Analysis Report** 

Account

LL Sample # WW 8717298 LL Group # 1737966

# 00721

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	MW-14D	) Groundwater
		Herr F	'oods

## Project Name: Herr Foods

Collected: 11/29/2016 11:30 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

## HERR6

Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	190	3	5
10945	Ethylbenzene	100-41-4	28	3	5
10945	Isopropylbenzene	98-82-8	10	3	5
10945	Methyl Tertiary Butyl Ether	1634-04-4	45	3	5
10945	Naphthalene	91-20-3	25	5	5
10945	Toluene	108-88-3	180	3	5
10945	1,2,4-Trimethylbenzene	95-63-6	22	3	5
10945	1,3,5-Trimethylbenzene	108-67-8	13	3	5
10945	Xylene (Total)	1330-20-7	320	3	5
GC Vol	latiles SW-846	8015B	ug/l	ug/l	
01635	TPH-GRO water C6-C10	n.a.	3,100	200	10
GC Pet	troleum SW-846	8015B	ug/l	ug/l	
Hydrod	carbons				
08269	TPH-DRO water C10-C28 The holding time was not met	n.a.	1,600	32	1

#### Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record								
CAT	Analysis Name	Method		Trial#	Batch#	Analysis		Analyst	Dilution
NO.						Date and Ti	me		Factor
10945	PA UST Unleaded + TMBs	SW-846	8260B	1	D163371AA	12/02/2016	11:27	Anita M Dale	5
01163	GC/MS VOA Water Prep	SW-846	5030B	1	D163371AA	12/02/2016	11:27	Anita M Dale	5
01635	TPH-GRO water C6-C10	SW-846	8015B	1	16337B20A	12/02/2016	20:10	Marie D Beamenderfer	10
01146	GC VOA Water Prep	SW-846	5030B	1	16337B20A	12/02/2016	20:10	Marie D Beamenderfer	10
08269	TPH-DRO water C10-C28	SW-846	8015B	1	163430025A	12/10/2016	07:10	Thomas C Wildermuth	1
07003	Extraction - DRO (Waters)	SW-846	3510C	1	163430025A	12/09/2016	08:00	Kayla A Yuditsky	1



Lancaster Laboratories

Environmental

**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	OW-2	Groundwater
		Herr	Foods

## Project Name: Herr Foods

Collected: 11/29/2016 12:00 by ED

Submitted: 11/29/2016 15:45 Reported: 12/12/2016 12:10

HERR7

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10945	Benzene	71-43-2	13,000	100	200	
10945	Ethylbenzene	100-41-4	2,500	10	20	
10945	Isopropylbenzene	98-82-8	55	10	20	
10945	Methyl Tertiary Butyl Ether	1634-04-4	130	10	20	
10945	Naphthalene	91-20-3	310	20	20	
10945	Toluene	108-88-3	26,000	100	200	
10945	1,2,4-Trimethylbenzene	95-63-6	1,200	10	20	
10945	1,3,5-Trimethylbenzene	108-67-8	320	10	20	
10945	Xylene (Total)	1330-20-7	9,800	10	20	
GC Vo	latiles SW-846	8015B	ug/l	ug/l		
01635	TPH-GRO water C6-C10	n.a.	130,000	2,000	100	
GC Pe	troleum SW-846	8015B	ug/l	ug/l		
Hvdro	carbons					
08269	TPH-DRO water C10-C28 The holding time was not met	n.a.	6,600	33	1	

#### Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D163371AA	12/02/2016	11:50	Anita M Dale	20
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D163371AA	12/02/2016	12:12	Anita M Dale	200
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D163371AA	12/02/2016	11:50	Anita M Dale	20
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D163371AA	12/02/2016	12:12	Anita M Dale	200
01635	TPH-GRO water C6-C10	SW-846 8015B	1	16337B20A	12/02/2016	20:38	Marie D Beamenderfer	100
01146	GC VOA Water Prep	SW-846 5030B	1	16337B20A	12/02/2016	20:38	Marie D Beamenderfer	100
08269	TPH-DRO water C10-C28	SW-846 8015B	1	163430025A	12/10/2016	07:31	Thomas C Wildermuth	1
07003	Extraction - DRO (Waters)	SW-846 3510C	1	163430025A	12/09/2016	08:00	Kayla A Yuditsky	1

LL Sample # WW 8717299 LL Group # 1737966 Account # 00721

Rettew Associates 3020 Columbia Avenue Lancaster PA 17603-4011



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Quality Control Summary

Client Name: Rettew Associates Reported: 12/12/2016 12:10 Group Number: 1737966

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

## Method Blank

Analysis Name	Result	MDL
	ug/kg	ug/kg
Batch number: R163361AA Benzene Ethylbenzene Isopropylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	<pre>(s): 8717293-8717294 25 50 50 25 50 50 50 50 50 50 50 50</pre>
	ug/l	ug/l
Batch number: D163371AA Benzene Ethylbenzene Isopropylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	<pre>(s): 8717297-8717299 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</pre>
Batch number: D163372AA Benzene Ethylbenzene Isopropylbenzene Methyl Tertiary Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Xylene (Total)	Sample number N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	<pre>(s): 8717295-8717296 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5</pre>
	mg/kg	mg/kg
Batch number: 16339A34A TPH-GRO soil C6-C10	Sample number N.D.	(s): 8717293-8717294 0.2
	ug/l	ug/l
Batch number: 16337B20A TPH-GRO water C6-C10	Sample number N.D.	(s): 8717295-8717299 20

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Quality Control Summary

Client Name: Rettew Associates Reported: 12/12/2016 12:10

Bat TPH Group Number: 1737966

## Method Blank (continued)

Analysis Name	Result mg/kg	MDL ma/ka
Batch number: 163350021A TPH-DRO soil C10-C28 microwave	Sample number N.D.	(s): 8717293-8717294 4.0
	ug/l	ug/l

		37	37 -	-
ch number:	163430025A	Sample	number(s):	8717295-8717299
-DRO water	C10-C28	N.D.	32	

## LCS/LCSD

Analysis Name	LCS Spike Added ug/kg	LCS Conc ug/kg	LCSD Spike Added ug/kg	LCSD Conc ug/kg	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: R163361AA	Sample numbe	r(s): 87172	293-8717294						
Benzene	1000	993.38	1000	1111.17	99	111	80-120	11	30
Ethylbenzene	1000	889.91	1000	1002.51	89	100	80-120	12	30
Isopropylbenzene	1000	798.68	1000	906.44	80	91	76-120	13	30
Methyl Tertiary Butyl Ether	1000	1001.94	1000	1174.71	100	117	72-120	16	30
Naphthalene	1000	660.59	1000	779	66	78	53-120	16	30
Toluene	1000	892.72	1000	1027.76	89	103	80-120	14	30
1,2,4-Trimethylbenzene	1000	860.13	1000	951.8	86	95	74-120	10	30
1,3,5-Trimethylbenzene	1000	845.97	1000	936.36	85	94	73-120	10	30
Xylene (Total)	3000	2611.14	3000	2909.05	87	97	80-120	11	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: D163371AA	Sample numbe	r(s): 87172	97-8717299						
Benzene	20	22.02	20	21.81	110	109	78-120	1	30
Ethylbenzene	20	21.95	20	21.57	110	108	78-120	2	30
Isopropylbenzene	20	22.36	20	21.91	112	110	80-120	2	30
Methyl Tertiary Butyl Ether	20	22.42	20	22.33	112	112	75-120	0	30
Naphthalene	20	21.25	20	21.25	106	106	59-120	0	30
Toluene	20	22.11	20	21.72	111	109	80-120	2	30
1,2,4-Trimethylbenzene	20	21.79	20	22.04	109	110	75-120	1	30
1,3,5-Trimethylbenzene	20	21.8	20	22.08	109	110	75-120	1	30
Xylene (Total)	60	66.04	60	65.07	110	108	80-120	1	30
Batch number: D163372AA	Sample numbe	r(s): 87172	295-8717296						
Benzene	20	22.21	20	20.79	111	104	78-120	7	30
Ethylbenzene	20	21.73	20	20.61	109	103	78-120	5	30
Isopropylbenzene	20	22.11	20	20.68	111	103	80-120	7	30
Methyl Tertiary Butyl Ether	20	22.67	20	20.91	113	105	75-120	8	30
Naphthalene	20	20.71	20	18.86	104	94	59-120	9	30
Toluene	20	21.26	20	20.05	106	100	80-120	6	30
1,2,4-Trimethylbenzene	20	21.99	20	20.57	110	103	75-120	7	30
1,3,5-Trimethylbenzene	20	21.94	20	20.78	110	104	75-120	5	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.





2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Quality Control Summary

Client Name: Rettew Associates Reported: 12/12/2016 12:10 Group Number: 1737966

## LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Xylene (Total)	60	64.92	60	61.79	108	103	80-120	5	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 16339A34A	Sample numbe	r(s): 87172	93-8717294						
TPH-GRO soil C6-C10	11	10.25	11	10.67	93	97	54-120	4	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: 16337B20A	Sample numbe	r(s): 87172	95-8717299						
TPH-GRO water C6-C10	1100	1114.33	1100	1096.97	101	100	80-120	2	30
	mg/kg	mg/kg	mg/kg	mg/kg					
Batch number: 163350021A	Sample numbe	r(s): 87172	93-8717294						
TPH-DRO soil C10-C28 microwave	133	120.26			90		74-117		
	ug/l	ug/l	ug/l	ug/l					
Batch number, 163430025A	Sample numbe	$r(q) \cdot 87172$	95-8717299	-					
TPH-DRO water C10-C28	1600	1297.33	1600	1225.82	81	77	53-115	6	20
	%	8	%	8					
Batch number: 16336820012A	Sample numbe	r(s): 87172	93-8717294						
Moisture	89.5	89.44			100		99-101		

## MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc mg/kg	MS Spike Added mg/kg	MS Conc mg/kg	MSD Spike Added mg/kg	MSD Conc mg/kg	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 163350021A TPH-DRO soil C10-C28 microwave	Sample numbe N.D.	er(s): 8717 133	293-8717 122.08	294 UNSPK: 8	3717294	92		74-117		

## Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc	DUP Conc	DUP RPD	DUP RPD Max
	mg/kg	mg/kg		

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Quality Control Summary

Client Name: Rettew Associates Reported: 12/12/2016 12:10 Group Number: 1737966

## Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	BKG Conc mg/kg	DUP Conc mg/kg	DUP RPD	DUP RPD Max
Batch number: 163350021A	Sample number(s):	8717293-8717294	BKG: 8717294	20
TPH-DRO soil C10-C28 microwave	N.D.	N.D.	0 (1)	
	%	%		
Batch number: 16336820012A	Sample number(s):	8717293-8717294	BKG: P717811	5
Moisture	9.80	9.38	4	

## Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: PA UST Unleaded + TMBs Batch number: D163371AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8717297	99	95	98	102
8717298	99	99	100	99
8717299	98	96	98	102
Blank	98	99	101	97
LCS	99	98	99	101
LCSD	98	101	98	100
Limits:	80-116	77-113	80-113	78-113

#### Analysis Name: PA UST Unleaded + TMBs Batch number: D163372AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8717295	98	98	98	99
8717296	96	95	98	102
Blank	98	99	98	96
LCS	99	101	100	100
LCSD	98	98	100	101
Limits:	80-116	77-113	80-113	78-113

#### Analysis Name: PA Unleaded/Diesel 8260B Batch number: R163361AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8717293	85	87	77	88
8717294	82	82	73	81
Blank	98	98	86	88
LCS	99	99	88	92
LCSD	111	109	100	104

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Quality Control Summary

Client Name: Rettew Associates Reported: 12/12/2016 12:10 Group Number: 1737966

		Surrogat	e Quality Co	ntrol (contin	ued)
Surrogate unless at	recoveries which tributed to diluti	are outside of th ion or otherwise r	ne QC window are cor noted on the Analysi	nfirmed s Report.	
Analysis I Batch numl	Name: PA Unleaded/ ber: R163361AA	/Diesel 8260B			
Limits:	50-141	54-135	52-141	50-131	
Analysis 1	Name: TPH-GRO wate	er C6-C10			
Baten num	Trifluorotoluene-F				
8717295	83				
8717296	82				
8717297	88				
8717298	88				
8717299	80				
Plank	00				
	00				
	96				
ILOU	00 (2 125				
Limits:	63-135				
Analvsis 1	Name: TPH-GRO soil	L C6-C10			
Batch num	ber: 16339A34A				
	Trifluorotoluene-F				
8717293	92				
8717294	84				
Blank	96				
LCS	96				
LCSD	94				
Limits:	50-142				
Analvsis 1	Name: TPH-DRO soil	L C10-C28 microway	ve		
Batch numl	ber: 163350021A				
	Orthoterphenyl				
8717293	77				
8717294	72				
Blank	86				
	77				
LCS	86				
MS	85				
Timita	24 147				
LIMILS:	24-141				
Analysis 1	Name: TPH-DRO wate	er C10-C28			
Batch numl	ber: 163430025A				
	Orthoternhenvl				
0.01.0005					
8717295	90				
8717296	98				
8717297	110				
0					
- Outside of	specification				
) The result	for one or both determi	nations was less than f	ive times the LOQ.		
) The unspik	ed result was more that	n four times the spike	added.		
##### is ind	licative of a Backgroun	nd or Unspiked sample	that is batch matrix OC a	nd was not performed usi	ng a sample from this submission



**Analysis Report** 

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

## Quality Control Summary

Client Name: Rettew Associates Reported: 12/12/2016 12:10 Group Number: 1737966

## Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: TPH-DRO water C10-C28 Batch number: 163430025A

	Orthoterphenyl
8717298	96
8717299	98
Blank	86
LCS	94
LCSD	90
Limits:	50-124

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Environmental	l Ana	lysi	3 RG	Ð	Ue	S	i/Ch	ai	$\mathcal{T}$	Di	$(\mathcal{C})$	UE	io.	Ø	/ .							
🐝 eurofins				For E	Eurofir	ns Lan	caster Lab	orator	ries En	vironr	nenta	l use d	only						~~	<u>л</u>	<b>Г</b> 1 <b>Г</b>	- 
Lancaster Labor Environmental	ratories	Acct. #	121		Group	#]] <del>]</del>	3796	<u>(</u> s	ample	• #	371	77	293		06			ļ	JU		270	000
Client I	nformation	1					Matrix					A	naly	sis I	Reques	sted			Fo	r Lab Use	Only	
	19	Acct. #:						I	1		Par/monance		Prese	ervat	ion Co	des			FS	C:	1007	NOC
LETTEW ASSOCIATES,	ANK_					l e							Γļ			121013310120120			SC	R#:	100	16-3
Project Name/#:		PWSID #:				issi	ace			Ľ										Preser	vation (	Codes
Project Manager:		P.O. #:								R											Ϊ≕Ι ₽N	
ED DITEDZEZ		10177	2200	í				.	ŝ	8											<b>D</b> =N <b>O</b> =C	a0n Ither
Sampler:		Quote #:		1		nt			<u>e</u>	AG									ana ana	R	emark	5
ED DZIEDZIZ						ě	le Si		nta	3												
State where samples were collected: For	Compliance:			l	6	edi	DF		Ŝ	R												
PIt	Yes 🗌				osite	М	L P R		õ	莒		0										
Sample Identification		Colle	cted	ab	du		ater	her:	tal #	GE	Ne	120										
-		Date	Time	15	၂၃	တီ	Ň	5	<u> </u>	R	1											
IW-1 @10 Ft		11/23/16	9:45	X		X				X	X	X										
SA1-SB-INTIMLC	1017	1123/16	13:15	X		$\overline{\mathbf{X}}$		Τ		X	X	X										
MINA		112011	8:30	İ			V		1	X	X	X			1							
DIN-1	İ	11/29/11	9:45	1			$\overline{\mathbf{v}}$		$\mathbf{T}$	X	X	Ń										
MA101-145	1	117411	11:00	İ —			$ \rightarrow $	1		$\overrightarrow{\mathbf{v}}$	X	X									<u> </u>	********
MALAL- LA D		11 1201 11.	11:20		┼──		$\vdash$		1	$\mathbf{b}$	$\overline{\mathbf{x}}$	$\mathbf{x}$							-			
0100-14D		117011	17:00	1			$\vdash \rightarrow$	-		$\mathbf{\nabla}$	X	₩		-								
<u> </u>			12.00						+		$ \land$	-	┝──┤									
			Ballina Doctor Marcal Anna Carologa		┼──	┣──																
			-										┟──┤						_			
Turparound Time (TAT) P	horestod (			Relinc	uished	bv.	<u> </u>		L		Date	<u> </u>	Time		Received	by (	$\not$			[p	ate /	Time
Standard	equested ( Bi	please circle ish	3)	(	Lat	fl;	, Star	20	0	11	122	116	10:	30	( Į	$\gamma$	A.	Le,	12	1 11	22/16	10:32
(Rush TAT is subject to laboratory approva	al and surcharge	.)	ľ	Reline	quished	by /	$\mathcal{T}_{n}$	-9	<u> (</u>	-14	Date	1.	Time	<del></del>	Received	by	ſΧ	<u>,</u>	<u> </u>		all all	Time
		·/	I		<i>F</i> .	K	el er	re	1	,17	123	V16	12	í3 ^r	7 UI	M	1997	$\mathcal{M}$		$_$ ' $[l$	1/23/16	18:00
Date results are needed:			,	Relinc	quished	by	1	<del>}</del>	<u> </u>	-7	Date		Time		Received	By U	~~~~	<b>v</b>		D	ate	Time
			i															10-120000000000000000000				L
E-mail address:				Relinc	quished	by		•			Date		Time	/	Received	by				D	ate	Time
Data Package Option	<b>ns</b> (circle if rec	quired)		<u>/</u>		$\frac{1}{1}$					Daté		Time		Beceived	thu	÷				ato	Time
Type I (EPA Level 3	Type VI (F	Raw Data (	Only)			ľ	Ain				11/2	alth	16:	2h		SAL	A	1		j.	ואגלו	11.32
Equivalent/hon-CLP)			I	ĽН	M	<u></u>		auiro	42	Voc	No	<u></u>			Reling	ishe	dby (	L	nercia	L Carrier	12910	1000
Type III (Reduced non-CLP)	NJ DKQP	TX T	RRP-13			If ves	ים טט הפ . format:	quire	u	103	INU		_		UPS		$\underline{\mathcal{U}}_{F}$	edEx		_ Other		
		~			Sit	te-Sp	ecific QC	(MS/	MSD/	Dup)?	? Y	'es	No				oorat			2	<u>) - :</u>	
NYSDEC Category A or B	MA MCP	CTR	ICP		(If yes	s, indic	ate QC sam	ple and	l submi	t triplica	ate sar	nple vo	olume.)			rem	Jerati	rie nb		celpt	. (	<u>29</u>

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Laboratories Environmental. The yellow copy should be retained by the client. Page 17 of 20

## 🔹 eurofins

Lancaster Laboratories Environmental

## Sample Administration Receipt Documentation Log

Doc Log ID:

169184

Group Number(s): 1737966

Client: Rettew Associates

	<b>Delivery</b> and	<b>Receipt Information</b>		
Delivery Method: <u>C</u>	lient Drop Off	Arrival Timestamp:	<u>11/29/2016 •</u>	<del>15:45</del>
Number of Packages: <u>2</u>		Number of Projects:	1	16:35 OSHA- 12/7/16
State/Province of Origin: P	A			
	Arrival Cor	ndition Summary		
Shipping Container Sealed:	No	Sample IDs on COC	match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times	match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace	e ≥ 6mm:	No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:		2
Samples Intact:	Yes	Trip Blank Type:		HCI
Missing Samples:	No	Air Quality Samples	Present:	No
Extra Samples:	No			
Discrepancy in Container Qty or	n COC: No			
Unpacked by Cathy Murphy (10	960) at 16:56 on 11	/29/2016		
	Samples	Chilled Details		
Thermometer Types: DT = D	igital (Temp. Bottle,	) IR = Infrared (Surfac	e Temp) All Te	mperatures in °C.
Cooler # Thermometer ID Corrected Temp	Therm. Type	Ice Type Ice Present? Ic	e Container Elevate	ed Temp?
1 DT146 3.7	DT	Wet Y	Bagged	N

Wet

Y

Bagged

Ν

2

DT146

3.4

DT

## 🔅 eurofins

Lancaster Laboratories Environmental

## **Explanation of Symbols and Abbreviations**

The following defines common symbols and abbreviations used in reporting technical data:

BMQL	Below Minimum Quantitation Level	mg	milligram(s)
С	degrees Celsius	mL	milliliter(s)
cfu	colony forming units	MPN	Most Probable Number
CP Units	cobalt-chloroplatinate units	N.D.	none detected
F	degrees Fahrenheit	ng	nanogram(s)
g	gram(s)	NTŪ	nephelometric turbidity units
IŬ	International Units	pg/L	picogram/liter
kq	kilogram(s)	RL	Reporting Limit
Ľ	liter(s)	TNTC	Too Numerous To Count
lb.	pound(s)	na	microgram(s)
m3	cubic meter(s)	uL	microliter(s)
meq	milliequivalents	umhos/cm	micromhos/cm
<	less than		
>	greater than		
ppm	parts per million - One ppm is equivalent to c aqueous liquids, ppm is usually taken to be e very close to a kilogram. For gases or vapor	one milligram per equivalent to milli s, one ppm is eq	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uvalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis	Results printed under this heading have bee concentration to approximate the value prese	n adjusted for mo ent in a similar sa	isture content. This increases the analyte weight mple without moisture. All other results are reported on an

as-received basis.

## Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis
- E Concentration exceeds the calibration range
- J (or G, I, X) estimated value  $\geq$  the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

## Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

## 🔅 eurofins

Lancaster Laboratories Environmental

## **Additional Data Qualifiers**

Qualifier	Definition
В	Detection in the Blank
Q0	LCS/LCSD Low
Q1	LCS/LCSD High
Q4	MS/MSD Out of Range
Q7	LCS/LCSD RPD
Q8	DUP RPD
Q9	MS/MSD RPD



## Order ID: 6122519

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603	Project: Herr Foods - Limited GW Sampling Events (Dec 2016)										
Attn: Ed Dziedzic		Re	egulatory ID:								
Sample Number: 6122519-01	Site: N	MW-4		Sa	mple I	D:					
Collector: DRC-STL	Collec	t Date: 12/19/20	016 10:20 am	Sample Type: Grab							
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву		
Diesel Range Organics (DRO) (GC)											
Diesel Range Organics (DRO) (GC)											
C10-C44	6.6	mg/L	8015D	1.0	2	12/23/16		12/27/16 13:57	MJA		
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date			
Surrogate: o-Terphenyl	0.018	mg/L	8015D	91%	2	34-15	3	12/27/16 13:57			
Gasoline Range Organics (GRO) (GC) Gasoline Range Organics (GRO) (GC) GRO	28000	ug/L	8015D	2500	100	12/25/16		12/25/16 1:24	DAS		
Surrogate Recoveries	Pesults	l Inits	Method	%Recovery	DE	l imits (%Re	coverv)	Analysis Date			
Surrogate: a,a,a-Trifluorotoluene	4500	ug/L	8015D	89%	100	79-14	)	12/25/16 1:24			
General Method											
Monitor Well Sampling											
Sampling Depth (ft)	10.00	N/A	N/A		1	12/19/16	RSM	12/19/16 10:20	DRC		
Static Water Level (ft)	7.70	N/A	N/A		1	12/19/16	RSM	12/19/16 10:20	DRC		
Total Volume Purged (gal)	5.30	N/A	N/A		1	12/19/16	RSM	12/19/16 10:20	DRC		
Total Well Depth (ft)	19.00	N/A	N/A		1	12/19/16	RSM	12/19/16 10:20	DRC		
Well Diameter (in)	2.00	N/A	N/A		1	12/19/16	RSM	12/19/16 10:20	DRC		
Volatiles											
VOA, 8260, USTUnleaded											
Isopropylbenzene	24.1	μg/L	SW 846 8260B	0.5	1	12/23/16	CEM	12/23/16 19:52	CEM		
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	12/23/16	CEM	12/23/16 19:52	CEM		
1,3,5-Trimethylbenzene	79.1	µg/L	SW 846 8260B	0.5	1	12/23/16	CEM	12/23/16 19:52	CEM		
Ethyl Benzene	3250	µg/L	SW 846 8260B	10.0	20	12/28/16	CEM	12/28/16 23:34	AMD		
Naphthalene	2630	μg/L	SW 846 8260B	10.0	20	12/28/16	CEM	12/28/16 23:34	AMD		
Benzene	1510	µg/L	SW 846 8260B	250	500	01/02/17	CEM	01/02/17 16:34	CEM		
Toluene	5440	µg/L	SW 846 8260B	250	500	01/02/17	CEM	01/02/17 16:34	CEM		
1,2,4-Trimethylbenzene Xylenes, Total	870 5880	µg/L	SW 846 8260B	250 500	500 500	01/02/17 01/02/17	CEM CEM	01/02/17 16:34	CEM CEM		
		µy،∟	Matter d					Analysis Def			
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Anaiysis Date			
Report Ge	enerated On: 01/0 STL_Res	05/2017 3:06 pm ults Revision #1.6	n 6122519 6 Effective: 07/0	9/2014							



Page 1 of 19



Sample Number: 6122519-01	Site: MW-4			Sa	mple II	D:		
Collector: DRC-STL	Collect Date	e: 12/19	/2016 10:20 am	Sa	mple T	ype: Grab		
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date By	Analysis Date	Ву
Volatiles (Continued)								
VOA, 8260, USTUnleaded (Continued)								
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Recovery	) Analysis Date	
Surrogate: Dibromofluoromethane	42.0	µg/L	SW 846 8260B	84%	1	72-136	12/23/16 19:52	[
Surrogate: 1,2-Dichloroethane-d4	51.0	µg/L	SW 846 8260B	102%	1	79-135	12/23/16 19:52	
Surrogate: Toluene-d8	48.3	µg/L	SW 846 8260B	97%	1	88-112	12/23/16 19:52	
Surrogate: Bromofluorobenzene	52.6	µg/L	SW 846 8260B	105%	1	75-117	12/23/16 19:52	
Surrogate: Dibromofluoromethane	43.0	µg/L	SW 846 8260B	86%	20	72-136	12/28/16 23:34	
Surrogate: 1,2-Dichloroethane-d4	52.2	µg/L	SW 846 8260B	104%	20	79-135	12/28/16 23:34	
Surrogate: Toluene-d8	48.2	µg/L	SW 846 8260B	96%	20	88-112	12/28/16 23:34	
Surrogate: Bromofluorobenzene	50.9	µg/L	SW 846 8260B	102%	20	75-117	12/28/16 23:34	
Surrogate: Dibromofluoromethane	47.2	µg/L	SW 846 8260B	94%	500	72-136	01/02/17 16:34	
Surrogate: 1,2-Dichloroethane-d4	56.2	µg/L	SW 846 8260B	112%	500	79-135	01/02/17 16:34	
Surrogate: Toluene-d8	45.6	µg/L	SW 846 8260B	91%	500	88-112	01/02/17 16:34	
Surrogate: Bromofluorobenzene	44.6	µg/L	SW 846 8260B	89%	500	75-117	01/02/17 16:34	
	<u></u>				,			
Sample Number: 6122519-02	Site: MW-5	)		Sa	mple II	D:		
Collector: DRC-STL	Collect Date	e: 12/19	/2016 12:05 pm	Sa	mple T	ype: Grab		
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date By	Analysis Date	Ву
Diesel Range Organics (DRO) (GC								
Diesel Range Organics (DRO) (GC)								
C10-C44	< 0.52	mg/L	8015D	0.52	1	12/23/16	12/27/16 12:21	MJA
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Recovery	) Analysis Date	
Surrogate: o-Terphenyl	0.018	mg/L	8015D	89%	1	34-158	12/27/16 12:21	
Gasoline Range Organics (GRO) (	<u>GC)</u>							
Gasoline Range Organics (GRO) (GC)	400		00/50	<u>.</u>		10/05/10	10/05/10 0.00	DAG
GRU	180	ug/L	8015D	25	1	12/25/16	12/25/16 0:30	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Recovery	) Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	54	ug/L	8015D	109%	1	79-140	12/25/16 0:30	
Conoral Mathad								
Monitor Well Sampling								
Sampling Depth (ft)	10.00	N/A	N/A		1	12/19/16 RSN	12/19/16 12:05	DRC
Static Water Level (ft)	0.80 2.50	N/A	N/A		1	12/19/16 RSN	12/19/16 12:05	DRC
Total Well Depth (#)	∠.0U	IN/A	N/A N/A		1	12/19/10 RSN	12/19/10 12:05	
Well Diameter (in)	21.00	IN/A	N/A N/A		1	12/19/10 KSIV	12/19/10 12.05	
	2.00	IN/A	N/A		I		1 12/13/10 12.05	DIC
Re	port Generated On: 01/05/20 STL Results	17 3:06 Revision #	pm 6122519 1.6 Effective: 07/09	9/2014				



Page 2 of 19



Sample Number: 6122519-02	Site: N	1W-5	016 12:05	Sa	imple I	D:			
		Date. 12/19/2				Type. Glab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	14.1	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
Ethyl Benzene	6.1	µg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
Isopropylbenzene	2.3	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
Methyl-t-butyl ether (MTBE)	1.9	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
Naphthalene	2.5	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
Toluene	3.5	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
1,3,5-Trimethylbenzene	0.9	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
1,2,4-Trimethylbenzene	3.4	μg/L	SW 846 8260B	0.5	1	12/28/16	CEM	12/28/16 15:52	AMD
Xylenes, Total	31.2	µg/L	SW 846 8260B	1.0	1	12/28/16	CEM	12/28/16 15:52	AMD
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	45.6	µg/L	SW 846 8260B	91%	1	72-136	5	12/28/16 15:52	
Surrogate: 1,2-Dichloroethane-d4	53.6	µg/L	SW 846 8260B	107%	1	79-13	5	12/28/16 15:52	
Surrogate: Toluene-d8	46.1	µg/L	SW 846 8260B	92%	1	88-112	2	12/28/16 15:52	
Surrogate: Bromofluorobenzene	47.8	ua/L	SW 846 8260B	96%	1	75-117	7	12/28/16 15:52	
		15							
Sample Number: 6122519-03	Site [.] M	1W-14S		Sa	imple I	D.			
	Called	Dete: 12/10/2	016 1:25 pm	50	mplo 1	D. Dunai Crah			
	Collect	Date. 12/19/2	010 1.35 pm	58	imple i	Type. Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Diesel Range Organics (DRO) (GC)									
C10-C44	5.0	ma/l	8015D	0.52	1	12/23/16		12/27/16 12:33	ΜΙΔ
	5.0	ing/L	00130	0.52		12/23/10		12/21/10 12:00	MUCA
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: o-Terphenyl	0.022	mg/L	8015D	112%	1	34-158	3	12/27/16 12:33	
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)	33000	ug/l	80150	2500	100	12/25/16		12/25/16 2.17	
	33000	ug/L	00130	2300	100	12/23/10		12/23/10 2.17	DAG
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	4100	ug/L	8015D	83%	100	79-140	)	12/25/16 2:17	
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8.00	N/A	N/A		1	12/19/16	RSM	12/19/16 13:35	DRC
Static Water Level (ft)	6.30	N/A	N/A		1	12/19/16	RSM	12/19/16 13:35	DRC
Report C	Generated On: 01/0 STL_Resu	5/2017 3:06 pr Ilts Revision #1.	n 6122519 6 Effective: 07/0	9/2014					
	_							SP AS	CCRED

1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595 Fax: 610-375-4090 suburbantestinglabs.com

SUBURBAN TESTING LABS Fax: 610-375-4090 suburbantestinglabs.com





Department / Test / ParameterResultUnitsMethodR.L.DFPrep DateByAnalysis DateByGeneral Method (Continued)Monitor Well Sampling (Continued)Total Volume Purged (gal)2.50N/AN/A112/19/16RSM12/19/1613:35DR(Total Well Depth (ft)10.00N/AN/A112/19/16RSM12/19/1613:35DR(Well Diameter (in)2.00N/AN/A112/19/16RSM12/19/1613:35DR(
General Method         (Continued)           Monitor Well Sampling (Continued)         70tal Volume Purged (gal)         2.50         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR(           Total Volume Purged (gal)         2.50         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR(           Well Depth (ft)         10.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR(           Well Diameter (in)         2.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR(
Monitor Well Sampling (Continued)           Total Volume Purged (gal)         2.50         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRiv           Total Volume Purged (gal)         10.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRiv           Well Diameter (in)         2.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRiv
Total Volume Purged (gal)         2.50         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRi           Total Volume Purged (gal)         10.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRi           Well Depth (ft)         10.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRi           Well Diameter (in)         2.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DRi
Total Volume Purged (gal)         2.50         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR           Total Well Depth (ft)         10.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR           Well Diameter (in)         2.00         N/A         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR
Well Diameter (in)         2.00         N/A         N/A         1         12/19/16         RSM         12/19/16         13:35         DR
Volatiles
loorron/honzono 66.7 un/l SW 946 9360P 0.5 1 12/32/16 CEM 12/32/16 20:47 CEU
Isopropyide/izene         00.7         µg/L         SW 846 8260B         0.5         1         12/23/16         CEM         12/23/16         20:47         CEI           Methyl_t-butyl ether (MTBE)         153         µg/L         SW 846 8260B         0.5         1         12/23/16         CEM         12/23/16         20:47         CEI
Nachthalene 2050 un/l SW 846 8260B 25.0 50 12/29/16 CEM 12/29/16 0:01 AM
1 3 5-Trimethylbenzene 2270 ug/l SW 846 8260B 25.0 50 12/29/16 CEM 12/29/16 0:01 AM
Benzene 2800 ug/L SW 846 8260B 250 500 01/02/17 CEM 01/02/17 17:01 CE/
Ethyl Benzene 1360 ug/L SW 846 8260B 250 500 01/02/17 CEM 01/02/17 17:01 CEI
Toluene 8980 µg/L SW 846 8260B 250 500 01/02/17 CEM 01/02/17 17:01 CEI
1,2,4-Trimethylbenzene 775 µg/L SW 846 8260B 250 500 01/02/17 CEM 01/02/17 17:01 CEI
Xylenes, Total         6990         µg/L         SW 846 8260B         500         01/02/17         CEM         01/02/17         17:01         CEM
Surrogate Recoveries         Results         Units         Method         %Recovery         DF         Limits (%Recovery)         Analysis Date
Surrogate: Dibromofluoromethane         37.4         μg/L         SW 846 8260B         75%         1         72-136         12/23/16         20:47
Surrogate: 1,2-Dichloroethane-d4         51.5         μg/L         SW 846 8260B         103%         1         79-135         12/23/16         20:47
Surrogate: Toluene-d8 45.8 µg/L SW 846 8260B 92% 1 88-112 12/23/16 20:47
Surrogate: Bromofluorobenzene 52.9 µg/L SW 846 8260B 106% 1 75-117 12/23/16 20:47
Surrogate: Dibromofluoromethane 42.2 µg/L SW 846 8260B 84% 50 72-136 12/29/16 0:01
Surrogate: 1,2-Dichloroethane-d4 50.0 µg/L SW 846 8260B 100% 50 79-135 12/29/16 0:01
Surrogate: Toluene-d8 46.7 µg/L SW 846 8260B 93% 50 88-112 12/29/16 0:01
Surrogate: Bromofluorobenzene 48.4 µg/L SW 846 8260B 97% 50 75-117 12/29/16 0:01
Surrogate: Dibromofluoromethane 47.0 µg/L SW 846 8260B 94% 500 72-136 01/02/17 17:01
Surrogate: 1,2-Dichloroethane-d4 56.9 µg/L SW 846 8260B 114% 500 79-135 01/02/17 17:01
Surrogate: Toluene-d8 45.7 µg/L SW 846 8260B 91% 500 88-112 01/02/17 17:01
Surrogate: Bromofluorobenzene         44.6         µg/L         SW 846 8260B         89%         500         75-117         01/02/17         17:01
Sample Number: 6122510.04 Site: MW.14D Sample ID:
Collect Date: 12/19/2016 12:55 pm Sample Type: Grab
Department / Test / Parameter Result Units Method R.L. DF Prep Date By Analysis Date By
Diesel Range Organics (DRO) (GC)
Diesel Range Organics (DRO) (GC)
C10-C44 0.87 mg/L 8015D 0.52 1 12/23/16 12/27/16 12:45 MJ/
Surrogate Recoveries         Results         Units         Method         %Recovery         DF         Limits (%Recovery)         Analysis Date
Surrogate: o-Terphenyl         0.019         mg/L         8015D         93%         1         34-158         12/27/16         12:45

6122519 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com



Sample Number: 6122519-04 Collector: DRC-STL	Site: M Collect	/W-14D : Date: 12/19/20	16 12:55 pm	Sa Sa	mple I mple 1	D: ſype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)									
GRO	1600	ua/l	8015D	130	5	12/25/16		12/25/16 1:50	DAS
	1000	ug/L	00102	100	<u> </u>	12/20/10			5/10
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Reco	overy)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	220	ug/L	8015D	90%	5	79-140		12/25/16 1:50	
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	20.00	N/A	N/A		1	12/19/16	RSM	12/19/16 12:55	DRC
Static Water Level (ft)	5.85	N/A	N/A		1	12/19/16 I	RSM	12/19/16 12:55	DRC
Total Volume Purged (gal)	2.60	N/A	N/A		1	12/19/16 I	RSM	12/19/16 12:55	DRC
Total Well Depth (ft)	25.00	N/A	N/A		1	12/19/16 I	RSM	12/19/16 12:55	DRC
Well Diameter (in)	2.00	N/A	N/A		1	12/19/16	RSM	12/19/16 12:55	DRC
Volatiles									
VOA. 8260. USTUnleaded									
Benzene	< 1.0	ua/l	SW 846 8260B	10	2	12/28/16	CEM	12/28/16 20.19	
Ethyl Benzene	< 1.0	ua/L	SW 846 8260B	1.0	2	12/28/16	CEM	12/28/16 20:19	AMD
Isopropylbenzene	< 1.0	ua/L	SW 846 8260B	1.0	2	12/28/16	CEM	12/28/16 20:19	AMD
Methyl-t-butyl ether (MTBE)	< 1.0	ug/l	SW 846 8260B	10	2	12/28/16	CEM	12/28/16 20.19	AMD
Nanhthalene	< 1.0	µg/L	SW 846 8260B	1.0	2	12/28/16	CEM	12/28/16 20:19	
Toluene	< 1.0	µg/L	SW 846 8260B	1.0	2	12/28/16	CEM	12/28/16 20:19	
1 3 5-Trimethylbenzene	< 1.0	µg/L	SW/ 846 8260B	1.0	2	12/28/16		12/28/16 20:10	
	< 1.0	µg/L	SW/ 846 8260B	1.0	2	12/28/16		12/28/16 20:10	
Xylenes, Total	< 2.0	μg/L	SW 846 8260B	2.0	2	12/28/16	CEM	12/28/16 20:19	AMD
Surrogate Recoveries	Results	Units	Method	%Recoverv	DF	Limits (%Reco	overy)	Analysis Date	
Surrogate: Dibromofluoromethane	47 3	ua/l	SW 846 8260B	95%	2	72-136	.,	12/28/16 20.19	
Surrogate: 1 2-Dichloroethane-d4	54.2	µg/L	SW 846 8260B	108%	2	79-135		12/28/16 20:19	
Surrogate: Toluene_d8	45.2	µg/L	SW 846 8260B	90%	2	88-112		12/28/16 20:10	
Surrogate: Toldene-do	40.2	µg/L	SW 840 8200B	90 %	2	75 117		12/20/10 20.19	
Sunogale. Biomoliuorobenzene	43.4	µg/L	SVV 846 8260B	0770	2	75-117		12/20/10 20.19	
Sample Number: 6122519-05	Site: 0	)W-1		Sa	mple l	D:			
Collector: DRC-STL	Collect	Date: 12/19/20	16 11:10 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Cite Cite Cite Cite Cite Cite Cite Cite	4.0		00450	0.50	4	10/00/40		40/07/40 40.57	
	4.9	mg/L	8015D	0.52	1	12/23/16		12/27/10 12:57	IVIJA
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Reco	overy)	Analysis Date	
Surrogate: o-Terphenyl	0.020	mg/L	8015D	98%	1	34-158		12/27/16 12:57	
Report Ger	nerated On: 01/0	5/2017 3:06 pm	6122519	0/2014					

STL_Results Revision #1.6

Effective: 07/09/2014




Sample Number: 6122519-05 Collector: DRC-STL	Site: Colle	OW-1 ct Date: 12/19/	/2016 11:10 am	Sa Sa	mple II mple T	D: Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC) (Contin	ued)								
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)									
GRO	31000	ug/L	8015D	2500	100	12/25/16		12/25/16 0:57	DAS
			A 4 - 411			1 in it . (0/ D -		Anatoria Data	
	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	4200	ug/L	8015D	84%	100	79-14	0	12/25/16 0:57	
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	12/19/16	RSM	12/19/16 11:10	DRC
Static Water Level (ft)	7.69	N/A	N/A		1	12/19/16	RSM	12/19/16 11:10	DRC
Total Volume Purged (gal)	3.00	N/A	N/A		1	12/19/16	RSM	12/19/16 11:10	DRC
Total Well Depth (ft)	15.00	N/A	N/A		1	12/19/16	RSM	12/19/16 11:10	DRC
Well Diameter (in)	2.00	N/A	N/A		1	12/19/16	RSM	12/19/16 11:10	DRC
Volatiles									
VOA 8260 USTUrlanded									
Tthul Deprese	454		CW/ 04C 00C0D	0.5	4	40/00/40	0514	40/00/40 04:44	0514
	154	µg/L	SW 846 8260B	0.5	1	12/23/10		12/23/10 21:41	
Methyl-t-butyl ether (MTBE)	21.4	µg/L	SW 846 8260B	0.5	1	12/23/16	CEM	12/23/16 21:41	CEM
1 2 4-Trimethylbenzene	151	µg/L ug/l	SW 846 8260B	0.5	1	12/23/16	CEM	12/23/16 21:41	CEM
Naphthalene	438	µg/= ua/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:29	AMD
Toluene	9910	ua/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:29	AMD
1,3,5-Trimethylbenzene	< 25.0	µg/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:29	AMD
Xylenes, Total	4870	µg/L	SW 846 8260B	50.0	50	12/29/16	CEM	12/29/16 0:29	AMD
Benzene	310	μg/L	SW 846 8260B	250	500	01/02/17	CEM	01/02/17 17:28	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	41.6	µg/L	SW 846 8260B	83%	1	72-13	6	12/23/16 21:41	
Surrogate: 1,2-Dichloroethane-d4	52.4	µg/L	SW 846 8260B	105%	1	79-13	5	12/23/16 21:41	
Surrogate: Toluene-d8	48.7	µg/L	SW 846 8260B	97%	1	88-112	2	12/23/16 21:41	
Surrogate: Bromofluorobenzene	52.3	µg/L	SW 846 8260B	105%	1	75-11	7	12/23/16 21:41	
Surrogate: Dibromofluoromethane	42.7	µg/L	SW 846 8260B	85%	50	72-13	6	12/29/16 0:29	
Surrogate: 1,2-Dichloroethane-d4	53.3	µg/L	SW 846 8260B	107%	50	79-13	5	12/29/16 0:29	
Surrogate: Toluene-d8	46.7	µg/L	SW 846 8260B	93%	50	88-112	2	12/29/16 0:29	
Surrogate: Bromofluorobenzene	48.1	µg/L	SW 846 8260B	96%	50	75-11	7	12/29/16 0:29	
Surrogate: Dibromofluoromethane	47.8	µg/L	SW 846 8260B	96%	500	72-13	6	01/02/17 17:28	
Surrogate: 1,2-Dichloroethane-d4	57.6	µg/L	SW 846 8260B	115%	500	79-13	5	01/02/17 17:28	
Surrogate: Toluene-d8	45.7	µg/L	SW 846 8260B	91%	500	88-112	2	01/02/17 17:28	
Surrogate: Bromofluorobenzene	42.6	µg/L	SW 846 8260B	85%	500	75-11	7	01/02/17 17:28	

6122519 Effective: 07/09/2014

SUBURBAN TESTING LABS Fax: 610-375-4090 suburbantestinglabs.com



Page 6 of 19



Sample Number: 6122519-06 Collector: DRC-STL	Site: OW Collect D	/-2 ate: 12/19/20	16 2:15 pm	Sa Sa	mple II mple T	D: ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Diesel Range Organics (DRO) (GC)									
C10-C44	2.4	mg/L	8015D	0.52	1	12/23/16		12/27/16 13:09	MJA
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Rec	overy)	Analysis Date	
Surrogate: o-Terphenyl	0.019	mg/L	8015D	95%	1	34-158		12/27/16 13:09	
Gasoline Range Organics (GRO) (GC)									
	45000	ug/l	90150	2500	100	12/25/16		12/25/16 2.42	
	45000	ug/L	80150	2500	100	12/25/10		12/23/10 2.43	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Rec	overy)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	4400	ug/L	8015D	87%	100	79-140		12/25/16 2:43	
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	12/19/16	RSM	12/19/16 14:15	DRC
Static Water Level (ft)	7.00	N/A	N/A		1	12/19/16	RSM	12/19/16 14:15	DRC
Total Volume Purged (gal)	2.50	N/A	N/A		1	12/19/16	RSM	12/19/16 14:15	DRC
Total Well Depth (ft)	15.00	N/A	N/A		1	12/19/16	RSM	12/19/16 14:15	DRC
Well Diameter (in)	2.00	N/A	N/A		1	12/19/16	RSM	12/19/16 14:15	DRC
Volatiles									
VOA. 8260. USTUnleaded									
Isopropylbenzene	44.3	ua/L	SW 846 8260B	0.5	1	12/23/16	CEM	12/23/16 22:09	CEM
Methyl-t-butyl ether (MTBE)	1860	μg/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:56	AMD
Naphthalene	1510	μg/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:56	AMD
1,3,5-Trimethylbenzene	411	μg/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:56	AMD
1,2,4-Trimethylbenzene	7210	µg/L	SW 846 8260B	25.0	50	12/29/16	CEM	12/29/16 0:56	AMD
Benzene	6730	μg/L	SW 846 8260B	500	1000	01/02/17	CEM	01/02/17 17:56	CEM
Ethyl Benzene	< 500	μg/L	SW 846 8260B	500	1000	01/02/17	CEM	01/02/17 17:56	CEM
Toluene	5120	µg/L	SW 846 8260B	500	1000	01/02/17	CEM	01/02/17 17:56	CEM
Xylenes, Total	< 1000	µg/L	SW 846 8260B	1000	1000	01/02/17	CEM	01/02/17 17:56	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Rec	overy)	Analysis Date	
Surrogate: Dibromofluoromethane	39.6	µg/L	SW 846 8260B	79%	1	72-136		12/23/16 22:09	
Surrogate: 1,2-Dichloroethane-d4	54.0	µg/L	SW 846 8260B	108%	1	79-135		12/23/16 22:09	
Surrogate: Toluene-d8	45.9	µg/L	SW 846 8260B	92%	1	88-112		12/23/16 22:09	
Surrogate: Bromofluorobenzene	53.7	µg/L	SW 846 8260B	107%	1	75-117		12/23/16 22:09	
Surrogate: Dibromofluoromethane	42.8	µg/L	SW 846 8260B	86%	50	72-136		12/29/16 0:56	
Surrogate: 1,2-Dichloroethane-d4	50.6	µg/L	SW 846 8260B	101%	50	79-135		12/29/16 0:56	
Surrogate: Toluene-d8	47.1	µg/L	SW 846 8260B	94%	50	88-112		12/29/16 0:56	
Surrogate: Bromofluorobenzene	48.8	μg/L	SW 846 8260B	98%	50	75-117		12/29/16 0:56	

6122519 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 7 of 19



Sample Number: 6122519-06	Site: C	DW-2		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 12/19/2	016 2:15 pm	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Reco	overy)	Analysis Date	
Surrogate: Dibromofluoromethane	47.9	µg/L	SW 846 8260B	96%	1000	72-136		01/02/17 17:56	
Surrogate: 1,2-Dichloroethane-d4	55.7	µg/L	SW 846 8260B	111%	1000	79-135		01/02/17 17:56	
Surrogate: Toluene-d8	45.6	µg/L	SW 846 8260B	91%	1000	88-112		01/02/17 17:56	
Surrogate: Bromofluorobenzene	43.0	µg/L	SW 846 8260B	86%	1000	75-117		01/02/17 17:56	

### **Data Qualifiers:**

#### Sample Receipt Conditions:

All samples met the sample receipt requirements for the relevant analyses.

## Work Order Memo

SUB: DRO & GRO performed by Lab ID# 68-00522.

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

#### **Reviewed and Released By:**

William Smith Technical Director

Will WHT.

6122519 Effective: 07/09/2014

SUBURBAN TESTING LABS



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Page 8 of 19



## Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com

TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other ______ (Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)



Client Name / Address:		Project Name / Address:
Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603	Phone: (717) 394-1063 Fax:	Herr Foods - Limited GW Sampling Events (Dec 2016)
Client Project Manager: Ed Dziedzic		Payment / P.O. Info:

Project Description:

Order Comments: Monitoring Well Collection = \$65/hour; Travel time to/from site = \$40/hour; Equipment Rental = \$115 flat fee per event;

ample umber	Sample Description - Site ID	Sampling Location	on	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
22519-01	MW-4			12/19/16 1020	DRC-STL	Non-potable	Grab	
Containe	er Type / Preservation			Preservation Check	Analysis	- Method		Field Results
1L GA		A			*** DEF	AULT GENERAL M	<b>E</b> 8015	
1L GA		В			Gasolir	ne Range Organics - SW 8	346 8015	
40ml VOA	$\mathbf{A}_{\mathbf{r}}$	C	4		Genera Monito	l <b>Method</b> r Well Sampling - N/A		
40ml VOA	<b>\</b>	D	1		Unassi Sample	<b>gned</b> e Collection, Custom 3 - S	L0015	
40ml VOA		E				S 200 1 ISTI Inleaded - SW	846 8260B	
Field Serv	vices				VO/1, C			
40ml VOA	A & AA & HCI at sampling	G	1					
40ml VOA	A & AA & HCI at sampling							
40ml VOA	A & AA & HCI at sampling							



Sample Number Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
122519-02 MW-5		12/19/16 1205	DRC.STL	Non-potable	Grab	
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results
1L GA	Α		*** DEF	AULT GENERAL N	IE 3 8015	
1L GA	В		Gasolir	ne Range Organics - SW	846 8015	
40ml VOA	C		Genera Monitor	<b>I Method</b> r Well Sampling - N/A		
40ml VOA	D		Unassi Sample	<b>gned</b> e Collection, Custom 3 - S	L0015	
40mi VOA	E		Volatile VOA. 8	S 260. USTUnleaded - SW	846 8260B	
Field Services	F		, -	,		
40ml VOA & AA & HCl at sampling	G					
40ml VOA & AA & HCl at sampling	Н					
40ml VOA & AA & HCl at sampling						
22519-03 MW-14S		12/19/16 1335	DRC-STL	Non-potable	Grab	
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results
1L GA	Α		*** DEF	AULT GENERAL N	<b>1E</b> 6.8015	
1L GA	В		Gasolir	ne Range Organics - SW	846 8015	
40ml VOA	C		Genera Monito	l <b>l Method</b> r Well Sampling - N/A		
40mi VOA	D		Unassi Sample	<b>gned</b> e Collection, Custom 3 - S	SL0015	
40ml VOA	E			<b>IS</b> 3260 USTUnleaded - SW	846 8260B	
Field Services	F		von, e	200, 00 millioudd - 0W		
40ml VOA & AA & HCl at sampling	G					
40ml VOA & AA & HCl at sampling	·H					
40ml VOA & AA & HCl at sampling						

,

)

.





Sample Number Sample Description - Site ID	Sampling Location		Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
6122519-04 MW-14D		1	12/19/16 1255	DRC-STL	Non-potable	Grab	
Container Type / Preservation		Pres	servation Check	Analysis	s - Method		Field Results
1L GA	Α			*** DEF	FAULT GENERAL N	<b>ME</b> 16.8015	
1L GA	В			Gasoli	ine Range Organics - SW	846 8015	
40ml VOA	C			Genera Monito	<b>al Method</b> or Well Sampling - N/A		
40ml VOA	D			<b>Unass</b> i Sampl	i <b>gned</b> le Collection, Custom 3 - 3	SL0015	
40ml VOA				Volatile	es 950 LISTUploodod SM	1 946 92600	
Field Services	E.			VOA,	6200, 0310fileaded - 3W	040 02000	
40ml VOA & AA & HCl at sampling	G						
40ml VOA & AA & HCl at sampling	Н						
40ml VOA & AA & HCl at sampling							
6122519-05 OW-1		1	2/19/16 1110	ORC-STL	Non-potable	Grab	
Container Type / Preservation		Pres	servation Check	Analysi	s - Method		Field Results
1L GA	A			*** DEF	FAULT GENERAL	ME 46.8015	
1L GA	B			Gasoli	ine Range Organics - SW	846 8015	
40ml VOA	C			Genera Monito	al Method or Well Sampling - N/A		
40ml VOA	D			<b>Unass</b> i Samp	igned le Collection, Custom 3 - 3	SL0015	
40ml VOA				Volatil	es	1 9 46 99695	
Field Services	F			VOA,	ozou, US I Unleaded - SM	1 040 02008	
40ml VOA & AA & HCl at sampling	G						
40ml VOA & AA & HCI at sampling	Н						
40ml VOA & AA & HCI at sampling							

٦



Sample lumber	Sample Description - Site ID	Sampling Location		Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
22519-06	OW-2			2/19/16 1415	ORC-STL	Non-potable	Grab	· · · · · · · · · · · · · · · · · · ·
Containe	r Type / Preservation		Pre	servation Check	Analysis	s - Method		Field Results
1L GA		A				AULT GENERAL ME	045	
1L GA		В			Diesel Gasolii	Range Organics - SW 846 8 ne Range Organics - SW 84	6 8015	
40ml VOA	<u>`````````````````````````````````````</u>	C			Genera Monito	I Method r Well Sampling - N/A		
40ml VOA		D			Unassi	<b>gned</b> e Collection. Custom 3 - SL(	0015	
40ml VOA	<u></u>	E				es S Second STUnleaded - SW 84	46 8260B	
Field Serv	ices	ter en la section de la Francisco de la Francisco de la composición de la composición de la composición de la c			v 0/1, 0			
40ml VOA	& AA & HCI at sampling	G			· · · · · ·			
40ml VOA	& AA & HCI at sampling							
40ml VOA	& AA & HCI at sampling					~		

MM-15





## Order ID: 6124064

Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603		Project: Herr Foods - Limited GW Sampling Events (Dec 2016)										
Attn: Ed Dziedzic		Re	gulatory ID:									
Sample Number: 6124064-01	Site: M	IW-4		Sa	mple I	D:						
Collector: TBW-STL	Collect	Date: 12/30/20	16 10:30 am	Sa	mple T							
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву			
Diesel Range Organics (DRO) (GC)												
Diesel Range Organics (DRO) (GC)												
C10-C44	9.0	mg/L	8015D	2.6	5	01/06/17		01/09/17 18:03	FPO			
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date				
Surrogate: o-Terphenyl	0.023	mg/L	8015D	114%	5	34-158	3	01/09/17 18:03				
Gasoline Range Organics (GRO) (GC)												
Gasoline Range Organics (GRO) (GC)												
GRO	26000	ug/L	8015D	2500	100	01/10/17		01/10/17 19:38	DAS			
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date				
Surrogate: a,a,a-Trifluorotoluene	4600	ug/L	8015D	93%	100	79-140	)	01/10/17 19:38				
General Method												
Nonitor Well Sampling												
Sampling Depth (ft)	10.00	N/A	N/A		1	12/30/16	RSM	12/30/16 10:30	TBW			
Static Water Level (ft)	7.59	N/A	N/A		1	12/30/16	RSM	12/30/16 10:30	TBW			
Total Volume Purged (gal)	4.70	N/A	N/A		1	12/30/16	RSM	12/30/16 10:30	TBW			
Total Well Depth (ft)	19.00	N/A	N/A		1	12/30/16	RSM	12/30/16 10:30	TBW			
Well Diameter (in)	2.00	N/A	N/A		1	12/30/16	RSM	12/30/16 10:30	IBM			
Sample Number: 6124064-02	Site: N	IW-5		Sa	mple I	D:						
Collector: TBW-STL	Collect	Date: 12/30/20	16 2:55 pm	Sa	mple T	ype: Grab						
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву			
Diesel Range Organics (DRO) (GC)												
Diesel Range Organics (DRO) (GC)												
C10-C44	< 0.52	mg/L	8015D	0.52	1	01/06/17		01/09/17 18:15	FPO			
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date				
Surrogate: o-Terphenyl	0.024	mg/L	8015D	121%	1	34-158	3	01/09/17 18:15				

Report Generated On: 01/17/2017 3:57 pm STL_Results Revision #1.6

6124064 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 1 of 22



Sample Number: 6124064-02 Collector: TBW-STL	Site: M Collect	1W-5 Date: 12/30/201	6 2:55 pm	Sa Sa	mple I mple T	D: ſype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)									
GRO	230	ug/L	8015D	25	1	01/09/17		01/09/17 14:42	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Recov	/ery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	59	ug/L	8015D	118%	1	79-140		01/09/17 14:42	
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	12/30/16 F	RSM	12/30/16 14:55	TBW
Static Water Level (it)	0.17	N/A N/A	N/A		1	12/30/16	SINI	12/30/16 14:55	
Total Well Depth (ft)	27.00	N/A	N/A		1	12/30/16	RSM	12/30/16 14:55	TBW
Well Diameter (in)	2.00	N/A	N/A		1	12/30/16 F	RSM	12/30/16 14:55	TBW
Comple Number 0104004.00	Cite: 1	NA/ 140		6-		Di			
Sample Number: 6124064-03	Site: N	100-145		Sa	mple I	D:			
Collector: TBW-STL	Collect	Date: 12/30/201	6 2:05 pm	Sa	mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Diesel Range Organics (DRO) (GC)									
C10-C44	4.9	mg/L	8015D	0.52	1	01/06/17		01/09/17 18:27	FPO
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Recov	/ery)	Analysis Date	
Surrogate: o-Terphenyl	0.022	mg/L	8015D	111%	1	34-158		01/09/17 18:27	
Casalina Danga Organica (CDO) (CC)									
Gasoline Range Organics (GRO) (GC) GRO	41000	ug/L	8015D	2500	100	01/09/17		01/09/17 16:47	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Recov	/ery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	4900	ug/L	8015D	97%	100	79-140		01/09/17 16:47	
General Method									
Monitor Well Sampling					-				
Sampling Depth (ft)	8.00	N/A	N/A		1	12/30/16 F	RSM	12/30/16 14:05	ΓBW TBM
Static Water Level (II) Total Volume Purged (gal)	0.14 2.20	IN/A	IN/A		1	12/30/10 1		12/30/10 14:05	
Total Well Denth (ft)	2.20	IN/A N/A	N/A		1	12/30/10	M2S	12/30/16 14.05	TBW
Well Diameter (in)	2.00	N/A	N/A		1	12/30/16 R	RSM	12/30/16 14:05	TBW
	-								

6124064 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 2 of 22



Sample Number: 6124064-04 Collector: TBW-STL	Site: M Collect	W-14D Date: 12/30/2010	6 1:20 pm	Sa Sa	mple I mple T	D: īype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Diesel Range Organics (DRO) (GC)									
C10-C44	1.2	mg/L	8015D	0.52	1	01/06/17		01/09/17 18:40	FPO
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Ree	covery)	Analysis Date	
Surrogate: o-Terphenyl	0.023	mg/L	8015D	116%	1	34-158	8	01/09/17 18:40	
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)									
GRO	1800	ug/L	8015D	130	5	01/09/17		01/09/17 15:57	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Red	covery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	210	ug/L	8015D	85%	5	79-140	)	01/09/17 15:57	
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	20.00	N/A	N/A		1	12/30/16	RSM	12/30/16 13:20	TBW
Static Water Level (ft)	6.17	N/A	N/A		1	12/30/16	RSM	12/30/16 13:20	TBW
Total Volume Purged (gal)	2.00	N/A	N/A		1	12/30/16	RSM	12/30/16 13:20	TBW
Total Well Depth (ft)	25.00	N/A	N/A		1	12/30/16	RSM	12/30/16 13:20	TBW
Well Diameter (in)	2.00	N/A	N/A		1	12/30/16	RSM	12/30/16 13:20	TBW
Sample Number: 6124064-05	Site: O	W-1		Sa	mple I	D:			
Collector: TBW-STL	Collect	Date: 12/30/2010	6 11:35 am	Sa	mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Diesel Range Organics (DRO) (GC)									
C10-C44	7.7	mg/L	8015D	2.6	5	01/06/17		01/10/17 9:38	FPO
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Red	covery)	Analysis Date	
Surrogate: o-Terphenyl	0.022	mg/L	8015D	112%	5	34-158	8	01/10/17 9:38	
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)									
GRO	39000	ug/L	8015D	2500	100	01/09/17		01/09/17 16:22	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Red	covery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	4800	ug/L	8015D	97%	100	79-140	)	01/09/17 16:22	

General Method

Report Generated On: 01/17/2017 3:57 pm STL_Results Revision #1.6

6124064 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com



Sample Number: 6124064-05 Collector: TBW-STL	Site: Collec	OW-1 t Date: 12/30/20	16 11:35 am	Sa Sa	mple I mple T	D: ⁻ ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	12/30/16	RSM	12/30/16 11:35	TBW
Static Water Level (ft)	7.54	N/A	N/A		1	12/30/16	RSM	12/30/16 11:35	TBW
Total Volume Purged (gal)	3.50	N/A	N/A		1	12/30/16	RSM	12/30/16 11:35	TBW
Total Well Depth (ft)	15.00	N/A	N/A		1	12/30/16	RSM	12/30/16 11:35	TBW
Well Diameter (in)	2.00	N/A	N/A		1	12/30/16	RSM	12/30/16 11:35	TBW
Sample Number: 6124064-06	Site: (	OW-2		Sa	mple I	D:			
Collector: TBW-STL	Collec	t Date: 12/30/20	16 12:35 pm	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Diesel Range Organics (DRO) (GC)									
Diesel Range Organics (DRO) (GC)									
C10-C44	3.2	mg/L	8015D	0.52	1	01/06/17		01/09/17 19:04	FPO
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: o-Terphenyl	0.022	mg/L	8015D	108%	1	34-15	8	01/09/17 19:04	
Casalina Danza Organias (CDO) (CO)									
Gasoline Range Organics (GRO) (GC)									
Gasoline Range Organics (GRO) (GC)	57000		00455	5000		04/00/47			
GRO	57000	ug/L	8015D	5000	200	01/09/17		01/09/17 15:07	DAS
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: a,a,a-Trifluorotoluene	10000	ug/L	8015D	100%	200	79-140	0	01/09/17 15:07	
Conoral Mothod									
Monitor Well Sampling	40.00					10/00/10	5014	10/00/10 10 05	-
Sampling Deptn (II) Static Water Level (ft)	10.00	N/A N/A	N/A N/A		1	12/30/16	RSM	12/30/16 12:35	TBW
Total Volume Purged (gal)	3 10	N/A N/A	N/A		1	12/30/10	RSM	12/30/16 12:35	TBW
Total Well Depth (ft)	15.00	N/A	N/A		1	12/30/16	RSM	12/30/16 12:35	TBW
Well Diameter (in)	2.00	N/A	N/A		1	12/30/16	RSM	12/30/16 12:35	TBW

## Sample Receipt Conditions:

All samples met the sample receipt requirements for the relevant analyses.

## Work Order Memo

SUB: GRO & DRO performed by Lab ID# 68-00522.

Report Generated On: 01/17/2017 3:57 pm 6 STL_Results Revision #1.6 E

6124064 Effective: 07/09/2014

SUBURBAN TESTING LABS

Page 4 of 22



All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By: William Smith Technical Director

Will with

 Report Generated On:
 01/17/2017
 3:57 pm
 6124064

 STL_Results
 Revision #1.6
 Effective:
 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 5 of 22



## Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com

TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other (Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)



Client Name / Address: Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603	Phone: (717) 394- Fax:	1063	Project Name / Address: Herr Foods - Limited GW Sampling Events (Dec 2016)	
Client Project Manager: Ed Dziedzic			Payment / P.O. Info:	

Project Description:

Order Comments: Monitoring Well Collection = \$65/hour; Travel time to/from site = \$40/hour; Equipment Rental = \$115 flat fee per event;

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
124064-01	MW-4		12:30-16 1030	TBW	STL Non-potable	Grab	
Containe	r Type / Preservation		Preservation Check	Analy	/sis - Method		Field Results
1L GA		A		*** <b>D</b> Die:	EFAULT GENERAL M sel Range Organics - SW 846	<b>E</b> 3 8015	
1L GA		В		Gas	soline Range Organics - SW 8	346 8015	
40ml VOA	<u></u>	C		Gene Mor	eral Method nitor Well Sampling - N/A		X
40ml VOA	N	D		Unas Sar	ssigned nple Collection, Custom 3 - S	L0015	1
40ml VOA	<u></u>			Volat VO	tiles A. 8260. USTUnleaded - SW	846 8260B	7
Field Serv	vices	F			· ,,		
40ml VOA	A & AA & HCI at sampling	G					
40ml VOA	A & AA & HCI at sampling	H					
40ml VOA	A & AA & HCI at sampling						



Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time				
6124064-02	MW-5		12:30:16 1455	TBU	Non-potable	Grab					
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results				
1L GA		A		*** DEF	AULT GENERAL M	IE 8 8015					
1L GA		В	Gasoline Range Organics - SW 846 8015								
40ml VO	A	C	General Method Monitor Well Sampling - N/A								
40ml VO	A	D		Unassi	<b>gned</b> e Collection, Custom 3 - S	0015	$\sim$				
40ml VO	A	Æ		Volatile	2S						
Field Sei	rvices	F		VOA, 8	3260, USTUnleaded - SW	846 8260B					
40ml VO	A & AA & HCI at sampling	G									
40ml VO	A & AA & HCI at sampling	Н									
40ml VO	A & AA & HCI at sampling	L									
6124064-03	MW-14S		12.30.16 1405	TRUT	Non-potable	Grab	· · · · · · · · · · · · · · · · · · ·				
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results				
1L GA		A		*** DEF	AULT GENERAL N	1E 6 8015					
1L GA		В		Gasoli	ne Range Organics - SW	846 8015					
40ml VO	Α	C		Genera Monito	al Method or Well Sampling - N/A		$\leq$				
40ml VO	A	D		Unassi	<b>gned</b> e Collection, Custom 3 - 5	SI 0015					
40ml VO	PA	E		Volatile	S						
Field Se	rvices	F		VUA, 8	5260, US I Unleaded - SW	040 020UB					
40ml VC	A & AA & HCI at sampling	G	• · · ·								
40ml VC	A & AA & HCI at sampling	H									
40ml VC	A & AA & HCI at sampling										

.

a,



:

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time			
6124064-04	MW-14D		123016 1320	4BW	Non-potable	Grab				
Containe	er Type / Preservation		Preservation Check	Analys	sis - Method		Field Results			
1L GA		A		*** DE	FAULT GENERAL M	E 8015				
1L GA		В		Gaso	bline Range Organics - SW 8	46 8015	0			
40ml VOA	4	C		Gene Moni	ral Method itor Well Sampling - N/A		X			
40ml VO/	4	D	Unassigned Sample Collection, Custom 3 - SL0015							
40ml VOA	A	E			es 8260 LISTUpleaded - SW 8	346 8260B				
Field Serv	vices	F		VOA	, 0200, 031011eaded - 377 (	40 02000				
40ml VOA	A & AA & HCI at sampling	G								
40ml VOA	A & AA & HCI at sampling	Н								
40ml VOA	A & AA & HCI at sampling									
6124064-05	OW-1		12.30.16 1135	NBW	Non-potable	Grab				
Containe	er Type / Preservation		Preservation Check	Analys	sis - Method		Field Results			
1L GA		A		*** DE	FAULT GENERAL M	E 8015				
1L GA		В		Gaso	pline Range Organics - SW 8	46 8015				
40ml VOA	4	C		Gene Moni	ral Method itor Well Sampling - N/A					
40ml VOA	A	D		Unas: Sam	signed ple Collection, Custom 3 - SI	_0015	K			
40ml VOA	<b>A</b>	E		Volati	les	246 92600				
Field Serv	vices	F		VUA	, 0200, 051011leaded - 599 8	040 020UD				
40ml VOA	A & AA & HCI at sampling	G								
40ml VOA	A & AA & HCI at sampling	н								
40ml VOA	A & AA & HCI at sampling									



ample lumber	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
24064-06	OW-2		12.30.16 1235	TBW	Non-potable	Grab	
Containe	r Type / Preservation		Preservation Check	Analysis	s - Method		Field Results
1L GA		A		*** DEF	AULT GENERAL M	E	
		B		Diesel Gasolii	ne Range Organics - SW 846	346 8015	
1L GA				Genera	al Method		3
40ml VOA	A	C		Monito	or Well Sampling - N/A		
40ml VOA	A	D		Unassi Sampl	<b>gned</b> e Collection, Custom 3 - Sl	L0015	
40ml VOA	4	E		Volatile VOA, 8	<b>es</b> 8260, USTUnleaded - SW 8	846 8260B	
Field Serv	vices	F					
40ml VOA	A & AA & HCI at sampling	G					
40ml VOA	A & AA & HCI at sampling	H					
40ml VO	A & AA & HCI at sampling						

, r, £

				mm-K			
WKO TAT = 10		Cool Sample(s) to	6 C				
Relinquished By:	Count	Date: Time:	Temp (°C):	Sample Conditions Number of Containers \ Cooler received	N Sar	nple Type Key = Grab IC = 8 Hr. Composite	Reporting Options
Received By:		Date: Time:	Temp (°C):	matches number on COC?	- 24	HC = 24 Hr. Composite	
Relinquished By:	(48)	Date:/2.30.16 Time: 1675	Temp (°C): 2,3 Acceptable:?	All Containers Intact?	N S	E = Entry Point R = Raw C = Check	Other
Received in Lab By: ROD Metro	n 48	Date: $12/3P/(1)$ Time: $16^{1}15$	Temp (°C): Acceptable:?	if applicable?	A	S = Special M = Maximum Residence	
Signing this form indicates your agreement with STL's	Standard Terms	and Conditions (www.suburbante	stinglabs.com/resources/star	ndard-terms-and-conditions.html) unless otherwise specified in	writing.	6124064	Page 4 of 4
wko_STL_Prelog_ls.rpt	Alana Kopicz	:	Date Created: 12/2	29/2016 12:00 Date Printed: 12/29/2016		0124004	Page 9 of 22



# Order ID: 7012602

Rettew - Lancaster     Project: Herr Foods - Quarterly MWs 2017       3020 Columbia Avenue     Lancaster, PA 17603									
Attn: Ed Dziedzic			Regulatory ID:						
Sample Number: 7012602-01	Site: MW-3			Sa	mple I	D:			
Collector: DRC-STL	Collect Date:	01/18/	/2017 11:48 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	11.00	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Static Water Level (ft)	6.45	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Total Volume Purged (gal)	2.50	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Total Well Depth (ft)	25.00	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/18/17	BAK	01/18/17 11:48	DRC
<u>Volatiles</u>									
VOA, 8260, USTUnleaded									
Benzene	12.6	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Ethyl Benzene	82.0 M3	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Isopropylbenzene	8.2	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Naphthalene	11.5 B1	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Toluene	70.0 M3	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
1,3,5-Trimethylbenzene	7.4	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
1,2,4-Trimethylbenzene	32.6	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 18:10	CEM
Xylenes, Total	88.4	µg/L	SW 846 8260B	1.0	1	01/20/17	CEM	01/20/17 18:10	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.2	µg/L	SW 846 8260B	100%	1	72-136	6	01/20/17 18:10	
Surrogate: 1,2-Dichloroethane-d4	48.8	µg/L	SW 846 8260B	98%	1	79-13	5	01/20/17 18:10	
Surrogate: Toluene-d8	50.3	µg/L	SW 846 8260B	101%	1	88-112	2	01/20/17 18:10	
Surrogate: Bromofluorobenzene	51.9	µg/L	SW 846 8260B	104%	1	75-117	7	01/20/17 18:10	
Sample Number: 7012602-02	Site [·] MW-4			Sa	mple I	D.			
Collector: DRC-STL	Collect Date:	01/17/	/2017 12:18 pm	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Conoral Mathed									
Monitor Well Sampling	10.00	N1/4				04/47/17	DAI	04/47/47 40 15	000
Sampling Deptn (ft) Static Water Level (ft)	10.00	N/A N/A	N/A N/A		1 1	01/17/17	BAK	01/17/17 12:18	DRC
GIGILO VVALEI LEVEI (IL)	1.01	IN/A	N/A		I	01/17/17	DAN	01/11/11/12.10	DIC
	Report Generated On: 02/01/2017 STL_Results R	7 5:09 evision #	pm 7012602 1.6 Effective: 07/09	9/2014					
				SUBURF		TESTIN		ABS ABS	CREDINES



Page 1 of 33



Sample Number: 7012602-02 Collector: DRC-STL	Site: M Collect	1W-4 Date: 01/17/20	017 12:18 pm	Sa Sa	mple I mple ⁻	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method (Continued)									
Monitor Well Sampling (Continued)									
Total Volume Purged (gal)	5.45	N/A	N/A		1	01/17/17	BAK	01/17/17 12:18	DRC
Total Well Depth (ft)	19.00	N/A	N/A		1	01/17/17	BAK	01/17/17 12:18	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 12:18	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	1180	μg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Ethyl Benzene	917	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
lsopropylbenzene	54.8	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Methyl-t-butyl ether (MTBE)	< 10.0	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
Naphthalene	229	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
1,3,5-I rimethylbenzene	147	µg/L	SW 846 8260B	10.0	20	01/18/17	CEM	01/18/17 17:21	CEM
1,2,4-Trimetnyidenzene	1070	µg/L	SW 846 8260B	10.0	20	01/18/17		01/18/17 17:21	
Toluene	3240	µg/L ug/l	SW 846 8260B	25.0	20 50	01/19/17		01/19/17 21:06	
	02.0	F9 [,] -	011 010 02002	20.0		01110111		0.11.00	
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	ecovery)	Analysis Date	
Surrogate: Dibromofluoromethane	46.9	µg/L	SW 846 8260B	94%	20	72-13	6	01/18/17 17:21	
Surrogate: 1,2-Dichloroethane-d4	55.9	µg/L	SW 846 8260B	112%	20	79-13	5	01/18/17 17:21	
Surrogate: Toluene-d8	46.3	µg/L	SW 846 8260B	93%	20	88-11	2	01/18/17 17:21	
Surrogate: Bromofluorobenzene	47.4	µg/L	SW 846 8260B	95%	20	75-11	7	01/18/17 17:21	
Surrogate: Dibromofluoromethane	55.2	µg/L	SW 846 8260B	110%	50	72-13	6	01/19/17 21:06	
Surrogate: 1,2-Dichloroethane-d4	54.1	µg/L	SW 846 8260B	108%	50	79-13	5	01/19/17 21:06	
Surrogate: Toluene-d8	49.1	µg/L	SW 846 8260B	98%	50	88-11	2	01/19/17 21:06	
Surrogate: Bromoliuorobenzene	50.3	µg/L	SW 846 8260B	101%	50	75-11	/	01/19/17 21:06	
Sample Number: 7012602-03	Site: M	1W-5		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/17/2	017 10:04 am	Sa	mple ⁻	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Static Water Level (ft)	6.07	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Total Volume Purged (gal)	2.97	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Total Well Depth (ft)	27.00	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 10:04	DRC

#### Volatiles

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014

Page 2 of 33



Sample Number: 7012602-03	Site: MV	N-5		Sa	mple I	D:			
Collector: DRC-STL	Collect [	Date: 01/17/2	017 10:04 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded									
Benzene	10.7	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Ethyl Benzene	4.4	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Isopropylbenzene	3.0	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Naphthalene	5.7	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Toluene	1.4	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
1,3,5-Trimethylbenzene	2.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
1,2,4-Trimethylbenzene	10.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:31	CEM
Xylenes, Total	43.5	μg/L	SW 846 8260B	1.0	1	01/18/17	CEM	01/18/17 20:31	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Red	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.0	µg/L	SW 846 8260B	100%	1	72-136		01/18/17 20:31	
Surrogate: 1,2-Dichloroethane-d4	58.6	μg/L	SW 846 8260B	117%	1	79-135		01/18/17 20:31	
Surrogate: Toluene-d8	46.8	µg/L	SW 846 8260B	94%	1	88-112		01/18/17 20:31	
Surrogate: Bromofluorobenzene	46.2	µg/L	SW 846 8260B	92%	1	75-117		01/18/17 20:31	
Sample Number: 7012602-04	Site: M	N-7		Sa	mple I	D:			
Collector: DRC-STL	Collect [	Date: 01/17/2	017 9:14 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8 00	N/A	N/A		1	01/17/17	BAK	01/17/17 9.14	DRC
Static Water Level (ft)	7.35	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Total Volume Purged (gal)	2.77	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 9:14	DRC
Volatilos									
VOA, 8260, USTUnleaded									
Benzene	510	µg/L	SW 846 8260B	2.5	5	01/20/17	CEM	01/20/17 18:39	CEM
	57.2	µg/L	SW 846 8260B	2.5	5	01/20/17	CEM	01/20/17 18:39	CEM
Nethyl-t-bulyl etner (MTBE)	< 2.0 000 P4	µg/L	SW 846 8260B	2.5	5	01/20/17		01/20/17 18:39	
	222 61	µg/L	SVV 040 020UB	2.5	5	01/20/17		01/20/17 18:39	
	ZZ4 760	µg/L	SVV 040 020UB	2.5	5	01/20/17		01/20/17 18:39	
	/ OU	µg/L	SVV 040 020UB	2.5	5 10	01/20/17		01/20/17 18:39	
	912	µg/∟	SVV 040 020UB	5.0	10	01/20/17		01/20/17 15:15	
Xylenes, Total	3210	µg/∟ µg/L	SW 846 8260B	10.0	10	01/26/17	CEM	01/26/17 15:15	CEM

7012602 Effective: 07/09/2014



Page 3 of 33

PADEP 06-00208



Sample Number: 7012602-04 Site: MW-				Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/17/2	017 9:14 am	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.9	μg/L	SW 846 8260B	102%	5	72-136	6	01/20/17 18:39	
Surrogate: 1,2-Dichloroethane-d4	48.8	μg/L	SW 846 8260B	98%	5	79-135	5	01/20/17 18:39	
Surrogate: Toluene-d8	50.7	µg/L	SW 846 8260B	101%	5	88-112	2	01/20/17 18:39	
Surrogate: Bromofluorobenzene	52.6	µg/L	SW 846 8260B	105%	5	75-117	7	01/20/17 18:39	
Surrogate: Dibromofluoromethane	48.6	µg/L	SW 846 8260B	97%	10	72-136	6	01/26/17 15:15	
Surrogate: 1,2-Dichloroethane-d4	50.2	µg/L	SW 846 8260B	100%	10	79-135	5	01/26/17 15:15	
Surrogate: Toluene-d8	48.1	µg/L	SW 846 8260B	96%	10	88-112	2	01/26/17 15:15	
Surrogate: Bromofluorobenzene	53.2	μg/L	SW 846 8260B	106%	10	75-117	7	01/26/17 15:15	
Sample Number: 7012602-05	Site: N	IW-9		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/16/2	017 2:25 pm	Sa	mple 1	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Denth (ft)	10.00	N/A	N/A		1	01/16/17	BAK	01/16/17 14.25	DRC
Static Water Level (ft)	5 25	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Total Volume Purged (gal)	2.50	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 14:25	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	3.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
1,3,5-Trimethylbenzene	0.6	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 15:19	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 15:19	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	51.5	µg/L	SW 846 8260B	103%	1	72-136	6	01/17/17 15:19	
Surrogate: 1,2-Dichloroethane-d4	59.8	µg/L	SW 846 8260B	120%	1	79-138	5	01/17/17 15:19	
Surrogate: Toluene-d8	46.2	µg/L	SW 846 8260B	92%	1	88-112	2	01/17/17 15:19	
Surrogate: Bromofluorobenzene	41.8	µg/L	SW 846 8260B	84%	1	75-117	7	01/17/17 15:19	

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 4 of 33



Sample Number: 7012602-06 Collector: DRC-STL	Site: M Collect	W-10 Date: 01/16/2	017 1:49 pm	Sa Sa	mple II mple T	D: ÿpe: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Static Water Level (ft)	5.15	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Total Volume Purged (gal)	2.97	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Total Well Depth (ft)	20.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:49	DRC
Volatiles									
VOA 8260 USTUnleaded									
Ethyl Benzene	96.4	ua/l	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Isopropylbenzene	28.9	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Methyl-t-butyl ether (MTBE)	211	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Naphthalene	101	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Toluene	160	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
1,3,5-Trimethylbenzene	11.6	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
1,2,4-Trimethylbenzene	43.0	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:34	CEM
Xylenes, Total	372	μg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 17:34	CEM
Benzene	3030	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 16:54	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	44.3	µg/L	SW 846 8260B	89%	1	72-13	6	01/17/17 17:34	
Surrogate: 1,2-Dichloroethane-d4	54.6	µg/L	SW 846 8260B	109%	1	79-13	5	01/17/17 17:34	
Surrogate: Toluene-d8	48.6	µg/L	SW 846 8260B	97%	1	88-11	2	01/17/17 17:34	
Surrogate: Bromofluorobenzene	46.4	µg/L	SW 846 8260B	93%	1	75-11	7	01/17/17 17:34	
Surrogate: Dibromofluoromethane	50.6	µg/L	SW 846 8260B	101%	100	72-13	6	01/18/17 16:54	
Surrogate: 1,2-Dichloroethane-d4	59.2	µg/L	SW 846 8260B	118%	100	79-13	5	01/18/17 16:54	
Surrogate: Toluene-d8	43.7 V	µg/L	SW 846 8260B	87%	100	88-11	2	01/18/17 16:54	
Surrogate: Bromofluorobenzene	42.1	µg/L	SW 846 8260B	84%	100	75-11	7	01/18/17 16:54	
Sample Number: 7012602-07	Site: M	\\\/_11		Sa	mnle II	 רַ			
Collector: DRC-STL	Collect	Date: 01/16/2	017 1:04 pm	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Woll Sampling									
Monitor Weil Sampling	44 50	N1/A	N1/A			04/40/47	DAK	04/40/47 40:04	
Sampling Depth (It) Static Water Level (ft)	0.20	N/A	N/A		1	01/16/17	BAK	01/16/17 13:04	DRC
Total Volume Purged (gal)	2 07	N/A	Ν/A N/Δ		1	01/16/17	BAK	01/16/17 13:04	DRC
Total Well Depth (ft)	12 50	N/A	N/A		1	01/16/17	BAK	01/16/17 13:04	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 13:04	DRC
Volatiles									

7012602 Effective: 07/09/2014



Page 5 of 33



Sample Number: 7012602-07	Site: M	/W-11		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/16/20	017 1:04 pm	Sa	mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
VOA, 8260, USTUnleaded									
Benzene	46.8	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Isopropylbenzene	0.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Methyl-t-butyl ether (MTBE)	85.4	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Naphthalene	1.6	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
1,3,5-I rimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
1,2,4-Irimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 20:04	CEM
Xylenes, Iotal	< 1.0	µg/L	SVV 846 8260B	1.0	1	01/18/17	CEM	01/18/17 20:04	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.7	μg/L	SW 846 8260B	101%	1	72-136	6	01/18/17 20:04	
Surrogate: 1,2-Dichloroethane-d4	58.9	μg/L	SW 846 8260B	118%	1	79-135	5	01/18/17 20:04	
Surrogate: Toluene-d8	42.9 V	µg/L	SW 846 8260B	86%	1	88-112	2	01/18/17 20:04	
Surrogate: Bromofluorobenzene	40.4	µg/L	SW 846 8260B	81%	1	75-117	7	01/18/17 20:04	
Sample Number: 7012602-08	Site: N	IW-12		Sa	mple I	D:			
Collector: DRC-STL	Collect Date: 01/16/2017 11:44 am Sample Type: Grab								
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
<u>General Method</u>									
Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Static Water Level (ft)	4.16	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Total Volume Purged (gal)	2.47	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Total Well Depth (ft)	12.00	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 11:44	DRC
Malatilaa									
volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Methyl-t-butyl ether (MIBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 16:40	CEM
	< 0.5	µg/L	SVV 846 8260B	0.5	1	01/1//1/	CEM	01/17/17 16:40	CEM
1,2,4- i rimetnyibenzene Xvlenes. Total	< 0.5 < 1.0	µg/L µa/L	SW 846 8260B SW 846 8260B	0.5 1.0	1	01/17/17	CEM	01/17/17 16:40	CEM
	D	1·3· -				1 imit- (0/ D		Analysis Dat	
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromotluoromethane	56.2	µg/L	SW 846 8260B	112%	1	72-136	j -	U1/17/17 16:40	
Surrogate: 1,2-Dichloroethane-d4	64.8	µg/L	SW 846 8260B	130%	1	79-135	)	01/17/17 16:40	

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 6 of 33



Sample Number: 7012602-08 Collector: DRC-STL	Site: M Collect	IW-12 Date: 01/16/2	017 11:44 am	Sa Sa	mple I mple 1	D: Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Toluene-d8	45.6	µg/L	SW 846 8260B	91%	1	88-112	2	01/17/17 16:40	
Surrogate: Bromofluorobenzene	39.2	µg/L	SW 846 8260B	78%	1	75-11	7	01/17/17 16:40	
Sample Number: 7012602-09	Site: N	IW-13		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/16/2	017 12:19 pm	Sa	mple 1	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Static Water Level (ft)	5.92	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Total Volume Purged (gal)	1.98	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Total Well Depth (ft)	12.00	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/16/17	BAK	01/16/17 12:19	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Ethyl Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Naphthalene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Toluene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
1,3,5-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
1,2,4-Trimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 17:07	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 17:07	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	55.8	µg/L	SW 846 8260B	112%	1	72-13	6	01/17/17 17:07	
Surrogate: 1,2-Dichloroethane-d4	64.4	µg/L	SW 846 8260B	129%	1	79-13	5	01/17/17 17:07	
Surrogate: Toluene-d8	45.9	µg/L	SW 846 8260B	92%	1	88-112	2	01/17/17 17:07	
Surrogate: Bromofluorobenzene	38.9	µg/L	SW 846 8260B	78%	1	75-11	7	01/17/17 17:07	

Sample Number: 7012602-10	Site: MW-1	4S		Sa	mple ID:	:			
Collector: DRC-STL	Collect Date	: 01/17/2017	2:08 pm	Sa	mple Ty	pe: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 7 of 33



Sample Number: 7012602-10 Collector: DRC-STL	Site: M Collect	/W-14S : Date: 01/17/2	017 2:08 pm	Sa Sa	mple II mple T	D: <del>`</del> ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	8.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Static Water Level (ft)	6.16	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Total Volume Purged (gal)	4.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Total Well Depth (ft)	10.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 14:08	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	2570	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Ethyl Benzene	2060	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Isopropylbenzene	97.0	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Methyl-t-butyl ether (MTBE)	184	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Naphthalene	279	μg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Toluene	11900	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
1,3,5-Trimethylbenzene	337	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
1,2,4-Trimethylbenzene	1230	µg/L	SW 846 8260B	50.0	100	01/18/17	CEM	01/18/17 17:48	CEM
Xylenes, Total	12400	µg/L	SW 846 8260B	100	100	01/18/17	CEM	01/18/17 17:48	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	50.8	μg/L	SW 846 8260B	102%	100	72-13	6	01/18/17 17:48	
Surrogate: 1,2-Dichloroethane-d4	58.8	μg/L	SW 846 8260B	118%	100	79-13	5	01/18/17 17:48	
Surrogate: Toluene-d8	45.3	μg/L	SW 846 8260B	91%	100	88-11	2	01/18/17 17:48	
Surrogate: Bromofluorobenzene	47.1	µg/L	SW 846 8260B	94%	100	75-11	7	01/18/17 17:48	
Sample Number: 7012602-11	Site: M	/W-14D		Sa	mple I	D:			
Collector: DRC-STL	Collect	Date: 01/17/2	017 1:14 pm	Sa	mple T	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	20.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Static Water Level (ft)	6.36	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Total Volume Purged (gal)	3.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Total Well Depth (ft)	25.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 13:14	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	211	µa/L	SW 846 8260B	2.5	5	01/18/17	CEM	01/18/17 18:43	CEM
Ethyl Benzene	27.2	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Isopropylbenzene	40.0	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM

7012602 Effective: 07/09/2014





Sample Number: 7012602-11	Site: N	MW-14D		Sa	ample I	D:			
Collector: DRC-STL	Collec	t Date: 01/17/2	017 1:14 pm	Sa	ample 7	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
<u>Volatiles</u> (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Naphthalene	137	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Toluene	5.8	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
1,3,5-Trimethylbenzene	2.8	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
1,2,4-Trimethylbenzene	4.7	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 22:47	CEM
Xylenes, Total	48.0	μg/L	SW 846 8260B	1.0	1	01/18/17	CEM	01/18/17 22:47	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	49.1	μg/L	SW 846 8260B	98%	5	72-13	6	01/18/17 18:43	
Surrogate: 1,2-Dichloroethane-d4	58.1	μg/L	SW 846 8260B	116%	5	79-13	5	01/18/17 18:43	
Surrogate: Toluene-d8	45.0	μg/L	SW 846 8260B	90%	5	88-112	2	01/18/17 18:43	
Surrogate: Bromofluorobenzene	46.2	µg/L	SW 846 8260B	92%	5	75-11	7	01/18/17 18:43	
Surrogate: Dibromofluoromethane	48.0	µg/L	SW 846 8260B	96%	1	72-13	6	01/18/17 22:47	
Surrogate: 1,2-Dichloroethane-d4	56.4	µg/L	SW 846 8260B	113%	1	79-13	5	01/18/17 22:47	
Surrogate: Toluene-d8	47.7	µg/L	SW 846 8260B	95%	1	88-112	2	01/18/17 22:47	
Surrogate: Bromofluorobenzene	46.1	µg/L	SW 846 8260B	92%	1	75-11	7	01/18/17 22:47	
Sample Number: 7012602-12	Site: 0	OW-1		Sa	ample I	D:			
Collector: DRC-STL	Collec	t Date: 01/17/2	017 11:09 am	Sa	ample 1	Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Static Water Level (ft)	7.44	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Total Volume Purged (gal)	4.60	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Total Well Depth (ft)	15.00	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/17/17	BAK	01/17/17 11:09	DRC
Volatiles									
VOA 8260 USTURIaadad									
VOA, 8260, UST Unieaded	0040		014/04/000000	05.0	50	044047	0514	04/40/47 00 00	0514
	324U 360	µg/L	SW 846 8260B	25.0	50 50	01/19/17		01/19/17 22:03	
	209 < 25 0	µg/L	SW 846 8260B	25.0 25.0	50	01/19/17		01/19/17 22.03	
Nethyl-t-hutyl ether (MTRE)	~ 20.0	µy/L	SW 846 82600	20.0	50	01/10/17		01/10/17 22.03	
Nanhthalana	~ 20.0 78 0	µy/L	SW 846 82600	20.0	50	01/10/17		01/10/17 22.03	
таришанне Тошере	10.U 3020	µg/L	SW 846 8260B	20.U 25.0	50	01/19/17		01/19/17 22.03	
1 3 5-Trimethylhenzene	< 25 D	µy/L	SW 846 82600	20.0	50	01/10/17		01/10/17 22.03	
1.2.4-Trimethylbenzene	48.0	μg/L	SW 846 8260B	25.0	50	01/10/17	CEM	01/10/17 22.03	CEM
Xylenes, Total	494	μα/L	SW 846 8260B	50.0	50	01/19/17	CEM	01/19/17 22:03	CEM
	÷ ·	r.a							

7012602 Effective: 07/09/2014





Page 9 of 33



Sample Number: 7012602-12 Collector: DRC-STL	Site: O Collect	W-1 Date: 01/17/2	2017 11:09 am	Sa Sa	ample I ample 1	D: ⁻ ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	54.3	µg/L	SW 846 8260B	109%	50	72-13	6	01/19/17 22:03	
Surrogate: 1,2-Dichloroethane-d4	54.0	µg/L	SW 846 8260B	108%	50	79-13	5	01/19/17 22:03	
Surrogate: Toluene-d8	48.8	µg/L	SW 846 8260B	98%	50	88-11	2	01/19/17 22:03	
Surrogate: Bromofluorobenzene	48.8	µg/L	SW 846 8260B	98%	50	75-11	7	01/19/17 22:03	
Sample Number: 7012602-13	Site: 0	W-2		Sa	ample I	D.			
Collector: DRC-STL	Collect	Date: 01/18/2	2017 10:08 am	Sa	ample 1	ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Static Water Level (ft)	6.70	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Total Volume Purged (gal)	4.20	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Total Well Depth (ft)	15.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:08	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	6470	μg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Ethyl Benzene	956	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Isopropylbenzene	61.0	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Methyl-t-butyl ether (MTBE)	124	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Naphthalene	241	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Toluene	10200	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
1,3,5-Trimethylbenzene	214	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
1,2,4-Irimethylbenzene	819	µg/L	SW 846 8260B	50.0	100	01/26/17	CEM	01/26/17 15:44	CEM
Xylenes, Iotal	6420	µg/L	SW 846 8260B	100	100	01/26/17	CEM	01/26/17 15:44	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	49.0	µg/L	SW 846 8260B	98%	100	72-13	6	01/26/17 15:44	
Surrogate: 1,2-Dichloroethane-d4	53.0	µg/L	SW 846 8260B	106%	100	79-13	5	01/26/17 15:44	
Surrogate: Toluene-d8	47.0	µg/L	SW 846 8260B	94%	100	88-11	2	01/26/17 15:44	
Surrogate: Bromofluorobenzene	52.9	µg/L	SW 846 8260B	106%	100	75-11	7	01/26/17 15:44	

7012602 Effective: 07/09/2014



 SUBURBAN TESTING LABS

 1037F MacArthur Road, Reading, PA 19605
 Phone: 800-433-6595
 Fax: 610-375-4090
 suburbantestinglabs.com

Page 10 of 33



Result		.017 10.09 alli	34	mpie I	ype. Glab			
Result				_				
	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
18.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
7.55	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
3.20	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
210.0	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
6.00	N/A	N/A		1	01/18/17	BAK	01/18/17 10:59	DRC
21	ua/l	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20.05	CEM
0.6	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5 B	µg/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
2.7	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
< 0.5	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
0.6	µa/L	SW 846 8260B	0.5	1	01/20/17	CEM	01/20/17 20:05	CEM
2.2	μg/L	SW 846 8260B	1.0	1	01/20/17	CEM	01/20/17 20:05	CEM
Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
55.6	µg/L	SW 846 8260B	111%	1	72-13	6	01/20/17 20:05	
52.7	µg/L	SW 846 8260B	105%	1	79-13	5	01/20/17 20:05	
49.6	µg/L	SW 846 8260B	99%	1	88-11	2	01/20/17 20:05	
47.8	μg/L	SW 846 8260B	96%	1	75-11	7	01/20/17 20:05	
Site [.] T	rip Blank - Dav	1	Sa	mple I	D.			
Collect	Date: 01/16/2	017 12:00 am	Sa	mple T	ype: Grab			
Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
	18.00 7.55 3.20 210.0 6.00 2.1 0.6 < 0.5 < 0.5 < 0.5 8 2.7 < 0.5 0.6 2.2	18.00       N/A         7.55       N/A         3.20       N/A         210.0       N/A         210.0       N/A         6.00       N/A         9.6       µg/L         < 0.5	18.00       N/A       N/A         7.55       N/A       N/A         3.20       N/A       N/A         210.0       N/A       N/A         210.0       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         6.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         19.0       N/A       N/A         10.6       µg/L       SW 846 8260B         2.7       µg/L       SW 846 8260B         2.7       µg/L       SW 846 8260B         2.2       µg/L       SW 846 8260B         2.2       µg/L       SW 846 8260B         52.7       µg/L       SW 846 8260B         49.6       µg/L       SW 846 8260B         47.8       µg/L       SW 846 8260B         47.8 <td>18.00       N/A       N/A         7.55       N/A       N/A         3.20       N/A       N/A         210.0       N/A       N/A         210.0       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         19.01       SW 846 8260B       0.5         19/L       SW 846 8260B       0.5         2.7       µg/L       SW 846 8260B       0.5         2.1       µg/L       SW 846 8260B       0.5         2.2       µg/L       SW 846 8260B       1.0         Results       Units       Method       %Recovery         55.6       µg/L       SW 846 8260B       105%         49.6       µg/L       SW 846 8260B       96%</td> <td>18.00       N/A       N/A       1         7.55       N/A       N/A       1         3.20       N/A       N/A       1         210.0       N/A       N/A       1         6.00       N/A       N/A       1         1       6.00       N/A       N/A       1         1       0.6       µg/L       SW 846 8260B       0.5       1         &lt;0.5</td> µg/L       SW 846 8260B       0.5       1       1         <0.5	18.00       N/A       N/A         7.55       N/A       N/A         3.20       N/A       N/A         210.0       N/A       N/A         210.0       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         6.00       N/A       N/A         6.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         18.00       N/A       N/A         19.01       SW 846 8260B       0.5         19/L       SW 846 8260B       0.5         2.7       µg/L       SW 846 8260B       0.5         2.1       µg/L       SW 846 8260B       0.5         2.2       µg/L       SW 846 8260B       1.0         Results       Units       Method       %Recovery         55.6       µg/L       SW 846 8260B       105%         49.6       µg/L       SW 846 8260B       96%	18.00       N/A       N/A       1         7.55       N/A       N/A       1         3.20       N/A       N/A       1         210.0       N/A       N/A       1         6.00       N/A       N/A       1         1       6.00       N/A       N/A       1         1       0.6       µg/L       SW 846 8260B       0.5       1         <0.5	18.00       N/A       N/A       1       01/18/17         7.55       N/A       N/A       1       01/18/17         3.20       N/A       N/A       1       01/18/17         210.0       N/A       N/A       1       01/18/17         6.00       N/A       N/A       1       01/120/17         6.05       1       01/20/17       1       01/20/17         <0.5	18.00       N/A       N/A       N/A       1       01/18/17       BAK         3.20       N/A       N/A       N/A       1       01/18/17       BAK         210.0       N/A       N/A       N/A       1       01/18/17       BAK         210.0       N/A       N/A       N/A       1       01/18/17       BAK         6.00       N/A       N/A       N/A       1       01/18/17       BAK         6.00       N/A       N/A       N/A       1       01/18/17       BAK         6.00       N/A       N/A       N/A       1       01/20/17       CEM         6.00       N/A       N/A       N/A       1       01/20/17       CEM         6.00       pg/L       SW 846 8260B       0.5       1       01/20/17       CEM         <0.5	18.00       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         3.20       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         210.0       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         210.0       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         6.00       N/A       N/A       N/A       1       01/18/17       BAK       01/18/17       10:59         6.00       N/A       N/A       N/A       1       01/120/17       CEM       01/20/17       20:5         6.00       N/A       N/A       N/A       1       01/120/17       CEM       01/20/17       20:5         6.05       µg/L       SW 846 8260B       0.5       1       01/20/17       CEM       01/20/17       20:5         <0.5

Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/17/17	CEM	01/17/17 12:08	CEM
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
1,3,5-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
Benzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/17/17	CEM	01/17/17 12:08	CEM
,									

7012602 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Fax: 610-375-4090 suburbantestinglabs.com

Page 11 of 33



Sample Number: 7012602-15 Collector:	Site: 1 Collect	rip Blank - Day 1 Date: 01/16/20	17  12:00 am	Sa Sa	imple I imple T	D: ſype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continu	ed)								
Surrogate Recoveries (Continued)	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	52.5	μg/L	SW 846 8260B	105%	1	72-136	6	01/17/17 12:08	
Surrogate: 1,2-Dichloroethane-d4	60.9	µg/L	SW 846 8260B	122%	1	79-13	5	01/17/17 12:08	
Surrogate: Toluene-d8	45.6	μg/L	SW 846 8260B	91%	1	88-112	2	01/17/17 12:08	
Surrogate: Bromofluorobenzene	41.3	µg/L	SW 846 8260B	83%	1	75-117	7	01/17/17 12:08	
Sample Number: 7012602-16	Site: 1	rip Blank - Dav 2		Sa	mple I	D:			
Collector:	Collect	Date: 01/17/20	17 12:00 am	Sa	' mple T	Type: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Ethyl Benzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
lsopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Naphthalene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Ioluene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
1,3,5- I rimethylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
	< 0.5	µg/L	SVV 846 8260B	0.5	1	01/18/17	CEM	01/18/17 15:21	CEM
Aylenes, rotai	< 1.0	µg/L	SVV 040 0200B	1.0	I	01/16/17	CEIM	01/18/17 15.21	CEIVI
Surrogate Recoveries	Results	Units	Method	%Recovery	DF	Limits (%Re	covery)	Analysis Date	
Surrogate: Dibromofluoromethane	54.0	µg/L	SW 846 8260B	108%	1	72-136	6	01/18/17 15:21	
Surrogate: 1,2-Dichloroethane-d4	62.4	µg/L	SW 846 8260B	125%	1	79-13	5	01/18/17 15:21	
Surrogate: Toluene-d8	45.7	µg/L	SW 846 8260B	91%	1	88-112	2	01/18/17 15:21	
Surrogate: Bromofluorobenzene	40.9	μg/L	SW 846 8260B	82%	1	75-117	7	01/18/17 15:21	
Sample Number: 7012602 17	Site: 1	rin Blank Day 3		S		<u></u> .			
Collector:	Collect	Date: 01/18/20	17 12:00 am	Sa	mple 1	р. Гуре: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles									
VOA 8260 USTUnleaded									
Benzene	< 0.5	ug/l	SW 846 8260B	0.5	1	01/10/17	CEM	01/19/17 16:21	CEM
Ethyl Benzene	< 0.5	µg/⊏ µa/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Isopropylbenzene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Methyl-t-butyl ether (MTBE)	< 0.5	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Naphthalene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
	Report Constant Op. 02/0	1/2017 5.00 pm	7012602						
	STL Res	Ilts Revision #1.6	Effective: 07/09	9/2014					
				-				a AG	CRED

1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

SUBURBAN TESTING LABS Fax: 610-375-4090 suburbantestinglabs.com





Sample Number: 7012602-17 Collector:	Site: Colle	Trip Blank - Day 3 ect Date: 01/18/201	7 12:00 am	5	Sample II Sample T	D: ⁻ ype: Grab			
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	Ву	Analysis Date	Ву
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
Toluene	< 0.5	µg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
1,3,5-Trimethylbenzene	0.6	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
1,2,4-Trimethylbenzene	< 0.5	μg/L	SW 846 8260B	0.5	1	01/19/17	CEM	01/19/17 16:21	CEM
Xylenes, Total	< 1.0	µg/L	SW 846 8260B	1.0	1	01/19/17	CEM	01/19/17 16:21	CEM
Surrogate Recoveries	Results	Units	Method	%Recovery	/ DF	Limits (%Reco	overy)	Analysis Date	
Surrogate: Dibromofluoromethane	55.1	μg/L	SW 846 8260B	110%	1	72-136		01/19/17 16:21	
Surrogate: 1,2-Dichloroethane-d4	53.3	μg/L	SW 846 8260B	107%	1	79-135		01/19/17 16:21	
Surrogate: Toluene-d8	50.0	μg/L	SW 846 8260B	100%	1	88-112		01/19/17 16:21	
Surrogate: Bromofluorobenzene	49.1	µg/L	SW 846 8260B	98%	1	75-117		01/19/17 16:21	

Data Qu	alifiers:
В	The target analyte was detected in the Method Blank, Dilution Water Blank, or Sterility Check at or above the method Reporting Limit or applicable method, client, or regulatory requirement.
B1	The target analyte was detected in the Method Blank at or above the method Reporting Limit, however it was <10% the concentration detected in the sample. Data are reportable under the 2009 TNI Standard.
M3	The Matrix Spike associated with this sample is above established acceptance criteria, indicating potential matrix interference. Results of this sample may be biased high.

V The surrogate associated with this sample was not within the established acceptance criteria.

## Sample Receipt Conditions:

All samples met the sample receipt requirements for the relevant analyses.

** This report has been Amended (Rev1) and replaces all previous reports for this order ID **

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.

All results reported on an As Received (Wet Weight) basis unless otherwise noted.

This laboratory report may not be reproduced, except in full, without the written approval of STL.

Results are considered Preliminary unless report is signed by authorized representative of STL.

**Reviewed and Released By:** 

Alana Kopicz Project Manager

Alara M. Kopicz

Report Generated On: 02/01/2017 5:09 pm STL_Results Revision #1.6

7012602 Effective: 07/09/2014



1037F MacArthur Road, Reading, PA 19605 Phone: 800-433-6595

Fax: 610-375-4090 suburbantestinglabs.com

Page 13 of 33



## Chain of Custody Record

1037F MacArthur Road, Reading, PA 19605 Phone: 610-375-8378 - Fax: 610-375-4090 - suburbantestinglabs.com

TAT (Circle One): Standard - 24hr - 48hr - 72hr - Other ______ (Additional charges may apply for rush TAT. If not specified, standard TAT will apply.)



Client Name / Address:		Project Name / Address:
Rettew - Lancaster 3020 Columbia Avenue Lancaster, PA 17603	Phone: (717) 394-1063 Fax:	Herr Foods - Quarterly MWs 2017
Client Project Manager: Ed Dziedzic		Payment / P.O. Info:

Project Description:

Order Comments: Monitoring Well Collection = \$65/hour; Travel time to/from site = \$40/hour; Equipment Rental = \$115 flat fee per event;

Sample Number Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
7012602-01 MW-3		1-18-17 1148	DRC-STL	Non-potable	Grab	
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results
40ml VOA & HCI	A		Genera Monitor	I Method r Well Sampling - N/A		
40ml VOA & HCI	В		Unassig Sample	<b>gned</b> Collection, Custom 1 - S	L0015	
40ml VOA & HCI	C		Sample	e Collection, Custom 3 - S	L0015	
Field Services	D		Volatile VOA, 8	<b>S</b> 260, USTUnleaded - SW	846 8260B	
7012602-02 MW-4		1-17-17 1218	MRC-STL	Non-potable	Grab	
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results
40ml VOA & HCI	A		Genera	I Method r Well Sampling - N/A		
40ml VOA & HCI	В		Volatile	S		
40ml VOA & HCI	C		VOA, 8	260, USTUnleaded - SW	846 8260B	
Field Services	D					
7012602-03 MW-5		1-17-17 1004	DRC-STL	Non-potable	Grab	
Container Type / Preservation		Preservation Check	Analysis	- Method		Field Results
40ml VOA & HCI	A	-	Genera	I Method r Well Sampling - N/A		
40ml VOA & HCl	В		Volatile	S	046 00000	<b></b>
40ml VOA & HCI	C		VOA, 8	szou, US i Unieaded - SW	040 020UD	
Field Services	D					

Page 1 of 4

Page 14 of 33

# ORDER ID: 7012602

Sample Number	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time			
7012602-04	MW-7		1-17-17 0914	PRC-STL	Non-potable	Grab				
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results			
40ml VO	A & HCI	Α		Genera Monito	<b>l Method</b> r Well Sampling - N/A					
40ml VO	A & HCI	В		Volatile	es	946 99600	• <b></b>			
40ml VO	A & HCI	C		VUA, C	5260, 0510fileaded - 5W	040 0200B				
Field Sei	vices	D								
7012602-05	MW-9		1-16-171428	PRL-STL	Non-potable	Grab				
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results			
40ml VO	A & HCI	A		Genera Monito	al Method or Well Sampling - N/A					
40ml VO	A & HCI	В	VOA, 8260, USTUnleaded - SW 846 8260B							
40ml VO	A & HCI	C								
Field Sei	vices	D								
7012602-06	MW-10		1-16-17 1349	DRC-STL	Non-potable	Grab				
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results			
40ml VO	A & HCI	Α	General Method Monitor Well Sampling - N/A							
40ml VO	A & HCI	В		Volatiles						
40ml VO	A & HCI	C		VOA, 8260, USTUnleaded - SW 846 8260B						
Field Sei	vices	D								
7012602-07	MW-11		1/16/17 1304	PRC-STL	Non-potable	Grab				
Contain	er Type / Preservation		Preservation Check	Analysis	s - Method		Field Results			
40ml VO	A & HCI	A		Genera	al Method or Well Sampling - N/A					
40ml VO	A & HCI	В	Volatiles							
40ml VO	A & HCI	C		VOA, 8	8260, USTUnleaded - SW	846 8260B				
Field Se	vices	D								

L

₽,' ∴,

Sample Number S	ample Description - Site ID	Sampling Location	Collect Ai Date/Time Hu-17	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time			
7012602-08 MW-1	2		1-10-17 1219	DRC-STL	Non-potable	Grab				
Container Typ	e / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & H0	2	A	1144	Genera	I Method r Well Sampling - N/A					
40ml VOA & H0	X	В		Volatile	S					
40ml VOA & H0	2	C		VOA, 8	260, US I Unleaded - SW	846 8260B				
Field Services		D								
7012602-09 MW-1	3		1-16-17 1219	ORC-STL	Non-potable	Grab				
Container Typ	e / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & HC	3	A		Genera	I Method r Well Sampling - N/A					
40ml VOA & H0	8	В	VOA, 8260, USTUnleaded - SW 846 8260B							
40ml VOA & HC	21	C								
Field Services		D								
7012602-10 MW-1	4S		1-17-17 1408	DRC-STL	Non-potable	Grab				
Container Typ	e / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & H0	3	Α		Genera	I Method r Well Sampling - N/A					
40ml VOA & H0	8	В	Volatiles							
40ml VOA & H0	1	C								
Field Services		D								
7012602-11 MW-1	4D		1-17-17 1314	PRC-STL	Non-potable	Grab				
Container Typ	e / Preservation		Preservation Check	Analysis	- Method		Field Results			
40ml VOA & HO	X	A		Genera	I Method r Well Sampling - N/A					
40ml VOA & H0	40ml VOA & HCI B			Volatiles						
40ml VOA & HO	<b>)</b>	C		VOA, 8260, USTUnleaded - SW 846 8260B						
Field Services										

°,' -1



Sample Number Sample Description - Site	D Sampling Loca	ation	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time				
7012602-12 OW-1			1-17-17 1109	DRC-STL	Non-potable	Grab					
Container Type / Preservation		Pre	Preservation Check Analysis - Method								
40ml VOA & HCI		A	General Method								
40ml VOA & HCI		B	Monitor Weil Sampling - N/A								
40ml VOA & HCI		c	VOA, 8260, USTUnleaded - SW 846 8260B								
Field Services		D									
7012602-13 OW-2			1-18-17 1008	DRC-STL	Non-potable	Grab					
Container Type / Preservation		Pro	eservation Check	Analysis -	Method		Field Results				
40ml VOA & HCl		A	alan siya ka ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa ka sa k	General							
40ml VOA & HCl		В	Monitor Well Sampling - N/A								
40ml VOA & HCI		c	VOA, 8260, USTUnleaded - SW 846 8260B								
Field Services		D									
012602-14 Former Supply Well		·	1-18-17 1059	DRC-STL	Non-potable	Grab					
Container Type / Preservation		Pr	Preservation Check Analysis - Method Field Result								
40ml VOA & HCl		A	General Method								
40ml VOA & HCl		B	Volatiles								
40ml VOA & HCI		С	VOA, 8260, USTUnleaded - SW 846 8260B								
Field Services											
			A	ldd Trop E	lank for Dav	12 1/16/17 01:					
Add Trip Blank for	Day 1 1/16/17	0735 1	ORC A.	dd Tric B	lank for Da	y 3 1/17/17 140	8 PRC				
WKO TAT = 10	Cool Sample(s) to	6 C				· · · · · · · · · · · · · · · · · · ·					
elinquished By:	Count Date:	Temp (°C):	Sample Condi	tions	Subu	Irban Testing	g Labs				
	Time:		Number of Cont	ainers \ Cooler rece		I feature in a	-				
eceived By:	Date:	Temp (°C):	Temp (°C): matches number on C Sample labels and CC		Lab Date/Time:	118/17 1330	Lab Temp: <u>3</u>				
	Time:				Number of containers/coolers match number on COC2						
inguished By: 18 Date: 1-(6-17 Time: 16.00		Temp (°C): Acceptable:?	$\frac{4.2}{0/N}$ All Containers Ir	ntact?	Sample lables and All Containers in t	I COC are free of descr act?	epancies?				
eceived in Lab By:	Date:	Temp (°C):	if applicable?		Received in lab within acceptable temperture limits?						
BK 1118/17	Time:	Acceptable:?	Y7N		Relinquished by:						
ning this form indicates your agreement with STL's Standar STL_Prelog_ls.rpt Alana	a Terms and Conditions (www.suburbante: a Kopicz	sunglabs.com\reso Date Cre	ources\standard-terms-and-cond eated: 01/12/2017 12:00	Date Printed: 01/1							
	MM-15				Received in Lal	o by : <u>154 K</u>	Page 17 o				

APPENDIX I Updated Fate & Transport Model Outputs

ADVECTIVE T	RANSPORT WI	TH THREE DIME	<b>NSIONAL DISPER</b>	RSION,1ST OF	RDER DECAY	and RETARDATI	ON - WITH CALIBR	RATION TOO	L				
Project:	Herr Foods,	Inc.											
Date:	3/9/2017	Prepared by:	EGD										
		Contaminant:	Benzene Model 1	10 Update	Update				NEW QUICK_DOMENICO.XLS				
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	l ime (days)		A SPREADSHEET APPLICATION OF AN ANALYTICAL MODEL FOR MULTIDIMENSIONAL TRANSPORT OF A				
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)	M					
(MG/L)			>=.001	day-1	(ft)	(ft)			DECAYING CONTAMINANT SPECIES				
6.47	3.00E+00	3.00E-01	1.00E-03	0.00024	35	8	7173		P.A. Do	menico (1987)			
					-				Modified to	Include Retarda	tion		
Hydraulic	Hydraulic	Demo alter	Soil Bulk	1/00	Frac.	Retard-	V ( //*'/+*D)						
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)						
(ft/day)		(dec. frac.)	(y/cm 4 700	EO	1 195 02	(K)	(it/day)						
2.000+00	0.016	0.353	1./00	50	1.10E-02	4.400392033	0.031905552	·					
				-									
Point Conc	entration			_	Centerline P	lot (linear)	-		Centerline Plot	(log)	-		
x(ft)	lv(ft)	z(ft)					H			· •/			
	<b>J</b> ()	-()		- 7.00 ₁			- Model - 10.00				Model		
100	0	0		6.00			Output	•					
		-		5.00 -	<b></b>		Field		Field				
	x(ft)	y(ft)	z(ft)	<u>ບ</u> 4.00 -	<b>`</b>					, ⁺ , L			
Conc. At	100	0	) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	<b>5</b> 3 00 -	<b>_</b>		- 2			•			
at	7173	days =		2 00			<u> </u>	00		$\longrightarrow$			
			3.029	2.00									
			mg/l	1.00 -									
	AREAL	CALCULATION		0.00 -			0.01	10	T	1			
	MODEL	DOMAIN			) 100	200 300	)	0	100	200	300		
	Length (ft)	255			dist	ance			distance	9			
	Width (ft)	40											
	25.5	51	76.5	102	127.5	153	178.5	20	94 229.5	255			
40	0.000	0.000	0.002	0.006	0.013	0.020	0.025	0.02	25 0.020	0.012			
20	1.402	1.449	1.313	1.146	0.981	0.827	0.670	0.4	0.301	0.140			
0	5.365	4.441	3.652	2.981	2.418	1.941	1.505	1.0	53 <b>0.62</b> 7	0.282			
-20	1.402	1.449	1.313	1.146	0.981	0.827	0.670	0.4	0.301	0.140			
-40	0.000	0.000	0.002	0.006	0.013	0.020	0.025	0.02	25 0.020	0.012			
Field Data:	Centerline C	Concentratio	n	6.47	3.03	0.047							
	Distance from Source			0	100	255							
	Distance II0			0	100	200							

## SWLOAD5B

METHOD FOR ESTIMATNG FLOW, AVERAGE CONCENTRATION AND MASS LOADING TO SURFACE WATER FROM GROUNDWATER														
Project:	Herr Foods, Ir	IC.		1										-
Date:	3/9/2018							PA DEPARTMENT						
Contaminant:	ant: Benzene Update		Prepared by:		EGD				OF ENVIRONMENTAL PROTECTION			ECTION		
SOURCE									SWLO	AD5B.XLS				
CONC	CONC Ax Ay Az		LAMBDA SOURCE		SOURCE	RCE								
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time					SURFACE		
ug/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)			Based on P.A. Domenico (1987)				
6,470	3	0.3	1.00E-03	0.00024	35	8	1.00E+99							
									Modified to Include Retardation					
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	v							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.80E+00	0.018	0.353	1.788	58	1.18E-02	4.466593	0.0319654							
				-49.5	-39.6	-29.7	-19.8	-9.9	0	9.9	19.8	29.7	39.6	49.5
Edge Criterion (ug/l)		5	0	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Higest mo	deled conc.	837.734	-0.8	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
			-1.6	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
SURFACE W	ATER LOADING O	GRID	-2.4	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Distance to S	Stream (ft)	255	-3.2	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Plume View V	Width (ft)	99	-4	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Plume View I	Depth (ft)	8	-4.8	4.810613	36.76718	160.935	422.37062	712.785058	837.731141	712.78506	422.37062	160.93502	36.76718	4.810613
			-5.6	4.808761	36.753023	160.873	422.20798	712.5106	837.408572	712.5106	422.20798	160.87305	36.75302	4.808761
			-6.4	4.750349	36.306588	158.9189	417.07947	703.855819	827.236672	703.85582	417.07947	158.91894	36.30659	4.750349
PENTOX	NEEDED		-7.2	4.178951	31.939432	139.8033	366.91086	619.192162	727.732085	619.19216	366.91086	139.8033	31.93943	4.178951
			-8	2.405315	18.383658	80.46781	211.18609	356.393853	418.867127	356.39385	211.18609	80.467807	18.38366	2.405315
													, I	
				Average	Groundwa	ter Conce	ntration	300.667	ug/l					
				Plume F	low			0.00046	cfs	0.0003	MGD			
				Mass Lo	ading to	Stream		339886.62	ug/day					
### PENTOXSD

						Мо	deling In	put Dat	а					
Strea Cod	m RMI e	Elevat (ft)	ion Dra A (so	inage trea 1 mi)	Slope	PWS (m	With gd)		Δ	pply FC				
68	40 1.44	49	5.00	0.04	0.00000	)	0.00			$\checkmark$	_			
							Stream D	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Har <b>d</b>	<u>ary</u> рН	<u>Strear</u> Hard	n pH	<u>Analys</u> Har <b>d</b>	<u>sis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	0.00116	0	1.5	0	0	0	100	7	0	0	0	0
Qh		0	0.0083	0	3	0	0	0	100	7	0	0	0	0
						E	)ischarge [	Data						
	Name	Perr Num	nit Exis ber Di Fl	sting Po sc ow	ermitted Disc Flow	Design Disc Flow	Reserve Factor	e AFC PMF	CFC PMF	thh Pmf	CRL PMF	Disc Hard	Disc pH	
			(m	gd)	(mgd)	(mgd)						(mg/L)		_
GW	Discharge	0.1	0.0	003	0	U	0	0	0	0	U	100	7	
	Deveneter	Nama		Dies	Talla	P. Dia	arameter D	Data Cteor			500	C-14	Max	
	Parameter	name			Conc	Dis Daily C\	c Disc y Houri / CV	y Con	c CV	Coe	f	Mod	Disc Conc	
BENZE	NE			(µg/L) 300.66	(μg/L) 7 0	) 0.	5 0.5	(μg/i 5 0	L) 0	0	0	1	(µg/L) 0	
Stream Code	n RMI	Elevati (ft)	on Drai A	nage rea mi)	Slope	PWS (mg	With gd)		А	pply FC				
684	<b>10 0.</b> 00	39	0.00	0.98	0.00000		0.00			✓	-			
							Stream Da	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rc <b>h</b> Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	rx pH	<u>Stream</u> Hard	<u>р</u> рН	<u>Analys</u> Hard	<u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)	I	(mg/L)	
Q7-10	0.1	0	0.00592	0	3	0	0	0	100	7	0	0	0	0
Qh		0	0.29	0	6	0	0	0	100	7	0	0	0	0
						D	ischarge D	Data						
	Name	Perm Numi	nit Exis per Dis Flo	ting Pe sc ow	ermitte <b>d</b> Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m <u>(</u>	gd) (	mgd)	(mgd)						(mg/L)		
			C	)	0	0	0	0	0	0	0	100	7	
	<b>.</b>			<b>D</b> 1		Pa	arameter D	ata	01	- ·		~ "		
	Parameter I	Name		Disc Conc	Trib Conc	Disc Daily CV	Disc Hourly CV	Stean y Conc	n Stream c CV	Fate Coef	FOS	Crit Mod	Max Disc Conc	
BENZE	NE			ربین 0	(µg/⊏) 0	0.8	5 0.5	Ω 0	-/ 0	0	0	1	(µ9/⊏) 0	
							-							

### Hydrodynamics

<u>s</u>	WP Basii	<u>1</u>	<u>Strear</u>	<u>n Code:</u>			<u>Strea</u>	m Name	L		
	07K		61	340			NORTHE	AST CRI	EEK		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	10 Hyd	drodyna	mics			
1.440	0.0012	0	0.0012	0.00046	0.0138	0.0851	1.5	17.624	0.0127	6.9176	.539
0.000	0.0059	0	0.0059	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
1.440	0.0083	0	0.0083	0.00046	0.0138	0.0893	3	33.576	0.0327	2.6914	3.525
0.000	0.29	0	0.29	NA	0	0	0	0	0	0	NA

#### Wasteload Allocations

RMI	Name P	ermit Number						
1.44	GW Discharge	0.1						
				AFC				
Q7-	10: CCT (min)	0.539 PMF	1	Analysis	pH 7	Analysis	Hardness	100
	Parameter	Stream Conc (μg/L)	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	BENZENE	0	0	0	0	640	640	2239.655
			c	FC				
Q7-10:	CCT (min)	0.539 PM	F 1	Analysis	pH 7	Analysi	s Hardness	100
	Parameter	Stream Con <b>c</b> .	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
		(µg/L)	<u> </u>	(µg/L)		(μg/L)	(μg/L)	(μg/L)
	BENZENE	0	0	0	0	130	130	454.93
			т	нн				
Q7-10:	CCT (min)	0.539 PMF	NA	Analysis	spH NA	Analysis	s Hardness	NA
	Parameter	Stream Conc (ug/L)	Stream CV	Trib Conc (ug/L)	Fate Coef	WQC	WQ Obj (ug/L)	WLA
	BENZENE	(μg/L) 0	0	(µg/Ľ) 0	0	NA	NA	NA
	007 (		- , '	-RL				
un:		3.525 PMI	- 1		_			
	Parameter	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obi	WLA
		(µg/L)		(µg/L)		(µg/L)	(µg/Ĺ)	(μg/L)
	BENZENE	0	0	0	0	1.2	1.2	22.661

<u>SWP Basi</u> 07K	n <u>Stream Code:</u> 6840			<u>Stream</u> NORTHEAS	<u>Name:</u> ST CREEK			
RMI	Name	P	ermit u <b>m</b> ber	Disc Flow (mgd)				
1.44	GW Discharge		0.1	0.0003	_			
	Parameter	Effluent Limit (µg/L)	Gove Crite	rning erion	Max. Daily Limit (µg/L)	Most S WQBEL (µg/L)	itringent WQBEL Criterion	
BENZENE		22.661	CF	RL	35.355	22.661	CRL	

### **Recommended Effluent Limitations**

### SWLOAD5B

METHOD FO	R ESTIMATNG FL	.OW, AVERA	GE CONC	ENTRATION	AND MASS	<b>LOADING</b>	TO SURFAC	E WATER FF	ROM GROUN	DWATER				
Project:	Herr Foods, Ir	IC.												
Date:	3/10/2017										PA DEP	ARTMENT		
Contaminant:	Benzene Back Ca	alculation		Prepared by	/:	EGD				OFE	NVIRONME	NTAL PROT	ECTION	
SOURCE										Π.	SWLO	AD5B.XLS	TINO	
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE								
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time					ADING TO	SURFACE	
ug/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				has	ed on		
332	3	0.3	1.00E-03	0.00024	35	8	1.00E+99				P.A. Dom	enico (1987)		
											lodified to Ind	clude Retard	ation	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.80E+00	0.018	0.353	1.788	58	1.18E-02	4.466593	0.0319654			-				
				-33.5	-26.8	-20.1	-13.4	-6.7	0	6.7	13.4	20.1	26.8	33.5
Edge Criteric	on (ug/l)	5	0	4.99282	11.520972	21.19467	31.80482	39.9592196	42.9872909	39.95922	31.80482	21.19467	11.52097	4.99282
Higest mo	deled conc.	42.9873	-0.8	4.99282	11.520972	21.19467	31.80482	39.9592196	42.9872909	39.95922	31.80482	21.19467	11.52097	4.99282
			-1.6	4.99282	11.520972	21.19467	31.80482	39.9592196	42.9872909	39.95922	31.80482	21.19467	11.52097	4.99282
SURFACE W	ATER LOADING O	GRID	-2.4	4.99282	11.520972	21.19467	31.80482	39.9592196	42.9872909	39.95922	31.80482	21.19467	11.52097	4.99282
Distance to S	Stream (ft)	255	-3.2	4.99282	11.520972	21.19467	31.80482	39.9592196	42.9872909	39.95922	31.80482	21.19467	11.52097	4.99282
Plume View V	Width (ft)	67	-4	4.99282	11.520972	21.19467	31.80482	39.9592196	42.9872909	39.95922	31.80482	21.19467	11.52097	4.99282
Plume View I	Depth (ft)	8	-4.8	4.992802	11.520929	21.19459	31.804701	39.9590711	42.9871312	39.959071	31.804701	21.194591	11.52093	4.992802
			-5.6	4.990879	11.516493	21.18643	31.792455	39.9436849	42.970579	39.943685	31.792455	21.18643	11.51649	4.990879
			-6.4	4.930256	11.376604	20.92908	31.406276	39.4584938	42.4486206	39.458494	31.406276	20.929081	11.3766	4.930256
PENTOX I	NEEDED		-7.2	4.337217	10.008163	18.41162	27.628556	34.7122087	37.3426665	34.712209	27.628556	18.411616	10.00816	4.337217
			-8	2.49641	5.7604861	10.59734	15.90241	19.9796098	21.4936455	19.97961	15.90241	10.597335	5.760486	2.49641
				Average	Groundwa	ter Conce	ntration	22 4174	ua/l					
									~					
				Plume F	low			0.00031	cfs	0.0002	MGD			
								0.00001	0.0	0.0002			ł	
				Mass Lo	ading to	Stream		17150 41	ug/day					
	1	1	1					11 100.41			1	1		

ADVECTIVE TF	RANSPORT WI	TH THREE DIME	INSIONAL DISPER	SION,1ST OF	RDER DECAY	and RETARDATI	ON - WITH CAI	IBRATION	TOOL			
Project:	Herr Foods,	Inc.										
Date:	3/9/2017	Prepared by:	EGD									
		Contaminant:	Benzene Model 1	0 Back Calcu	Ilation					NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	l ime (days	5)		ΒΡΚΕΑΔΟΠΕΕ		
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)				JAI TRANSPO	
(MG/L)			>=.001	day-1	(ft)	(ft)				CAYING CON	TAMINANT SF	PECIES"
0.332	3.00E+00	3.00E-01	1.00E-03	0.00024	35	8	7	173		P.A. Dor	menico (1987)	
I have a set of a			0		<b>F</b>	Detend			_	Modified to I	nclude Retarda	tion
Hydraulic	Hydraulic	Dama alta	Soil Bulk	1/00	Frac.	Retard-	V ( 1(**/*D)		_			
Cond	Gradient	Porosity	Density	KUC	Org. Carb.	ation	(=K^l/N^R)		_			
(ft/day)		(dec. frac.)	(g/cm 4 700	EO	1 195 02	(K)	(ft/day)	252	_			
2.000+00	0.010	0.353	1./00	<b>JO</b>	1.10E-02	4.400392033	0.03196:	1 <b>3</b> 52				
				H			l					
Point Conce	entration			_	Centerline P	lot (linear)	-		Ce	enterline Plot	(log)	-
x(ff)	v(ft)	z(ft)									. <b>.</b>	
,,,,,	<b>J</b> ()	-()		_ 0.35 -			- Model	1.000				Model
100	0	0		0.30 -	<b>`</b>		Output					Output
		-		0.25 -	<u> </u>		Field					Field
	x(ft)	y(ft)	z(ft)	<u>ບ</u> 0.20 -							L	
Conc. At	100	0	) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	<b>6</b> 0.15	<b>_</b>			0.100		<b></b>	•	
at	7173	days =		0 10	×		- 8				•	
			0.155	0.10							•	
			mg/l	0.05								
	AREAL	CALCULATION		0.00 +				0.010 🗕		1		
	MODEL	DOMAIN			) 100	200 300		0		100	200	300
	Length (ft)	255			dist	ance				distance		
	Width (ft)	33.5										
	25.5	51	76.5	102	127.5	153	1	78.5	204	229.5	255	
33.5	0.000	0.000	0.002	0.003	0.004	0.005	0	.005	0.005	0.003	0.002	
16.75	0.159	0.126	0.103	0.084	0.069	0.057	0	.045	0.032	0.019	0.009	
0	0.275	0.228	0.187	0.153	0.124	0.100	U	.0//	0.055	0.032	0.014	
-16.75	0.159	0.126	0.103	0.084	0.069	0.057	0	.045	0.032	0.019	0.009	
-33.5	0.000	0.000	0.002	0.003	0.004	0.005	0	.005	0.005	0.003	0.002	
Field Data:	Centerline C	Concentratio	n	0.332	0.155	0.014						
	Distance fro	m Source		0	100	255						
				0	100	200						

ADVECTIVE TR	RANSPORT WI	TH THREE DIME	INSIONAL DISPER	SION,1ST OF	RDER DECAY	and RETARDATI	ON - WITH CALIBI	RATION TOO	L		
Project:	Herr Foods,	Inc.									
Date:	3/9/2017	Prepared by:	EGD								
		Contaminant:	MTBE Model 10	Update					NEW QUICH	C_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)				
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)	M		NAL TRANSPO	
(MG/L)			>=.001	day-1	(ft)	(ft)		111	DECAYING CON	TAMINANT SI	
0.705	3.00E+00	3.00E-01	1.00E-03	0.00065	35	8	717;	3	P.A. Do	menico (1987)	
					_	-			Modified to	Include Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V				
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)				
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ^{*/}		4 4 9 5 9 9	(R)	(ft/day)				
2.80E+00	0.018	0.353	1.788	12	1.18E-02	1./1/226062	0.08314351			1	
				H			I				
Point Conce	ontration			_	Centerline P	lot (linear)	_		Centerline Plot	(log)	-
		7/ff)		_			_			(	
^(!!)	y(i'i)	2(11)		- 0.80 1			— Model  - 1.0	00 1			Model
100	0	0		0.70	<u></u>		Output	<b>*</b>	•		Output
100	Ŭ	0		- 0.60 -	<b>X</b>		Field				-Field
	x(ft)	v(ft)	<b>z</b> (ft)	<del>ن</del> 0.50 -			Data		•	•	Data
Conc. At	100	<b>J</b> (1)	_()	- <b>Š</b> 0.40 -			- <b>2</b> 0.1	00			
at	7173	davs =		- <b>0</b> 0.30 -			- 8				
			0.320	0.20 -	<b>_</b> _		-				-
			mg/l	0.10 -			-				
	AREAL	CALCULATION		0.00	1		- 0.0	10			
	MODEL	DOMAIN		- C	) 100	200 300		0	100	200	300
	Length (ft)	255			dist	ance	=	-	distance	)	
	Width (ft)	40		=							<del> </del>
	25.5	51	76.5	102	127.5	153	178.5	5 20	4 229.5	255	
40	0.000	0.000	0.000	0.001	0.001	0.002	0.00	3 0.00	0.003	0.003	
20	0.152	0.155	0.140	0.121	0.103	0.087	0.073	3 0.06	0.051	0.042	
0	0.580	0.477	0.389	0.315	0.254	0.204	0.164	4 0.13	0.105	0.085	
-20	0.152	0.155	0.140	0.121	0.103	0.087	0.073	3 0.06	0.051	0.042	
-40	0.000	0.000	0.000	0.001	0.001	0.002	0.00	3 0.00	3 0.003	0.003	
Field Data:	Centerline C	Concentratio	n	0.705	0.211	0.0854					
	Distance fro	m Source		0	100	255					
				0	100	200					

### SWLOAD5B

METHOD FO	R ESTIMATNG FL	.OW, AVERA	GE CONCI	ENTRATION	AND MASS	<b>LOADING</b>	TO SURFAC	E WATER FF	ROM GROUN	DWATER				
Project:	Herr Foods, Ir	IC.												-
Date:	3/9/2018										PA DEP	ARTMENT		
Contaminant:	Benzene Update			Prepared by	/:	EGD				OFE	NVIRONMEI	NTAL PROT	ECTION	
SOURCE											SWLO	AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE								
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time						SURFACE	
ug/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				bas	sed on		
6,470	3	0.3	1.00E-03	0.00024	35	8	1.00E+99				P.A. Dom	enico (1987)		
										N	lodified to Ind	clude Retarda	ation	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.80E+00	0.018	0.353	1.788	58	1.18E-02	4.466593	0.0319654							
				-49.5	-39.6	-29.7	-19.8	-9.9	0	9.9	19.8	29.7	39.6	49.5
Edge Criterio	on (ug/l)	5	0	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Higest mo	deled conc.	837.734	-0.8	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
			-1.6	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
SURFACE W	ATER LOADING O	GRID	-2.4	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Distance to S	Stream (ft)	255	-3.2	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Plume View V	Width (ft)	99	-4	4.810631	36.767316	160.9356	422.37219	712.787707	837.734254	712.78771	422.37219	160.93561	36.76732	4.810631
Plume View I	Depth (ft)	8	-4.8	4.810613	36.76718	160.935	422.37062	712.785058	837.731141	712.78506	422.37062	160.93502	36.76718	4.810613
			-5.6	4.808761	36.753023	160.873	422.20798	712.5106	837.408572	712.5106	422.20798	160.87305	36.75302	4.808761
			-6.4	4.750349	36.306588	158.9189	417.07947	703.855819	827.236672	703.85582	417.07947	158.91894	36.30659	4.750349
PENTOX I	NEEDED		-7.2	4.178951	31.939432	139.8033	366.91086	619.192162	727.732085	619.19216	366.91086	139.8033	31.93943	4.178951
			-8	2.405315	18.383658	80.46781	211.18609	356.393853	418.867127	356.39385	211.18609	80.467807	18.38366	2.405315
				Average	Groundwa	ter Conce	ntration	300.667	ug/l	-				
				Plume F	low			0.00046	cfs	0.0003	MGD			
				Mass Lo	ading to	Stream		339886.62	ug/day					

### PENTOXSD

						INIQU	uenng m	iput pat	a					
Strear Code	n RMI Ə	Elevati (ft)	ion Dra <i>P</i> (se	inage Area 1 mi)	Slope	PWS (m	With gd)		A	pply FC				
684	1.44	49	5.00	0.04	0.0000	0	0.00			$\checkmark$	_			
							Stream D	ata						
		Trib	Stream	WD	Bch	Bch	Bch	Bch	Tributa	īv	Stream	n	Analys	sis
	LFY	Flow	Flow	Ratio	Width	Depth	Velocity	Trav Time	Hard	рН	Hard	рН	Hard	рН
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	0.00116	0	1.5	0	0	0	100	7	0	0	0	0
Qh		0	0.0083	0	3	0	0	0	100	7	0	0	0	0
						D	ischarge [	Data						
	Name	Perm Numl	nit Exis ber Di Fl	sting Po sc ow	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	тнн Р <b>М</b> Г	CRL PMF	Disc Hard	Disc pH	
			(m	gd)	(mgd)	(mgd)						(mg/L)		
GW	Discharge	0.1	0.00	0017	0	0	0	0	0	0	0	100	7	
						Ра	arameter D	Data						
	Parameter N	lame		Disc Conc	Trib Con <b>c</b>	Disc Daily CV	c Disc / Hourl / CV	Stear y Con	n Stream c CV	Fate Coe	FOS f	Crit Mod	Max Disc Conc	
				(µg/L)	(μg/L	)		(μg/l	_)				(μg/L)	
BENZEN	1E			300.66	7 0	0.	5 0.5	i 0	0	0	0	1	0	
MTBE*				51.051	60	0.	5 0.5	0	0	0	0	1	0	

#### Modeling Input Data

Strea Coc	am RMI le	Elevat (ft)	ion D	rainag Area (sq mi)	e )	Slope	PWS (m	With Igd)			Apply FC				
68	340 0.00	39	0.00	0	.98	0.00000	)	0.00			$\checkmark$	_			
								Stream I	Data						
		Trib	Strea	n W	D	Rch	Rch	Rch	Rch	Tribu	tary	Stream	n	Analys	is
	LFY	Flow	Flow	/ Ra	atio	Width	Depth	Velocity	Trav Time	Hard	pН	Hard	рН	Hard	pН
	(cfsm)	(cfs)	(cfs)	•		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	0.005	92	0	3	0	0	0	100	7	0	0	0	0
Qh		0	0.:	29	0	6	0	0	0	100	7	0	0	0	0
-							[	Discharge	Data						
	Name	Pern Num	nit E ber	xisting Disc Flow	Pe	rmitted Disc Flow	Design Disc Flow	Reserv Factor	e AFC r PMF	CFC PMF	thh Pmf	CRL PMF	Disc Hard	Disc pH	
				(mgd)	(	mgd)	(mgd)						(mg/L)		
				0		0	0	0	0	0	0	0	100	7	_
							Р	arameter	Data						
	Parameter N	lame		Dis Co	sc nc	Trib Conc	Dis Dail C	sc Dis y Hou V C\	c Stea rly Cor /	im Stream no CV	n Fate Coe	FOS f	Crit Mod	Max Disc Conc	
DENT				(µg/	'L)	(μg/L	)	<b>F</b> 0	(μg		0	0	-	(µg/L)	
BENZE MTRE*				•	u n	0	0.	.50.	5 U 5 O	, U	0	0	1	0	
IALL DE				,		U	0	0.	0 0	. 0	0	0	1	0	

### Hydrodynamics

<u>s</u>	WP Basin	1	Stream	<u>n Code:</u>			<u>Stream</u>	n Name	<u>:</u>		
	07K		6	840			NORTHE	AST CRI	EEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	WD Ratio	Velocity	Reach Trav Time	CMT
	(cts)	(cfs)	(cts)	(CfS)		(ft)	(††)		(tps)	(days)	(min)
					Q7-	-10 Hyd	lrodyna	mics			
1.440	0.0012	0	0.0012	0,00026	0.0138	0.0803	1.5	18.679	0.0118	7.4491	.766
0.000	0.0059	0	0.0059	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
1.440	0.0083	0	0.0083	0.00026	0.0138	0.0884	3	33.921	0.0323	2.7266	3.749
0.000	0.29	0	0.29	NA	0	0	0	0	0	0	NA

#### Wasteload Allocations

RMI	Name P	ermit Nu	mber						
1.44 (	GW Discharge	0.1							
					AFC				
Q7-10:	CCT (min)	0.766	PMF	1	Analysis	pH 7	Analysis	Hardness	1 <b>0</b> 0
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	MTBE*		0	0	0	0	NA	NA	NA
				c	FC				
Q7-10:	CCT (min)	0.766	PMF	1	Analysis	pH 7	Analysis	s Hardness	100
	Parameter	5	Stream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
	· · · · · · · · · · · · · · · · · · ·		(µg/L)		(μg/L)		(μg/L)	(µg/L)	(µg/L)
	MTBE*		0	0	0	0	NA	NA	NA
				т	нн				
<b>Q7-1</b> 0:	CCT (min)	0.766	PMF	1	Analysis	spH NA	Analysis	s Hardness	NA
	Parameter	S	Stream Conc (uo/L)	Stream CV	Trib Conc (ua/L)	Fate Coef	WQC (uo/L)	WQ Obj (uo/L)	WLA (ug/L)
	MTBE*		0	0	0	0	20	20	108.216
				_					
				C	RL				
Qh:	CCT (min)	3.749	PMF	1					
	Parameter	:	Stream Conc (uo/L)	Stream CV	Trib Conc (ua/L)	Fate Coef	WQC (ua/L)	WQ Obj (µq/L)	WLA (µa/L)
·····	MTBE*		0	0	0	0	NA	NA	NA

<u>SWP Basir</u> 07K	<u>Stream Code:</u> 6840			<u>Stream</u> NORTHEAS	<u>Name:</u> ST CREEK			
RMI	Name	Pe Nur	rmit nber	Disc Flow (mgd)				
1.44	GW Discharge	C	.1	0.0002	804			
	Parameter	Effluent Limit (μg/L)	Gove Crite	rning erion	Max. Daily Limit (µg/L)	Most S WQBEL (µg/L)	tringent WQBEL Criterion	
MTBE*		51.052	INP	UT	79.649	108.216	THH	

### **Recommended Effluent Limitations**

### SWLOAD5B

METHOD FOR ESTIMATNG FLOW, AVERAGE CONCENTRATION AND MASS LOADING TO SURFACE WATER FROM GROUNDWATER														
Project:	Herr Foods, Ir	IC.		I										_
Date:	3/9/2017			Ī							PA DEP	ARTMENT		
Contaminant:	MTBE Back Calc	ulation		Prepared by	/:	EGD				OF EI	NVIRONMEI	NTAL PROT	ECTION	
SOURCE										┨	SWLO	AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					METHODEC	JR ESTIMA	TING	
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time					ADING TO	SURFACE	
ug/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				vv. has	ed on		
1,800	3	0.3	1.00E-03	0.00065	35	8	1.00E+99				P A Dom	enico (1987)		
										М	odified to In	clude Retard	ation	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.80E+00	0.018	0.353	1.788	12	1.18E-02	1.717226	0.0831435							
				-35	-28	-21	-14	-7	0	7	14	21	28	35
Edge Criterio	on (ug/l)	20	0	20.14012	50.728055	99.39493	155.35886	199.522721	216.100073	199.52272	155.35886	99.394929	50.72805	20.14012
Higest mo	deled conc.	216.1	-0.8	20.14012	50.728055	99.39493	155.35886	199.522721	216.100073	199.52272	155.35886	99.394929	50.72805	20.14012
			-1.6	20.14012	50.728055	99.39493	155.35886	199.522721	216.100073	199.52272	155.35886	99.394929	50.72805	20.14012
SURFACE W	ATER LOADING (	GRID	-2.4	20.14012	50.728055	99.39493	155.35886	199.522721	216.100073	199.52272	155.35886	99.394929	50.72805	20.14012
Distance to S	Stream (ft)	255	-3.2	20.14012	50.728055	99.39493	155.35886	199.522721	216.100073	199.52272	155.35886	99.394929	50.72805	20.14012
Plume View V	Nidth (ft)	70	-4	20.14012	50.728055	99.39493	155.35886	199.522721	216.100073	199.52272	155.35886	99.394929	50.72805	20.14012
Plume View D	Depth (ft)	8	-4.8	20.14004	50.727866	99.39456	155.35828	199.521979	216.09927	199.52198	155.35828	99.394559	50.72787	20.14004
		]	-5.6	20.13229	50.708334	99.35629	155.29846	199.445153	216.016061	199.44515	155.29846	99.356287	50.70833	20.13229
			-6.4	19.88774	50.092386	98.14942	153.41207	197.022517	213.39214	197.02252	153.41207	98.149418	50.09239	19.88774
PENTOX N	NEEDED		-7.2	17.49554	44.066997	86.34347	134.95882	173.323563	187.724157	173.32356	134.95882	86.343465	44.067	17.49554
			-8	10.07006	25.364027	49.69746	77.679429	99.7613603	108.050036	99.76136	77.679429	49.697464	25.36403	10.07006
				Average	Groundwa	ter Conce	ntration	108 384	ua/l					
				Average				100.004	ug/i				!	
				Plume F	low			0.00033	cfs	0.00021	MGD			
								0.00000		0.00021				
				Masslo	ading to	Stream		86631 53	ug/day				[!]	
	1	1	1	Ind35 LU	ading to	Guican		00001.00	ug/uuy			1	1	1

ADVECTIVE TR	RANSPORT WI	TH THREE DIME	NSIONAL DISPER	RSION,1ST OF	RDER DECAY	and RETARDATI	ON - WITH CAL	BRATION T	OOL			
Project:	Herr Foods,	Inc.										
Date:	3/9/2017	Prepared by:	EGD									
		Contaminant:	MTBE Model 10	Back Calculat	tion				NEW C	UICK_	_DOMENICO.	XLS
									0000000	0		
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREAD	SHEEL		
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)					
(MG/L)			>=.001	day-1	(ft)	(ft)				CONT	AL TRANSFC	
1.8	3.00E+00	3.00E-01	1.00E-03	0.00065	35	8	71	73	P./	A. Dom	nenico (1987)	
									Modifie	d to In	clude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V					
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)					
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)					
2.80E+00	0.018	0.353	1.788	12	1.18E-02	1.717226062	0.083143	<mark>11</mark>				
				L.								F
					Centerline P	lot (linear)			Contorlino	Diat /I	(o.c.)	-
Point Conce	entration			_	e enternite i	lot (iniour)			Centerline	Plot (I	og)	
X(ft)	y(ft)	Z(ft)		2.00 1			10	.000				Model
	_						Output					Output
100	0	0		- 1.50 -			Field					-Field
	(11)		-40				Data					Data
	X(ft)	y(ft)	Z(IT)	_ ິ <u>ຊ</u> 100 -			U 1	000				
Conc. At	100	0	0	_ S				.000				
at	7173	days =	0 010	0.50	×		0					
			0.010	0.50								
			mg/i									
	AREAL	CALCULATION		0.00 4	100	200 300		.100 +				
	MODEL	DOMAIN			dist	200 300	′ _	0	100 dis	tance	200	300
		205		4	0.51							
		40	70 5	100	407 5	450	47	) <i>E</i>	204	200 5	255	
10	25.5	57	70.5	102	127.5	153	170	07	204 2	229.5	200	
40	0.000	0.000	0.000	0.002	0.003	0.005	0.0	07	0.006	0.009	0.009	
20	0.307	0.397	0.337	0.309	0.203	0.222	0.	10	0.100	0.129	0.107	
0	1.401	1.217	0.993	0.805	0.040	0.521	0.4	10	0.330	0.209	0.210	
-20	0.387	0.397	0.357	0.309	0.263	0.222	0.1	86	0.155	0.129	0.107	
-40	0.000	0.000	0.000	0.002	0.003	0.005	0.0	07	0.008	0.009	0.009	
Field Data:	Centerline C	Concentratio	n	1.8	0.818	0.216						
	Distance fro	m Source		0	100	255						
	2.5000000			0	100	200						

# **APPENDIX J**

**Chemical Oxidation Product Description and MSDS** 





# The Field Proven and Versatile ISCO Solution to Address Soil & Groundwater Contamination

Klozur[®] SP is the oxidant of choice for *in situ* chemical oxidation (ISCO), because of its proven ability to treat a wide range of contaminants including chlorinated solvents, petroleum and PAHs. Based upon an environmental grade of sodium persulfate (SP), Klozur SP is ideal for contaminated source zones and hot spots that require rapid treatment. When properly activated, Klozur SP provides an unmatched combination of oxidative power, versatility, and control that can be delivered both safely and cost effectively.

Successful field applications of Klozur activated persulfate have been performed globally. These applications demonstrate the ability of Klozur activated persulfate to treat diverse organic contaminants of concern including: chlorinated ethenes (TCE, PCE, DCE and vinyl chloride), chlorinated ethanes (TCA and DCA), chlorinated methanes (carbon tetrachloride and methylene chloride), BTEX, MTBE, polyaromatic hydrocarbons (PAHs), petroleum hydrocarbons (TPHs, GRO, DRO), 1,4-dioxane and pesticides.

### The benefits of Klozur SP

When used with PeroxyChem's patented activation methods, Klozur SP produces the powerful oxidative (SO₄-•, OH•) and reductive (O₂-•) radicals creating a multi-radical attack for the rapid destruction of recalcitrant compounds.

## $S_2O_8^{-2}$ + Activator $\rightarrow SO_4^{-\bullet}$ , OH•, $O_2^{-\bullet}$

Multiple activation options and methods of delivery provide for a flexible and custom solution based on site conditions. With a solubility limit of up to 40 wt%, Klozur SP can be applied as a fully soluble solution. Klozur SP is a stable oxidant given its high oxidation potential, with a typical active lifetime in the subsurface of weeks to months, providing an extended radius of influence. Klozur SP is safe to handle with PeroxyChem's recommended use guidelines and does not generate heat or gas.

### The sound science of Klozur Activated Persulfate

Examples of Contaminants of Concern

CHLORINATED SOLVENTS PCE, TCE, DCE, VC, TCA, DCA, methylene chloride, carbon tetrachloride, chlorobenzene

> **PETROLEUM** TPH, BTEX, DRO, GRO

PAHs creosote, MGP residuals 1,4-dioxane, MTBE, TBA, energetics, chlorinated pesticides

Klozur activated persulfate has a long history of documented success having been used at thousands of sites to remediate contaminants of concern around the world. The field application of Klozur activated persulfate has been scientifically validated in hundreds of independent peer-reviewed journal articles and conference presentations.

### Applications methods

- Direct push injection
- Fixed well injection
- Soil blending

For more information and detailed case studies, please visit our website.



remediation@peroxychem.com | 1.866.860.4760 | peroxychem.com/remediation

Klozur is a Trademark of PeroxyChem. © 2016 PeroxyChem. All rights reserved. Document 02-03-ESD-14

SDS # : 7775-27-1-12 Revision date: 2016-08-01 Format: NA Version 1.03



#### **1. PRODUCT AND COMPANY IDENTIFICATION** Product Identifier **Product Name** Klozur® SP Other means of identification CAS-No 7775-27-1 Sodium Persulfate; Sodium Peroxydisulfate; Disodium Peroxydisulfate; Peroxydisulfuric Synonyms acid, disodium salt; Peroxydisulfuric acid, sodium salt **Alternate Commercial Name** Klozur® Persulfate Recommended use of the chemical and restrictions on use **Recommended Use:** In situ and ex situ chemical oxidation of contaminants and compounds of concern for environmental remediation applications **Restrictions on Use:** No uses to be advised against were identified. Manufacturer/Supplier PeroxyChem LLC 2005 Market Street Suite 3200 Philadelphia, PA 19103 Phone: +1 267/ 422-2400 (General Information) E-Mail: sdsinfo@peroxychem.com Emergency telephone numbers For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) 1 303/ 389-1409 (Medical - U.S. - Call Collect)

### 2. HAZARDS IDENTIFICATION

#### **Classification**

#### OSHA Regulatory Status

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).

Acute toxicity - Oral	Category 4
Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2B
Respiratory sensitization	Category 1
Skin sensitization	Category 1
Specific target organ toxicity (single exposure)	Category 3
Oxidizing Solids	Category 3

#### GHS Label elements, including precautionary statements

#### EMERGENCY OVERVIEW

#### Danger

#### Hazard Statements

- H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled
- H335 May cause respiratory irritation
- H320 Causes eye irritation
- H315 Causes skin irritation
- H317 May cause an allergic skin reaction
- H302 Harmful if swallowed
- H272 May intensify fire; oxidizer



#### **Precautionary Statements - Prevention**

- P261 Avoid breathing dust.
- P285 In case of inadequate ventilation wear respiratory protection
- P271 Use only outdoors or in a well-ventilated area
- P280 Wear protective gloves/ protective clothing
- P264 Wash face, hands and any exposed skin thoroughly after handling
- P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking
- P220 Keep/Store away from clothing/combustible materials
- P221 Take any precaution to avoid mixing with combustibles

#### **Precautionary Statements - Response**

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

- P337 + P313 If eye irritation persists: Get medical advice/ attention
- P302 + P352 IF ON SKIN: Wash with plenty of water.
- P333 + P313 If skin irritation or rash occurs: Get medical advice/ attention
- P304 + P341 IF INHALED: If breathing is difficult, remove to fresh air and keep at rest in a position comfortable for breathing
- P342 + P311 If experiencing respiratory symptoms: Call a POISON CENTER or doctor
- P301 + P312 IF SWALLOWED: Call a POISON CENTER or doctor if you feel unwell
- P330 Rinse mouth

P370 + P378 - In case of fire: Use water spray for extinction

#### **Precautionary Statements - Storage**

P403 + P233 - Store in a well-ventilated place. Keep container tightly closed

#### Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

**Other Information** Risk of decomposition by heat or by contact with incompatible materials

#### Unknown acute toxicity

0% of the mixture consists of ingredient(s) of unknown toxicity

### **3. COMPOSITION/INFORMATION ON INGREDIENTS**

Formula

Na2O8S2

Chemical name	CAS-No	Weight %
Sodium Persulfate	7775-27-1	> 99

4. FIRST AID MEASURES				
General Advice	Remove from exposure, lie down. Show this material safety data sheet to the doctor in attendance.			
Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids intermittently. Consult a physician. If symptoms persist, call a physician.			
Skin Contact	Wash off immediately with soap and plenty of water while removing all contaminated clothes and shoes. Get medical attention if irritation develops and persists.			
Inhalation	Remove from exposure, lie down. If breathing is irregular or stopped, administer artificial respiration. Call a physician immediately.			
Ingestion	Do NOT induce vomiting. Call a physician or poison control center immediately. Rinse mouth. Drink 1 or 2 glasses of water.			
Most important symptoms and effects, both acute and delayed	Itching; Redness; Coughing and/ or wheezing.			
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically			
	5. FIRE-FIGHTING MEASURES			
Suitable Extinguishing Media	Water. Cool containers with flooding quantities of water until well after fire is out.			
Unsuitable extinguishing media	Do not use carbon dioxide or other gas filled fire extinguishers; they will have little effect on decomposing persulfate.			
Specific Hazards Arising from the Chemical	Decomposes under fire conditions to release oxygen that intensifies the fire.			
<u>Explosion data</u> Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Not sensitive.			
Protective equipment and precautions for firefighters	As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.			
	6. ACCIDENTAL RELEASE MEASURES			
Personal Precautions	Keep off any unprotected persons. Avoid contact with the skin and the eyes. Avoid breathing dust. Wear personal protective equipment.			
Other	Never add other substances or combustible waste to product residues.			
Environmental Precautions	Prevent material from entering into soil, ditches, sewers, waterways, and/or groundwater. See Section 12, Ecological Information for more detailed information.			
Methods for Containment	Vacuum, shovel or pump waste into a drum and label contents for disposal. Avoid dust formation. Store in closed container. Page 3/8			

Methods for cleaning up Clean up spill area and treat as special waste. Dispose of waste as indicated in Section 13. 7. HANDLING AND STORAGE Handling Wear personal protective equipment. Use only in area provided with appropriate exhaust ventilation. Avoid dust formation. Handle product only in closed system or provide appropriate exhaust ventilation at machinery. Avoid contact with skin and eyes. Avoid breathing dust. Remove and wash contaminated clothing before re-use. Reference to other sections. Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from heat. Do not store near combustible materials. Avoid contamination of opened product. Keep away from food, drink and animal feedingstuffs. Avoid formation and deposition of dust. Incompatible products . Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds.

#### 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

#### Control parameters

#### **Exposure Guidelines**

Chemical name	ACGIH TLV	OSHA PEL	NIOSH	Mexico
Sodium Persulfate	TWA: 0.1 mg/m ³	-	-	-
7775-27-1				
Chemical name	British Columbia	Quebec	Ontario TWAEV	Alberta
Sodium Persulfate 7775-27-1	TWA: 0.1 mg/m ³	-	TWA: 0.1 mg/m ³	TWA: 0.1 mg/m ³

#### Appropriate engineering controls

Engineering measures	Provide local exhaust or general ventilation adequate to maintain exposures below
	permissable exposure limits.

#### Individual protection measures, such as personal protective equipment

Eye/Face Protection	Eye protection recommended. Chemical goggles consistent with EN 166 or equivalent.
Skin and Body Protection	Wear long-sleeved shirt, long pants, socks, and shoes.
Hand Protection	Protective gloves: Neoprene gloves, Polyvinylchloride, Natural Rubber.
Respiratory Protection	If exposure limits are exceeded or irritation is experienced, NIOSH/MSHA approved respiratory protection should be worn: particulate filtering facepiece respirators.
Hygiene measures	Keep away from food, drink and animal feeding stuffs. Do not eat, drink or smoke when using this product. Wash hands before breaks and after shifts. Keep work clothes separate, remove contaminated clothing - launder after open handling of product.
General information	Protective engineering solutions should be implemented and in use before personal protective equipment is considered.

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

#### Information on basic physical and chemical properties

Appearance	Crystalline solid
Physical State	Solid
Color	White

Odor Odor threshold рΗ Melting point/freezing point **Boiling Point/Range** Flash point **Evaporation Rate** Flammability (solid, gas) Flammability Limit in Air **Upper flammability limit:** Lower flammability limit: Vapor pressure Vapor density Density Specific gravity Water solubility Solubility in other solvents **Partition coefficient** Autoignition temperature **Decomposition temperature** Viscosity, kinematic Viscosity, dynamic **Explosive properties Oxidizing properties** Molecular weight VOC content (%) **Bulk density** 

odorless Not applicable 6.0 (1% solution) 180 °C (Decomposes) Decomposes upon heating Not flammable No information available Not flammable Not applicable No information available No information available 6.07E-30 mm Hg at 25°C No information available 2.59 g/cm³ (crystal density) No information available 575 g/l @ 25 °C No information available No information available (inorganic) No evidence of combustion up to 600°C > 100 °C (assume) No information available (Solid) No information available Not explosive oxidizer 238.1 Not applicable 1.12 g/cm³ (loose)

SDS #: 7775-27-1-12 Revision date: 2016-08-01

Version 1.03

#### **10. STABILITY AND REACTIVITY**

Reactivity	Oxidizer. Contact with other material may cause fire
Chemical Stability	Stable.
Possibility of Hazardous Reactions	None under normal processing.
Hazardous polymerization	Hazardous polymerization does not occur.
Conditions to avoid	Heat. Moisture.
Incompatible materials	Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds

Hazardous Decomposition Products Oxygen which supports combustion.

#### **11. TOXICOLOGICAL INFORMATION**

#### Product Information

Unknown acute toxicity	0% of the mixture consists of ingredient(s) of unknown toxicity
LD50 Oral	Sodium Persulfate: 895 mg/kg (rat)
LD50 Dermal	Sodium Persulfate: > 10 g/kg
LC50 Inhalation	Sodium Persulfate: >5.10 mg/L (4h) (rat)
Serious eye damage/eye irritation	Irritating to eyes.
Skin corrosion/irritation	Minimally irritating.
Sensitization	Sodium Persulfate:. May cause sensitization by inhalation and skin contact.

#### Information on toxicological effects

Symptoms

Symptoms of allergic reaction may include rash, itching, swelling and trouble breathing.

#### Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation corrosivity	Irritating to eyes, respiratory system and skin. None.
Carcinogenicity	Contains no ingredient listed as a carcinogen.
Mutagenicity	Did not show mutagenic effects in animal experiments
Neurological effects	Not neurotoxic
Reproductive toxicity Developmental toxicity Teratogenicity	This product is not recognized as reprotox by Research Agencies. None known. Not teratogenic in animal studies.
STOT - single exposure STOT - repeated exposure	May cause respiratory irritation. Not classified.
Target organ effects	Eyes, Lungs.
Aspiration hazard	No information available.

### **12. ECOLOGICAL INFORMATION**

#### **Ecotoxicity**

#### Ecotoxicity effects

Sodium Persulfate (7775	5-27-1)			
Active Ingredient(s)	Duration	Species	Value	Units
Sodium Persulfate	96 h LC50	Rainbow trout	163	mg/L
Sodium Persulfate	48 h LC50	Daphnia magna	133	mg/L
Sodium Persulfate	96 h LC50	Grass shrimp	519	mg/L
Sodium Persulfate	72 h EC50	Algae Selenastrum	116	mg/L
		capricornutum		

Persistence and degradability Biodegradability does not pertain to inorganic substances.				
Bioaccumulation Does not bioaccumulate.				
Mobility Dissociates into ions.				
Other Adverse Effects	None known.			
13. DISPOSAL CONSIDERATIONS				
Waste disposal methods	This material, as supplied, is a hazardous waste according to federal regulations (40 CFR 261). It must undergo special treatment, e.g. at suitable disposal site, to comply with local regulations.			
Contaminated Packaging	Empty remaining contents. Dispose of in accordance with local regulations.			
14. TRANSPORT INFORMATION				

SDS #: 7775-27	-1-12
Revision date: 2016-0	)8-01
Version	1.03

UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
TDG	
UNID no Proper Shipping Name Hazard class Packing Group	SODIUM PERSULFATE 5.1
MEX	
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
IMDG/IMO	
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
ADR/RID	
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III

### **15. REGULATORY INFORMATION**

### U.S. Federal Regulations

#### SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

#### SARA 311/312 Hazard Categories

Acute health hazard	Yes
Chronic health hazard	No
Fire hazard	Yes
Sudden release of pressure hazard	No
Reactive Hazard	No

### Clean Water Act

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

#### CERCLA/EPCRA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

#### US State Regulations

#### **U.S. State Right-to-Know Regulations**

This product contains the following substances regulated under state Right-to-Know laws:

Chemical name	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sodium Persulfate		Х			

#### California Proposition 65

This product does not contain any Proposition 65 chemicals

#### International Inventories

Component	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines )	AICS (Australia)	NZIoC (New Zealand)
Sodium Persulfate 7775-27-1 ( > 99 )	Х	Х	Х	Х	Х	Х	X	Х	Х

#### Mexico

Mexico - Grade

Slight risk, Grade 1

### **16. OTHER INFORMATION**

NFPA ŀ	Health Hazards 1	Flammability 0	Stability 1	Special Hazards OX
HMIS F	Health Hazards 1	Flammability 0	Physical hazard 1	Special precautions J

NFPA/HMIS Ratings Legend

Special Hazards: OX = Oxidizer

Protection=J (Safety goggles, gloves, apron, combination dust and vapor respirator)

Revision date: Revision note 2016-08-01 (M)SDS sections updated: 15

#### **Disclaimer**

PeroxyChem believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specified product designated and may not be applicable where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of PeroxyChem, PeroxyChem expressly disclaims any and all liability as to any results obtained or arising from any use of the products or reliance on such information.

#### Prepared By:

PeroxyChem

KLOZUR - Trademark of Peroxychem © 2016 PeroxyChem. All Rights Reserved. End of Safety Data Sheet



**Univar USA Inc** 845 Terrace Court Saint Paul, MN 55130 PH. 651-774-9400 FAX 651-774-0850 www.univarusa.com

DATE: October 6, 2016

PRODUCT: Caustic soda 25%

PRODUCT GRADE: Technical

UNIVAR PRODUCT CODE: 605579

UNIVAR LOT NUMBER: ST106856764

TEST	RESULTS	SPECIFICATIONS
Specific gravity (25/15.6°C):	1.276	1.278 ± 0.008
NaOH, weight % (acid-base titration)	24.9%	25.0% ± 0.5%
pH (1:4 dilution)	13.7	>13
Color:	Pass	None to slight
Odor:	Pass	Typical
Appearance:	Pass	Clear, free of suspended matter

Univar USA Inc. Steve Bjelke Tank Farm Supervisor/Chemist

Notes: This material is made from caustic soda 50% and deionized water. Results are based on analysis of the bulk tank.

This certificate of analysis is produced electronically and is valid without a signature.

Please consult the SDS for further information.



Univar USA Inc Safety Data Sheet

SDS No:		
Version No:	001 2015-04-28	
Order No:		

3075 Highland Pkwy, Ste 200, Downers Grove, IL 60515 (425) 889 3400

**Emergency Assistance** 

For emergency assistance involving chemicals call Chemtrec - (800) 424-9300



425-889-3400

# **SAFETY DATA SHEET**

1. Identification

Product identifier: CAUSTIC SODA 25 - 28%

Other means of identification

Synonyms: Sodium Hydroxide

SDS number: 00010000085

#### Recommended use and restriction on use

Recommended use: Not available.

Restrictions on use: Not known.

Emergency telephone number:For emergency assistance Involving chemicals

call CHEMTREC day or night at: 1-800-424-9300. CHEMTREC INTERNATIONAL Tel# 703-527-3887

#### 2. Hazard(s) identification

#### Hazard classification

#### **Health hazards**

	10 1	
Acute toxicity	y (Oral	) Category 4

Skin corrosion/irritation Category 1A

Serious eye damage/eye irritation Category 1 Environmental hazardsAcute hazards Category 3 to the aquatic environment

#### Label elements

Hazard symbol



Version: 1.0 Revision date: 04/28/2015





Signal word	Danger
Hazard statement	Corrosive. Harmful if swallowed. Causes severe skin burns and eye damage.
Precautionary statement	
Prevention	Wash thoroughly after handling. Do not eat, drink or smoke when using this product. Do not breathe dust or mists. Wear protective gloves/protective clothing/eye protection/face protection.
Response	IF INHALED: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. IF SWALLOWED: Call a POISON CENTER/doctor/ if you feel unwell. Rinse mouth. Do NOT induce vomiting. Immediately call a POISON CENTER/doctor. Specific treatment (see this label). Wash contaminated clothing before reuse.
Storage	Store in a closed container. Keep container tightly closed. Store in a well- ventilated place. Store in a dry place. Store locked up.
Disposal	Dispose of contents/container to an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.
Other hazards which do not result in GHS classification	None.
SDS_US - 00010000085	2/13

Version: 1.0 Revision date: 04/28/2015



### 3. Composition/information on ingredients

#### Substances

Chemical identity	Common name and synonyms	CAS number	Content in percent (%)*
Sodium hydroxide		1310-73-2	25%
Water		7732-18-5	75%

* All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.

### 4. First-aid measures

General information: Ingestion:	CAUTION! First aid personnel must be aware of own risk during rescue! Do NOT induce vomiting. Never give liquid to an unconscious person. Get medical attention immediately.
Inhalation:	Move to fresh air. If breathing is difficult, give oxygen. Perform artificial respiration if breathing has stopped. Get medical attention immediately.
Skin contact:	Immediately flush with plenty of water for at least 15 minutes while removing contaminated clothing and shoes.
Eye contact:	If in eyes, hold eyes open, flood with water for at least 15 minutes and see a doctor.
Most important symptoms/effects	, acute and delayed
Symptoms:	No data available.

#### Indication of immediate medical attention and special treatment needed

Treatment:	No data available.	
5. Fire-fighting measures		

General fire hazards: No data available. Suitable (and unsuitable) extinguishing media

Suitable extinguishing media:	Use: Powder. In case of fire in the surroundings: all extinguishing agents allowed.	
Unsuitable extinguishing	No data available.	
Specific hazards arising from the chemical:	No data available.	
SDS_US - 000100000085	:	3/13

Version: 1.0 Revision date: 04/28/2015





Special protective equipment and precautions for firefighters				
Special fire fighting	No data available.			
procedures.				
Special protective equipment for	No data avallable.			
fire-fighters:				
6. Accidental release measures	6			
Personal precautions, protective	Use personal protective equipment. Keep unauthorized personnel away.			
equipment and emergency				
procedures:				
Methods and material for	Absorb spillage with non-combustible, absorbent material. Dike for later			
containment and cleaning up:	disposal.			
7. Handling and storage				
Precautions for safe handling:	Use personal protective equipment as required. Use only with adequate			
-	ventilation. Container must be kept tightly closed.			
Conditions for safe storage.	No data available.			
including any				
incompatibilitios:				
incompationities:				

Version: 1.0 Revision date: 04/28/2015





### 8. Exposure controls/personal protection

#### Control parameters

Occupational exposure limits

Chemical identity	Туре	Exposure Limit values	Source
Sodium hydroxide	Ceiling	2 mg/m3	US. ACGIH Threshold Limit Values (03 2013)
	Ceil_Tim e	2 mg/m3	US. NIOSH: Pocket Guide to Chemical Hazards (2010)
	PEL	2 mg/m3	US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)
	Ceiling	2 mg/m3	US. OSHA Table Z-1-A (29 CFR 1910.1000) (1989)
	Ceiling	2 mg/m3	US. Tennessee. OELs. Occupational Exposure Limits, Table Z1A (06 2008)
Sodium hydroxide - Particulate.	ST ESL	20 μg/m3 US. Texas. Effects Screening Levels (Texas Commission on Environmental Quality) (02 2013)	
	AN ESL	2 μg/m3	US. Texas. Effects Screening Levels (Texas Commission on Environmental Quality) (02 2013)
Sodium hydroxide	Ceiling	2 mg/m3	US. California Code of Regulations, Title 8, Section 5155. Airborne Contaminants (02 2012)

Appropriate engineering

No data available.

controls

Individual protection measures, such as personal protective equipment

General information:Use personal protective equipment as required. Always observe good<br/>personal hygiene measures, such as washing after handling the material<br/>and before eating, drinking, and/or smoking. Routinely wash work clothing<br/>to remove contaminants. Discard contaminated footwear that cannot be<br/>cleaned. Practice good housekeeping.Eye/face protection:Use personal protective equipment as required. Wear goggles/face shield.Skin protection<br/>Hand protection:No data available.Other:No data available.

Version: 1.0 Revision date: 04/28/2015





Respiratory protection: No data	a available.			
Hygiene measures: No data	a available.			
9. Physical and chemical properties	9. Physical and chemical properties			
Physical state:	Liquid			
Form:	No data available.			
Color:	No data available.			
Odor:	No data available.			
Odor threshold:	No data available.			
pH:	14			
Melting point/freezing point:	-25 °C			
Initial boiling point and boiling range:	116 °C			
Flash Point:	No data available.			
Evaporation rate:	No data available.			
Flammability (solid, gas):	No data available.			
Upper/lower limit on flammability or explo	osive limits			
Flammability limit - upper (%):	No data available.			
Flammability limit - lower (%):	No data available.			
Explosive limit - upper (%):	No data available.			
Explosive limit - lower (%):	No data available.			
Vapor pressure:	No data available.			
Vapor density:	No data available.			
Relative density:	No data available.			
Solubility(ies)				
Solubility in water:	No data available.			
Solubility (other):	No data available.			
Partition coefficient (n-octanol/water):	No data available.			
Auto-ignition temperature:	No data available.			
Decomposition temperature:	No data available.			
Viscosity:	No data available.			

Version: 1.0 Revision date: 04/28/2015





#### 10. Stability and reactivity **Reactivity:** No data available. No data available. **Chemical stability: Possibility of hazardous** No data available. reactions: No data available. Conditions to avoid: No data available. Incompatible materials: Hazardous decomposition No data available. products: 11. Toxicological information Symptoms related to the physical, chemical and toxicological characteristics Ingestion: No data available. Inhalation: No data available. Skin contact: No data available. No data available. Eye contact: Information on toxicological effects Acute toxicity (list all possible routes of exposure) Oral Product: ATEmix (): 325 mg/kg Dermal Product: No data available. Inhalation Product: No data available. **Repeated dose toxicity** Product: No data available. Skin corrosion/irritation No data available. Product: Serious eye damage/eye irritation Product: No data available. **Respiratory or skin sensitization** Product: No data available. Carcinogenicity Product: No data available.

### SDS NO:10000085 VERSION:001 2015-04-28

Version: 1.0 Revision date: 04/28/2015



IARC Monographs	on the Evaluation of Carcinogenic Risks to Humans:
No carcinogenic co	mponents identified
US. National Toxic	ology Program (NTP) Report on Carcinogens:
No carcinogenic co	mponents identified
US. OSHA Specifica	ally Regulated Substances (29 CFR 1910.1001-1050):
No carcinogenic co	mponents identified
Germ cell mutagenicity	
In vitro	
Product:	No data available.
In vivo	
Product:	No data available.
Reproductive toxicity	
Product:	No data available.
Specific target organ tox	icity - single exposure
Product:	No data available.
Specific target organ tox	icity - repeated exposure
Product:	No data available.
Aspiration hazard	
Product:	No data available.
Other effects:	No data available.

### 12. Ecological information

Ecotoxicity: Acute hazards to the aquatic en Fish	vironment:
Product:	No data available.
Specified substance(s):	
Sodium hydroxide	LC 50 (Western mosquitofish (Gambusia affinis), 24 h): 125 mg/l Mortality LC 50 (Guppy (Poecilia reticulata), 24 h): 145 mg/l Mortality LC 50 (Goldfish (Carassius auratus), 24 h): 160 mg/l Mortality LC 50 (Bony fish superclass (Osteichthyes), 48 h): 33 - 100 mg/l Mortality LC 50 (Western mosquitofish (Gambusia affinis), 48 h): 125 mg/l Mortality
Aquatic invertebrates	
Product:	No data available.
Specified substance(s):	
Sodium hydroxide	EC 50 (Water flea (Ceriodaphnia dubia), 48 h): 34.59 - 47.13 mg/l Intoxication LC 50 (Common shrimp, sand shrimp (Crangon crangon), 48 h): 33 - 100 mg/l Mortality LC 50 (Cockle (Cerastoderma edule), 48 h): 330 -

### SDS_US - 00010000085

Version: 1.0 Revision date: 04/28/2015





	1,000 mg/l Mortality
Chronic hazards to the aquatic e	environment:
Fish	
Product:	No data available.
Aquatic invertebrates	
Product:	No data available.
<b>Toxicity to Aquatic Plants</b>	
Product:	No data available.
Persistence and degradability	
Biodegradation	
Product:	No data available.
BOD/COD ratio	
Product:	No data available.
Bioaccumulative potential	
<b>Bioconcentration factor (BCF)</b>	
Product:	No data available.
Partition coefficient n-octano	l / water (log Kow)
Product:	No data available.
Mobility in soil:	No data available.
Known or predicted distributi	on to environmental compartments
Sodium hydroxide	No data available.
Water	No data available.
Known or predicted distributi	on to environmental compartments
Water	No data available.

### 13. Disposal considerations

Disposal instructions:	No data available.	
Contaminated packaging:	No data available.	
14. Transport information		

UN number:	UN 1824
UN proper shipping name:	Sodium hydroxide solution
Transport hazard class(es)	
Class:	8
Label(s):	8
Packing group:	11
Marine Pollutant:	Not regulated.

SDS_US - 00010000085
Version: 1.0 Revision date: 04/28/2015





Special precautions for user:	-
IMDG	
UN number:	UN 1824
UN proper shipping name:	SODIUM HYDROXIDE SOLUTION
Transport hazard class(es)	
Class:	8
Label(s):	8
EmS No.:	F-A, S-B
Packing group:	Ш
Marine Pollutant:	Not regulated.
Special precautions for user:	-
ΙΑΤΑ	
UN number:	UN 1824
Proper Shipping Name:	Sodium hydroxide solution
Transport hazard class(es):	
Class:	8
Label(s):	8
Packing group:	II
Environmental hazards	Not regulated.
Special precautions for user:	-
Other information	
Passenger and cargo aircraft:	Allowed.
Cargo aircraft only:	Allowed.
15. Regulatory information	

# US federal regulationsUS. OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

None present or none present in regulated quantities.

CERCLA Hazardous Substance List (40 CFR 302.4):

Sodium hydroxide Reportable quantity: 1000 lbs.

Superfund amendments and reauthorization act of 1986 (SARA)

**Hazard categories** 

Not listed.

Version: 1.0 Revision date: 04/28/2015





SARA 302 Extremely hazardo	ous substance		
None present or none present in regulated quantities.			
SARA 304 Emergency release	e notification		
Chemical identity	RQ		
Sodium hydroxide	1000 lbs.		
SARA 311/312 Hazardous ch	emical		
Chemical identity	Threshold Planning Quantity		
Sodium hydroxide	500 lbs		
SARA 313 (TRI reporting)			
None present or non	e present in regulated quantities.		
Clean Water Act Section 311 Haz	zardous Substances (40 CFR 117.3)		
Sodium hydroxide	Reportable quantity: 1000 lbs.		
Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130):			
None present or none preser	nt in regulated quantities.		
US state regulations			
US. California Proposition 65	5		
No ingredient regula	ted by CA Prop 65 present.		
US. New Jersey Worker and	Community Right-to-Know Act		
Sodium hydroxide	Listed		
US. Massachusetts RTK - Sub	ostance List		
Sodium hydroxide	Listed		
US. Pennsylvania RTK - Haza	rdous Substances		
Sodium hydroxide	Listed		
US. Rhode Island RTK			

Sodium hydroxide Listed

Version: 1.0 Revision date: 04/28/2015





Inventory Status: Australia AICS:	Not in compliance with the inventory.
Canada DSL Inventory List:	Not in compliance with the inventory.
EU EINECS List:	On or in compliance with the inventory
EU ELINCS List:	Not in compliance with the inventory.
Japan (ENCS) List:	Not in compliance with the inventory.
EU No Longer Polymers List:	Not in compliance with the inventory.
China Inv. Existing Chemical Substances:	Not in compliance with the inventory.
Korea Existing Chemicals Inv. (KECI):	Not in compliance with the inventory.
Canada NDSL Inventory:	Not in compliance with the inventory.
Philippines PICCS:	Not in compliance with the inventory.
US TSCA Inventory:	On or in compliance with the inventory
New Zealand Inventory of Chemicals:	Not in compliance with the inventory.
Japan ISHL Listing:	Not in compliance with the inventory.
Japan Pharmacopoeia Listing:	Not in compliance with the inventory.
40 Other information including data of property	tion or loot revision

16.Other information, including date of preparation or last revision

## **HMIS Hazard ID**



SDS_US - 00010000085

Version: 1.0 Revision date: 04/28/2015





# Univar USA Inc Safety Data Sheet

For Additional Information contact SDS Coordinator during business hours, Pacific time: (425) 889-3400

# Notice

Univar USA Inc. ("Univar") expressly disclaims all express or implied warranties of merchantability and fitness for a particular purpose, with respect to the product or information provided herein, and shall under no circumstances be liable for incidental or consequential damages.

Do not use ingredient information and/or ingredient percentages in this SDS as a product specification. For product specification information refer to a product specification sheet and/or a certificate of analysis. These can be obtained from your local Univar sales office.

All information appearing herein is based upon data obtained from the manufacturer and/or recognized technical sources. While the information is believed to be accurate, Univar makes no representations as to its accuracy or sufficiency. Conditions of use are beyond Univar's control and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their particular purposes and they assume all risks of their use, handling, and disposal of the product, or from the publication or use of, or reliance upon, information contained herein.

This information relates only to the product designated herein, and does not relate to its use in combination with any other material or in any other process



# Activating Klozur[®] Persulfate with a 25% Sodium Hydroxide Solution

# BACKGROUND

Alkaline activated Klozur[®] persulfate is a widely used powerful technology capable of remediating most common contaminants of concern. In addition to the oxidative radical species typically formed during the activation of persulfate, alkaline activated persulfate benefits from the formation of reductants and nucleophiles. These additional reactive species result in the treatment of chlorinated methanes, such as carbon tetrachloride, and chlorinated ethanes, such as 1,1,1-trichloroethane, in addition to many other compounds typically reactive with activated persulfate. Compounds alkaline activated Klozur persulfate has been shown to treat include chlorinated ethenes (TCE, PCE, DCE, and vinyl chloride), 1,4-dioxane, MTBE, TBA, petroleum hydrocarbons (BTEX, and PAHs) and many others. For a complete list, please contact your PeroxyChem technical representative or consult www.peroxychem.com/remediation.

# DETERMINING THE AMOUNT OF ACTIVATOR NEEDED

For alkaline activation of Klozur persulfate, the pH of the soil and groundwater in contact with the persulfate will need to be maintained at greater than pH 10.5. Sodium Hydroxide (NaOH, caustic soda) can be used to achieve the pH target range. The quantity of NaOH to achieve and maintain a pH > 10.5 arises from two sources; 1) natural demand from soil and groundwater, and 2) the generation of acid during the decomposition of Klozur persulfate. The amount of the NaOH needed to raise soil and groundwater pH must be determined experimentally. The demand for NaOH can due to the generation of acid during the decomposition can be estimated as two moles of NaOH per mole of Klozur persulfate must. Thus, the Total NaOH Demand can be estimated as:

# Total NaOH Demand = NaOH needed to raise soil and groundwater to target pH >10.5 + 2 moles NaOH / mole Klozur persulfate applied

# SAFETY AND HANDLING

As the combination of NaOH with persulfate can initiate a reaction, PeroxyChem does not recommend combining NaOH with persulfate in the same batching tank.

PeroxyChem recommends the use of separate tanks to store the persulfate and NaOH solutions. Contact between the NaOH and persulfate prior to injection should be limited to prevent the initiation of the reaction. This is typically accomplished by mixing the reagents inline prior to the wellhead or injecting the reagents separately in a serial fashion in a manner that creates sufficiently alkaline conditions to activate the persulfate.

Sodium hydroxide is commonly delivered to a site in drums, totes, or in tankers. PeroxyChem recommends storing the sodium hydroxide in an area with chemically compatible secondary containment and a site specific spill prevention plan. Sodium Hydroxide is a corrosive chemical and can cause severe chemical burns to body tissue if mishandled. To help prevent potential issues, PeroxyChem recommends following the guidance provided in the Safety Data Sheet (SDS) including the use of appropriate Personal Protective Equipment (PPE). In addition, chemically compatible and appropriate equipment, procedures, and properly trained staff are required when handling and transferring NaOH.





# Review the SDS with all workers prior to use.

Sodium Hydroxide is sold commercially in a variety of concentrations. Highly concentrated forms of NaOH (50 % or greater solutions and solid form NaOH) may generate extreme exothermic reactions upon dilution. In certain circumstances, sufficient heat may be liberated that it can boil the solution, generate steam eruptions, and damage to equipment.

# To minimize potential risk, PeroxyChem recommends NaOH solutions of no more than 25% by weight be used to activate Klozur persulfate.

This will help to minimize the generation of heat upon mixing the NaOH with water. PeroxyChem does not permit use of NaOH concentrations greater than 25% in its Klozur mixing rental equipment.



remediation@peroxychem.com | 1.866.860.4760 | peroxychem.com/remediation

Klozur is a Trademark of PeroxyChem. © 2015 PeroxyChem. All rights reserved. Document 01-01-ESD-15. The information contained herein is, to our knowledge, true and accurate. However, we make no warranty or representation, expressed or implied, and nothing contained herein should be construed as permission or recommendation to infringe any patent. All intellectual property rights to this material are retained by PeroxyChem.

# **APPENDIX K**

EPA Underground Injection Control Authorization



3020 Columbia Avenue, Lancaster, PA 17603 ● Phone: (717) 394-3721 E-mail: rettew@rettew.com ● Web site: rettew.com

November 1, 2016

We answer to you.

Engineers Planners Surveyors Landscape Architects Environmental Consultants

Mr. Mark Nelson Class V Team Leader and Technical Representative United States Environmental Protection Agency 1060 Chapline Street Wheeling, West Virginia 26003-2995

> RE: Underground Injection Control Permitting and Registration Notice for Class V Injection Herr Foods, Inc.
> 273 Old Baltimore Pike West Nottingham Township, Chester County, Pennsylvania RETTEW Project No. 101722001

Dear Mr. Nelson:

RETTEW Associates, Inc. has prepared this notice on behalf of Herr Foods, Inc. (Herr's), for the proposed injection of chemical oxidants to remediate a release of petroleum to the subsurface from a regulated underground storage tank (UST) system at the referenced location. Remediation is proposed in accordance with the Pennsylvania Department of Environmental Protection (PADEP) corrective action process for regulated storage tank systems. A Remedial Action Plan (RAP) is currently being drafted that will propose the use of in-situ chemical oxidation (ISCO) as a remedial technology if the findings of a field pilot test verify that ISCO is a feasible remediation technology.

The ISCO pilot test will utilize a combination of fixed well and direct-push points for the injection of persulfate activated with sodium hydroxide to remediate the source area, which is present below the seasonally high water table in the zone of saturation and was delineated during previous phases of site characterization. Product specifications for the activated persulfate and sodium hydroxide are enclosed. The source is known to extend laterally 150 feet downgradient of the UST system, and has been detected at depths up to 13 feet below grade. The purpose of the ISCO pilot test is to confirm injection pressures and injection volumes. Soil and groundwater sampling will be performed before and after the pilot test to assess remedial effectiveness.

During the pilot test, one fixed injection well and two direct-push points will be used to inject activated persulfate to depths up to 15 feet below grade. The fixed injection well will be installed in an eight-inch diameter hole drilled with hollow-stem auger equipment and constructed with two-inch diameter wire-wrapped Schedule 80 PVC screen from approximately five to 12 feet below grade. The two direct-push injection points will be used for top-down injection at two-foot intervals, beginning at seven feet below grade up to 15 feet below grade. Approximately 900 gallons of activated persulfate will be injected in the eight to 12-foot intervals, and approximately 2,150 gallons will be injected in the seven to 15-foot intervals.



If the findings of the pilot test indicate that ISCO is an effective remedial technology, a full-scale ISCO injection design will be presented in the RAP. Conceptually, full-scale implementation of ISCO would involve the treatment of a 7,200 square-foot source area using approximately 25 direct-push injection points during three separate injection events. It is currently anticipated that the full-scale ISCO program would be implemented over a period of three to five years. The frequency of full-scale injection events will be determined after the pilot test results are reviewed. A conceptual schedule is provided below with anticipated milestones.

<b>Completion Date</b>	Task Description	
December 2, 2016	Perform ISCO pilot testing using a combination of fixed injection points and	
	direct push injection.	
December 16, 2016	Receipt of post-pilot test laboratory analytical data.	
January 13, 2017	Proposed RAP submittal date to PADEP.	
April 13, 2017	PADEP review, comment and approval of RAP.	
July 2017	Begin full-scale ISCO remediation of the source area (first of three applications).	

If you have any questions regarding this injection notice, or if you require additional information regarding the proposed injection program, please contact me at (717) 205-2217.

Sincerely,

Edward Dziedzic, P.G. Senior Geologist

Enclosure: Product Specifications (Persulfate and Sodium Hydroxide)

copy: Mr. Matthew Gojmerac - Herr's

H:\Projects\10172\101722001\GS\RAP\Ltr-EPA UIC-11-01-16.docx



**Univar USA Inc** 845 Terrace Court Saint Paul, MN 55130 PH. 651-774-9400 FAX 651-774-0850 www.univarusa.com

DATE: October 6, 2016

PRODUCT: Caustic soda 25%

PRODUCT GRADE: Technical

UNIVAR PRODUCT CODE: 605579

UNIVAR LOT NUMBER: ST106856764

TEST	RESULTS	SPECIFICATIONS
Specific gravity (25/15.6°C):	1.276	1.278 ± 0.008
NaOH, weight % (acid-base titration)	24.9%	25.0% ± 0.5%
pH (1:4 dilution)	13.7	>13
Color:	Pass	None to slight
Odor:	Pass	Typical
Appearance:	Pass	Clear, free of suspended matter

Univar USA Inc. Steve Bjelke Tank Farm Supervisor/Chemist

Notes: This material is made from caustic soda 50% and deionized water. Results are based on analysis of the bulk tank.

This certificate of analysis is produced electronically and is valid without a signature.

Please consult the SDS for further information.

SDS # : 7775-27-1-12 Revision date: 2016-08-01 Format: NA Version 1.03



# **1. PRODUCT AND COMPANY IDENTIFICATION** Product Identifier **Product Name** Klozur® SP Other means of identification CAS-No 7775-27-1 Sodium Persulfate; Sodium Peroxydisulfate; Disodium Peroxydisulfate; Peroxydisulfuric Synonyms acid, disodium salt; Peroxydisulfuric acid, sodium salt **Alternate Commercial Name** Klozur® Persulfate Recommended use of the chemical and restrictions on use **Recommended Use:** In situ and ex situ chemical oxidation of contaminants and compounds of concern for environmental remediation applications **Restrictions on Use:** No uses to be advised against were identified. Manufacturer/Supplier PeroxyChem LLC 2005 Market Street Suite 3200 Philadelphia, PA 19103 Phone: +1 267/ 422-2400 (General Information) E-Mail: sdsinfo@peroxychem.com Emergency telephone numbers For leak, fire, spill or accident emergencies, call: 1 800 / 424 9300 (CHEMTREC - U.S.A.) 1 703 / 527 3887 (CHEMTREC - Collect - All Other Countries) 1 303/ 389-1409 (Medical - U.S. - Call Collect)

# 2. HAZARDS IDENTIFICATION

# **Classification**

## OSHA Regulatory Status

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).

Acute toxicity - Oral	Category 4
Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2B
Respiratory sensitization	Category 1
Skin sensitization	Category 1
Specific target organ toxicity (single exposure)	Category 3
Oxidizing Solids	Category 3

## GHS Label elements, including precautionary statements

#### EMERGENCY OVERVIEW

# Danger

#### Hazard Statements

- H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled
- H335 May cause respiratory irritation
- H320 Causes eye irritation
- H315 Causes skin irritation
- H317 May cause an allergic skin reaction
- H302 Harmful if swallowed
- H272 May intensify fire; oxidizer



#### **Precautionary Statements - Prevention**

- P261 Avoid breathing dust.
- P285 In case of inadequate ventilation wear respiratory protection
- P271 Use only outdoors or in a well-ventilated area
- P280 Wear protective gloves/ protective clothing
- P264 Wash face, hands and any exposed skin thoroughly after handling
- P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking
- P220 Keep/Store away from clothing/combustible materials
- P221 Take any precaution to avoid mixing with combustibles

#### **Precautionary Statements - Response**

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

- P337 + P313 If eye irritation persists: Get medical advice/ attention
- P302 + P352 IF ON SKIN: Wash with plenty of water.
- P333 + P313 If skin irritation or rash occurs: Get medical advice/ attention
- P304 + P341 IF INHALED: If breathing is difficult, remove to fresh air and keep at rest in a position comfortable for breathing
- P342 + P311 If experiencing respiratory symptoms: Call a POISON CENTER or doctor
- P301 + P312 IF SWALLOWED: Call a POISON CENTER or doctor if you feel unwell
- P330 Rinse mouth

P370 + P378 - In case of fire: Use water spray for extinction

#### **Precautionary Statements - Storage**

P403 + P233 - Store in a well-ventilated place. Keep container tightly closed

#### Hazards not otherwise classified (HNOC)

No hazards not otherwise classified were identified.

**Other Information** Risk of decomposition by heat or by contact with incompatible materials

#### Unknown acute toxicity

0% of the mixture consists of ingredient(s) of unknown toxicity

# **3. COMPOSITION/INFORMATION ON INGREDIENTS**

Formula

Na2O8S2

Chemical name	CAS-No	Weight %
Sodium Persulfate	7775-27-1	> 99

4. FIRST AID MEASURES			
General Advice	Remove from exposure, lie down. Show this material safety data sheet to the doctor in attendance.		
Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids intermittently. Consult a physician. If symptoms persist, call a physician.		
Skin Contact	Wash off immediately with soap and plenty of water while removing all contaminated clothes and shoes. Get medical attention if irritation develops and persists.		
Inhalation	Remove from exposure, lie down. If breathing is irregular or stopped, administer artificial respiration. Call a physician immediately.		
Ingestion	Do NOT induce vomiting. Call a physician or poison control center immediately. Rinse mouth. Drink 1 or 2 glasses of water.		
Most important symptoms and effects, both acute and delayed	Itching; Redness; Coughing and/ or wheezing.		
Indication of immediate medical attention and special treatment needed, if necessary	Treat symptomatically		
	5. FIRE-FIGHTING MEASURES		
Suitable Extinguishing Media	Water. Cool containers with flooding quantities of water until well after fire is out.		
Unsuitable extinguishing media	Do not use carbon dioxide or other gas filled fire extinguishers; they will have little effect on decomposing persulfate.		
Specific Hazards Arising from the Chemical	Decomposes under fire conditions to release oxygen that intensifies the fire.		
<u>Explosion data</u> Sensitivity to Mechanical Impact Sensitivity to Static Discharge	Not sensitive. Not sensitive.		
Protective equipment and precautions for firefighters	As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.		
6. ACCIDENTAL RELEASE MEASURES			
Personal Precautions	Keep off any unprotected persons. Avoid contact with the skin and the eyes. Avoid breathing dust. Wear personal protective equipment.		
Other	Never add other substances or combustible waste to product residues.		
Environmental Precautions	Prevent material from entering into soil, ditches, sewers, waterways, and/or groundwater. See Section 12, Ecological Information for more detailed information.		
Methods for Containment	Vacuum, shovel or pump waste into a drum and label contents for disposal. Avoid dust formation. Store in closed container. Page 3/8		

Methods for cleaning up Clean up spill area and treat as special waste. Dispose of waste as indicated in Section 13. 7. HANDLING AND STORAGE Handling Wear personal protective equipment. Use only in area provided with appropriate exhaust ventilation. Avoid dust formation. Handle product only in closed system or provide appropriate exhaust ventilation at machinery. Avoid contact with skin and eyes. Avoid breathing dust. Remove and wash contaminated clothing before re-use. Reference to other sections. Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from heat. Do not store near combustible materials. Avoid contamination of opened product. Keep away from food, drink and animal feedingstuffs. Avoid formation and deposition of dust. Incompatible products . Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds.

# 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

#### Control parameters

#### **Exposure Guidelines**

Chemical name	ACGIH TLV	OSHA PEL	NIOSH	Mexico
Sodium Persulfate	TWA: 0.1 mg/m ³	-	-	-
7775-27-1				
Chemical name	British Columbia	Quebec	Ontario TWAEV	Alberta
Sodium Persulfate 7775-27-1	TWA: 0.1 mg/m ³	-	TWA: 0.1 mg/m ³	TWA: 0.1 mg/m ³

# Appropriate engineering controls

Engineering measures	Provide local exhaust or general ventilation adequate to maintain exposures below
	permissable exposure limits.

#### Individual protection measures, such as personal protective equipment

Eye/Face Protection	Eye protection recommended. Chemical goggles consistent with EN 166 or equivalent.
Skin and Body Protection	Wear long-sleeved shirt, long pants, socks, and shoes.
Hand Protection	Protective gloves: Neoprene gloves, Polyvinylchloride, Natural Rubber.
Respiratory Protection	If exposure limits are exceeded or irritation is experienced, NIOSH/MSHA approved respiratory protection should be worn: particulate filtering facepiece respirators.
Hygiene measures	Keep away from food, drink and animal feeding stuffs. Do not eat, drink or smoke when using this product. Wash hands before breaks and after shifts. Keep work clothes separate, remove contaminated clothing - launder after open handling of product.
General information	Protective engineering solutions should be implemented and in use before personal protective equipment is considered.

# 9. PHYSICAL AND CHEMICAL PROPERTIES

#### Information on basic physical and chemical properties

Appearance	Crystalline solid
Physical State	Solid
Color	White

Odor Odor threshold рΗ Melting point/freezing point **Boiling Point/Range** Flash point **Evaporation Rate** Flammability (solid, gas) Flammability Limit in Air **Upper flammability limit:** Lower flammability limit: Vapor pressure Vapor density Density Specific gravity Water solubility Solubility in other solvents **Partition coefficient** Autoignition temperature **Decomposition temperature** Viscosity, kinematic Viscosity, dynamic **Explosive properties Oxidizing properties** Molecular weight VOC content (%) **Bulk density** 

odorless Not applicable 6.0 (1% solution) 180 °C (Decomposes) Decomposes upon heating Not flammable No information available Not flammable Not applicable No information available No information available 6.07E-30 mm Hg at 25°C No information available 2.59 g/cm³ (crystal density) No information available 575 g/l @ 25 °C No information available No information available (inorganic) No evidence of combustion up to 600°C > 100 °C (assume) No information available (Solid) No information available Not explosive oxidizer 238.1 Not applicable 1.12 g/cm³ (loose)

SDS #: 7775-27-1-12 Revision date: 2016-08-01

Version 1.03

# **10. STABILITY AND REACTIVITY**

Reactivity	Oxidizer. Contact with other material may cause fire		
Chemical Stability	Stable.		
Possibility of Hazardous Reactions	None under normal processing.		
Hazardous polymerization	Hazardous polymerization does not occur.		
Conditions to avoid	Heat. Moisture.		
Incompatible materials	Acids, alkalis, halides (fluorides, chlorides, bromides), combustible materials, reducing agents and organic compounds		

Hazardous Decomposition Products Oxygen which supports combustion.

# **11. TOXICOLOGICAL INFORMATION**

# Product Information

Unknown acute toxicity	0% of the mixture consists of ingredient(s) of unknown toxicity
LD50 Oral	Sodium Persulfate: 895 mg/kg (rat)
LD50 Dermal	Sodium Persulfate: > 10 g/kg
LC50 Inhalation	Sodium Persulfate: >5.10 mg/L (4h) (rat)
Serious eye damage/eye irritation	Irritating to eyes.
Skin corrosion/irritation	Minimally irritating.
Sensitization	Sodium Persulfate:. May cause sensitization by inhalation and skin contact.

# Information on toxicological effects

Symptoms

Symptoms of allergic reaction may include rash, itching, swelling and trouble breathing.

# Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation corrosivity	Irritating to eyes, respiratory system and skin. None.
Carcinogenicity	Contains no ingredient listed as a carcinogen.
Mutagenicity	Did not show mutagenic effects in animal experiments
Neurological effects	Not neurotoxic
Reproductive toxicity Developmental toxicity Teratogenicity	This product is not recognized as reprotox by Research Agencies. None known. Not teratogenic in animal studies.
STOT - single exposure STOT - repeated exposure	May cause respiratory irritation. Not classified.
Target organ effects	Eyes, Lungs.
Aspiration hazard	No information available.

# **12. ECOLOGICAL INFORMATION**

# **Ecotoxicity**

# Ecotoxicity effects

Sodium Persulfate (7775	5-27-1)			
Active Ingredient(s)	Duration	Species	Value	Units
Sodium Persulfate	96 h LC50	Rainbow trout	163	mg/L
Sodium Persulfate	48 h LC50	Daphnia magna	133	mg/L
Sodium Persulfate	96 h LC50	Grass shrimp	519	mg/L
Sodium Persulfate	72 h EC50	Algae Selenastrum	116	mg/L
		capricornutum		

<b>Persistence and degradability</b> Biodegradability does not pertain to inorganic substances.					
Bioaccumulation	Does not bioaccumulate.				
Mobility	obility Dissociates into ions.				
Other Adverse Effects None known.					
13. DISPOSAL CONSIDERATIONS					
Waste disposal methods	This material, as supplied, is a hazardous waste according to federal regulations (40 CFR 261). It must undergo special treatment, e.g. at suitable disposal site, to comply with local regulations.				
Contaminated Packaging	Empty remaining contents. Dispose of in accordance with local regulations.				
	14. TRANSPORT INFORMATION				

SDS #: 7775-27	-1-12
Revision date: 2016-0	)8-01
Version	1.03

UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
TDG	
UNID no Proper Shipping Name Hazard class Packing Group	SODIUM PERSULFATE 5.1
MEX	
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
IMDG/IMO	
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
ADR/RID	
UN/ID no	UN 1505
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III
Proper Shipping Name	SODIUM PERSULFATE
Hazard class	5.1
Packing Group	III

# **15. REGULATORY INFORMATION**

# U.S. Federal Regulations

## SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

# SARA 311/312 Hazard Categories

Acute health hazard	Yes
Chronic health hazard	No
Fire hazard	Yes
Sudden release of pressure hazard	No
Reactive Hazard	No

# Clean Water Act

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

## CERCLA/EPCRA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

# US State Regulations

#### **U.S. State Right-to-Know Regulations**

This product contains the following substances regulated under state Right-to-Know laws:

Chemical name	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sodium Persulfate		Х			

## California Proposition 65

This product does not contain any Proposition 65 chemicals

# International Inventories

Component	TSCA (United States)	DSL (Canada)	EINECS/EL INCS (Europe)	ENCS (Japan)	China (IECSC)	KECL (Korea)	PICCS (Philippines )	AICS (Australia)	NZIoC (New Zealand)
Sodium Persulfate 7775-27-1 ( > 99 )	Х	Х	Х	Х	Х	Х	X	Х	Х

## Mexico

Mexico - Grade

Slight risk, Grade 1

# **16. OTHER INFORMATION**

NFPA ŀ	Health Hazards 1	Flammability 0	Stability 1	Special Hazards OX
HMIS F	Health Hazards 1	Flammability 0	Physical hazard 1	Special precautions J

NFPA/HMIS Ratings Legend

Special Hazards: OX = Oxidizer

Protection=J (Safety goggles, gloves, apron, combination dust and vapor respirator)

Revision date: Revision note 2016-08-01 (M)SDS sections updated: 15

#### **Disclaimer**

PeroxyChem believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specified product designated and may not be applicable where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use are beyond the control of PeroxyChem, PeroxyChem expressly disclaims any and all liability as to any results obtained or arising from any use of the products or reliance on such information.

#### Prepared By:

PeroxyChem

KLOZUR - Trademark of Peroxychem © 2016 PeroxyChem. All Rights Reserved. End of Safety Data Sheet





# The Field Proven and Versatile ISCO Solution to Address Soil & Groundwater Contamination

Klozur[®] SP is the oxidant of choice for *in situ* chemical oxidation (ISCO), because of its proven ability to treat a wide range of contaminants including chlorinated solvents, petroleum and PAHs. Based upon an environmental grade of sodium persulfate (SP), Klozur SP is ideal for contaminated source zones and hot spots that require rapid treatment. When properly activated, Klozur SP provides an unmatched combination of oxidative power, versatility, and control that can be delivered both safely and cost effectively.

Successful field applications of Klozur activated persulfate have been performed globally. These applications demonstrate the ability of Klozur activated persulfate to treat diverse organic contaminants of concern including: chlorinated ethenes (TCE, PCE, DCE and vinyl chloride), chlorinated ethanes (TCA and DCA), chlorinated methanes (carbon tetrachloride and methylene chloride), BTEX, MTBE, polyaromatic hydrocarbons (PAHs), petroleum hydrocarbons (TPHs, GRO, DRO), 1,4-dioxane and pesticides.

# The benefits of Klozur SP

When used with PeroxyChem's patented activation methods, Klozur SP produces the powerful oxidative (SO₄-•, OH•) and reductive (O₂-•) radicals creating a multi-radical attack for the rapid destruction of recalcitrant compounds.

# $S_2O_8^{-2}$ + Activator $\rightarrow SO_4^{-\bullet}$ , OH•, $O_2^{-\bullet}$

Multiple activation options and methods of delivery provide for a flexible and custom solution based on site conditions. With a solubility limit of up to 40 wt%, Klozur SP can be applied as a fully soluble solution. Klozur SP is a stable oxidant given its high oxidation potential, with a typical active lifetime in the subsurface of weeks to months, providing an extended radius of influence. Klozur SP is safe to handle with PeroxyChem's recommended use guidelines and does not generate heat or gas.

# The sound science of Klozur Activated Persulfate

Examples of Contaminants of Concern

CHLORINATED SOLVENTS PCE, TCE, DCE, VC, TCA, DCA, methylene chloride, carbon tetrachloride, chlorobenzene

> **PETROLEUM** TPH, BTEX, DRO, GRO

PAHs creosote, MGP residuals 1,4-dioxane, MTBE, TBA, energetics, chlorinated pesticides

Klozur activated persulfate has a long history of documented success having been used at thousands of sites to remediate contaminants of concern around the world. The field application of Klozur activated persulfate has been scientifically validated in hundreds of independent peer-reviewed journal articles and conference presentations.

# Applications methods

- Direct push injection
- Fixed well injection
- Soil blending

For more information and detailed case studies, please visit our website.



remediation@peroxychem.com | 1.866.860.4760 | peroxychem.com/remediation

Klozur is a Trademark of PeroxyChem. © 2016 PeroxyChem. All rights reserved. Document 02-03-ESD-14



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Wheeling Field Office 1060 Chapline Street Wheeling, West Virginia 26003

November 3, 2016

Mr. Edward Dziedzic, P.G., Senior Geologist RETTEW Associates, Inc. 3020 Columbia Avenue Lancaster, Pennsylvania 17603

Re: Herr Foods, Inc. 273 Old Baltimore Pike West Nottingham Twp., Chester County, PA

Dear Mr. Dziedzic:

We have received correspondence from you dated November 1, 2016 describing soil and ground water remediation plans at the above referenced location. We understand that you intend to utilize in-situ chemical oxidation processes, involving shallow injection wells, to reduce petroleum hydrocarbon contamination. The subsurface emplacement of fluids through injection wells as part of an aquifer cleanup project is subject to the ground water protection requirements of the Underground Injection Control (UIC) program. The UIC program is administered by the Environmental Protection Agency (EPA) in the Commonwealth of Pennsylvania.

Based upon our understanding of aquifer remediation of contaminated soil and ground water in general and the proposed subsurface emplacement of a sodium persulfate solution specifically, we believe that the injection wells pose minimal potential to adversely impact ground water. For these reasons you may proceed with plans to construct and operate aquifer remediation related injection wells and you will not be required to obtain an Underground Injection Control (UIC) program permit. The above referenced facility has been added to our inventory of shallow injection wells. The UIC program prohibits the subsurface emplacement of fluids which have the potential to adversely impact underground sources of drinking water.

EPA approval or "rule authorization" of the injection wells is contingent upon operator compliance with all applicable state and local requirements. We appreciate your cooperation in these matters and the opportunity to address these issues with you. Please contact me at (304) 234-0286 if you have any questions.

Sincerely,

Mark A. Nelson, Hydrologist Water Protection Division



APPENDIX L Remediation Design Calculations

#### Remediation Area 1 - ISCO Injection Design Calculations Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

#### shading = input value shading = calculated value

Conversions	
ft3 to gal = ft3 x	7.4805
L to gal = L x	3.785
lb to g = lb /	453.59
g to mg = g/	1000
lb to kg = lb x	0.4536
mg/l to lb/gal = mg/l x	8.35E-06
mg to lb = mg x	2.20E-06
g to lb = g x	0.00220462
kg to lb = kg x	2.20462

Given	
Soil density (p lbs/ft3) =	111.6
Porosity (unitless n) =	0.47
Base Buffering Capacity (Alkaline Activation only) (g 25% NaOH / kg	
soil) =	3
Persulfate solution density (lb/gal)	9.3

Area and Volume Calculations	
Area of Treatment (ft2) =	1,035.0
Treatment zone Thickness (ft) =	7.0
Treatment volume (ft3) =	7,245.0
Porosity (unitless n) =	0.47
Treatment groundwater volume (gal) =	25,470.5
Soil mass (lb) =	808,542.0
Fraction of mass contacted (%) =	100%

COC Mass Calculations				
Constituent	GW (mg/l)	Soil (mg/kg)	NAPL (lbs)	Total COC Mass (lb)
Benzene	2.00	25.00	0.0	20.6
Ethylbenzene	0.75	60.00	0.0	48.7
Toluene	2.50	200.00	0.0	162.2
Trimethylbenzene	1.60	85.00	0.0	69.1
MTBE	0.03	0.50	0.0	0.4
GRO	20.00	2,500.00	0.0	2,025.6
DRO	3.00	600.00	0.0	485.8

Remedial Goals and Target Mass Reductions	100%	75%			
Constituent	GW (mg/l)	Soil (mg/kg)	NAPL (lbs)	Total COC Mass Remaining (lb)	Total Targeted COC Mass (lb)
Benzene	0.0	6.3	0.0	5.1	15.6
Ethylbenzene	0.0	15.0	0.0	12.1	36.5
Toluene	0.0	50.0	0.0	40.4	121.8
Trimethylbenzene	0.0	21.3	0.0	17.2	51.9
MTBE	0.0	0.1	0.0	0.1	0.3
GRO	0.0	625.0	0.0	505.3	1,520.2
DRO	0.0	150.0	0.0	121.3	364.5
Total Targeted COC Mass (lbs) =	2,110.9				

#### Remediation Area 1 - ISCO Injection Design Calculations Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Persulfate Demand Calculation			
Persulfate dosage (Ib persulfate / Ib COC mass) =	20.0	1	
	Sodium Persulfate Demand	Safety Factor	Sodium Persulfate Demand w/ Factor
Persulfate Demand from COCs (Ib) =	42,217.1	1.1	46,438.8
Persulfate Demand from SOD (lb) =	808 5	1.1	889.4
	000.5		

1				
		Proposed Option	Alternative	
	Injection Point Calculations	(7.5' ROI)	Check (10' ROI)	
	Target Zone Radius (ft) =	7.5	10.0	0.0
	Height (H ft) =	7.0	5.0	0.0
	Area (A ft2) = 3.14 x r^2	176.7	314.2	0.0
	Volume (V ft3) = A x H	1,237.0	1,570.8	0.0
	GW Volume (gal) = V x n x (ft3-gal conv)	4,349.1	5,522.7	0.0
	Soil Mass (lbs) = p x V	138,049.3	175,300.7	0.0
	# of injection points =	6.0	3.0	0.0
	# of injection events =	3.0	3.0	
	lbs persufate / injection point (lbs) =	2,629.3	5,258.7	
	% of porespace	30%	25%	
	Mass of persulfate needed (lb) =	2,629.3	5,258.7	
	Solution density (lb/gal)	9.0	9.0	
	Solution volume (% x GW volume) (gal) =	1,304.7	1,380.7	
	Mass of solution (solution density x treatment volume) (lb) =	11,771.0	12,456.1	
	Persulfate concentration (%)	22%	42%	

#### Back Calculation / QC Check

	<b>Proposed Option</b>
% of porespace	30%
Persulfate concentration	23%
Solution density	9.0
Solution volume (% x GW volume) (gal) =	1,304.7
Mass of solution (solution density x treatment volume) (lb) =	11,771.0
Mass of persulfate needed (mass of solution x concentration) (lb) =	2,707.3

Activation Chemistries	Proposed Option	
NaOH demand for HSO4 neutralization (% of sulfate load) =	33.6%	2 moles of NaOH to 1 mole of persulfate
NaOH demand for HSO4 neutralization (lb) =	15,901.8	
NaOH density (lb/gal) =	10.6	
NaOH demand for HSO4 neutralization (25 wt%) (lb) =	63,607.2	
Soil Buffering Amount (3 g 25% NaOH/kg soil) (lb) =	2,425.6	
Amount of NaOH 25wt% solution needed (lb) =	66,032.8	
Amount of NaOH 25wt% solution needed (gal) =	6,229.5	
Amount of NaOH 25wt% solution needed per injection point per		
event (gal) =	346.1	

#### Remediation Area 2 - ISCO Injection Design Calculations Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

#### shading = input value shading = calculated value

Conversions	
ft3 to gal = ft3 x	7.4805
L to gal = L x	3.785
lb to g = lb /	453.59
g to mg = g/	1000
lb to kg = lb x	0.4536
mg/l to lb/gal = mg/l x	8.35E-06
mg to lb = mg x	2.20E-06
g to lb = g x	0.00220462
kg to lb = kg x	2.20462

Given	
Soil density (p lbs/ft3) =	111.6
Porosity (unitless n) =	0.47
Base Buffering Capacity (Alkaline Activation only) (g 25% NaOH / kg	
soil) =	3
Persulfate solution density (lb/gal)	9.3

Area and Volume Calculations	
Area of Treatment (ft2) =	3,802.0
Treatment zone Thickness (ft) =	5.0
Treatment volume (ft3) =	19,010.0
Porosity (unitless n) =	0.47
Treatment groundwater volume (gal) =	66,831.6
Soil mass (lb) =	2,121,516.0
Fraction of mass contacted (%) =	100%

3.8
49.3
66.8
64.3
0.1
135.4
107.5

Remedial Goals and Target Mass Reductions	100%	100%			
Constituent	GW (mg/l)	Soil (mg/kg)	NAPL (lbs)	Total COC Mass Remaining (lb)	Total Targeted COC Mass (lb)
Benzene	0.0	0.0	0.0	0.0	3.8
Ethylbenzene	0.0	0.0	0.0	0.0	49.3
Toluene	0.0	0.0	0.0	0.0	66.8
Trimethylbenzene	0.0	0.0	0.0	0.0	64.3
MTBE	0.0	0.0	0.0	0.0	0.1
GRO	0.0	0.0	0.0	0.0	135.4
DRO	0.0	0.0	0.0	0.0	107.5
Total Targeted COC Mass (lbs) =	427.2				

#### Remediation Area 2 - ISCO Injection Design Calculations Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Persulfate Demand Calculation				
Persulfate dosage (Ib persulfate / Ib COC mass) =	20	0.0		
	Sodium Persulfate Demand	Safety Factor	Sodiu Dema Facto	m Persulfate and w/ r
Persulfate Demand from COCs (lb) =	8,543	.8	1.6	13,670.1
Persulfate Demand from SOD (lb) =	2,121	5	1.6	3,394.4
Total Persulfate Demand (lb) =				17,064.5

	Alternative Check	Proposed Option	
Injection Point Calculations	(7.5' ROI)	(10' ROI)	
Target Zone Radius (ft) =	7.5	10.0	0.0
Height (H ft) =	5.0	5.0	0.0
Area (A ft2) = 3.14 x r^2	176.7	314.2	0.0
Area minus overlap (assume 15%) (ft2) =	150.2	267.0	
Volume (V ft3) = A x H	883.6	1,570.8	0.0
GW Volume (gal) = V x n x (ft3-gal conv)	3,106.5	5,522.7	0.0
Soil Mass (lbs) = p x V	98,606.7	175,300.7	0.0
# of injection points =	22.0	14.0	0.0
# of injection events =	1.0	1.0	
lbs persufate / injection point (lbs) =	775.7	1,218.9	
% of porespace	25%	20%	
Mass of persulfate needed (lb) =	775.7	1,218.9	
Solution density (lb/gal)	9.0	9.0	
Solution volume (% x GW volume) (gal) =	776.6	1,104.5	
Mass of solution (solution density x treatment volume) (lb) =	7,006.5	9,964.9	
Persulfate concentration (%)	11.1%	12.2%	

Back Calculation / QC Check	
	<b>Proposed Option</b>
% of porespace	20%
Persulfate concentration	12.2%
Solution density	9.0
Solution volume (% x GW volume) (gal) =	1,104.5
Mass of solution (solution density x treatment volume) (lb) =	9,964.9
Mass of persulfate needed (mass of solution x concentration) (lb) =	1,215.7

Activation Chemistries	Proposed Option	
NaOH demand for HSO4 neutralization (% of sulfate load) =	33.6%	2 moles of NaOH to 1 mole of persulfate
NaOH demand for HSO4 neutralization (lb) =	5,733.5	
NaOH density (lb/gal) =	10.6	
NaOH demand for HSO4 neutralization (25 wt%) (lb) =	22,934.0	
Soil Buffering Amount (3 g 25% NaOH/kg soil) (lb) =	6,364.5	
Amount of NaOH 25wt% solution needed (lb) =	29,298.5	
Amount of NaOH 25wt% solution needed (gal) =	2,764.0	
Amount of NaOH 25wt% solution needed per injection point per		
event (gal) =	197.4	

#### Remediation Area 3 - ISCO Injection Design Calculations Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

#### shading = input value shading = calculated value

Conversions	
ft3 to gal = ft3 x	7.4805
L to gal = L x	3.785
lb to g = lb /	453.59
g to mg = g/	1000
lb to kg = lb x	0.4536
mg/l to lb/gal = mg/l x	8.35E-06
mg to lb = mg x	2.20E-06
g to lb = g x	0.00220462
kg to lb = kg x	2.20462

Given	
Soil density (p lbs/ft3) =	111.6
Porosity (unitless n) =	0.47
Base Buffering Capacity (Alkaline Activation only) (g 25% NaOH / kg	
soil) =	3
Persulfate solution density (lb/gal)	9.3

Area and Volume Calculations	
Area of Treatment (ft2) =	2,312.0
Treatment zone Thickness (ft) =	4.0
Treatment volume (ft3) =	9,248.0
Porosity (unitless n) =	0.47
Treatment groundwater volume (gal) =	32,512.3
Soil mass (lb) =	1,032,076.8
Fraction of mass contacted (%) =	100%

COC Mass Calculations				
Constituent	GW (mg/l)	Soil (mg/kg)	NAPL (lbs)	Total COC Mass (lb)
Benzene	3.00	0.50	0.00	1.3
Ethylbenzene	1.00	11.50	0.00	12.1
Toluene	6.00	15.00	0.00	17.1
Trimethylbenzene	0.50	15.00	0.00	15.6
MTBE	0.10	0.00	0.00	0.0
GRO	6.00	28.50	0.00	31.0
DRO	8.80	25.00	0.00	28.2

Remedial Goals and Target Mass Reductions	100%	100%			
	(N)				
Constituent	GW (mg/l)	Soil (mg/kg)	NAPL (Ibs)	Total COC Mass Remaining (Ib)	Total Targeted COC Mass (Ib)
Benzene	0.0	0.0	0.0	C	.0 1.3
Ethylbenzene	0.0	0.0	0.0	0	.0 12.1
Toluene	0.0	0.0	0.0	0	.0 17.1
Trimethylbenzene	0.0	0.0	0.0	0	.0 15.6
MTBE	0.0	0.0	0.0	0	.0 0.0
GRO	0.0	0.0	0.0	0	.0 31.0
DRO	0.0	0.0	0.0	0	.0 28.2
Total Targeted COC Mass (lbs) =	105.5				

#### Remediation Area 3 - ISCO Injection Design Calculations Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Persulfate Demand Calculation			
Persulfate dosage (Ib persulfate / Ib COC mass) =	20.0	•	
	Sodium Persulfate Demand	Safety Factor	Sodium Persulfate Demand w/ Factor
Persulfate Demand from COCs (Ib) =	2,109.1	2.1	4,429.0
Persulfate Demand from SOD (lb) =	1,032.1	2.1	2,167.4
Total Persulfate Demand (lb) =			6,596.4

	Alternative Check	Proposed	
Injection Point Calculations	(7.5' ROI)	Option (10' ROI)	
Target Zone Radius (ft) =	7.5	10.0	0.0
Height (H ft) =	4.0	4.0	0.0
Area (A ft2) = 3.14 x r^2	176.7	314.2	0.0
Area minus overlap (assume 10%) (ft2) =	159.0	282.7	
Volume (V ft3) = A x H	706.9	1,256.6	0.0
GW Volume (gal) = V x n x (ft3-gal conv)	2,485.2	4,418.1	0.0
Soil Mass (lbs) = p x V	78,885.3	140,240.6	0.0
# of injection points =	13.0	8.0	0.0
# of injection events =	1.0	) 1.0	
lbs persufate / injection point (lbs) =	507.4	824.6	
% of porespace	25%	20%	
Mass of persulfate needed (lb) =	507.4	824.6	
Solution density (lb/gal)	9.0	9.0	
Solution volume (% x GW volume) (gal) =	621.3	883.6	
Mass of solution (solution density x treatment volume) (lb) =	5,605.2	7,971.9	
Persulfate concentration (%)	9.1%	10.3%	

Back Calculation / QC Check	
	<b>Proposed Option</b>
% of porespace	20%
Persulfate concentration	13.2%
Solution density	9.0
Solution volume (% x GW volume) (gal) =	883.6
Mass of solution (solution density x treatment volume) (lb) =	7,971.9
Mass of persulfate needed (mass of solution x concentration) (lb) =	1,052.3

Activation Chemistries	Proposed Option	
NaOH demand for HSO4 neutralization (% of sulfate load) =	33.6%	2 moles of NaOH to 1 mole of persulfate
NaOH demand for HSO4 neutralization (lb) =	2,216.3	
NaOH density (lb/gal) =	10.6	
NaOH demand for HSO4 neutralization (25 wt%) (lb) =	8,865.3	
Soil Buffering Amount (3 g 25% NaOH/kg soil) (lb) =	3,096.2	
Amount of NaOH 25wt% solution needed (lb) =	11,961.5	
Amount of NaOH 25wt% solution needed (gal) =	1,128.4	
Amount of NaOH 25wt% solution needed per injection point per		
event (gal) =	141.1	