We answer to you.

June 9, 2016

Ms. Susan Kennedy
Environmental Cleanup and Brownfields Program
Pennsylvania Department of Environmental Protection
Southeast Regional Office
2 East Main Street
Norristown, PA 19401-4915

RE: Revised Site Characterization Report Herr Foods, Inc.
273 Old Baltimore Pike
West Nottingham Township, Chester County
Facility ID No. 15-24418
Incident No. 47318
RETTEW Project No. 101722001
FED-EX

Dear Ms. Kennedy:
RETTEW Associates, Inc. has prepared the enclosed Revised Site Characterization Report on behalf of Herr Foods, Inc. (Herr's) to describe corrective action performed to date to address a subsurface release of petroleum from a regulated underground storage tank system at the referenced location. The SiteSpecific Standard has been selected for groundwater to address off-site dissolved benzene and MTBE impacts to wetlands and surface water. As such, this report includes fate and transport analyses, development of water quality-based effluent limits and an ecological risk assessment.

If you have any questions regarding the attached report, please contact me at edziedzic@rettew.com (717) 205-2217.

Sincerely,
$G_{\text {mul }} \sqrt{\text { ivir }}$
Edward Dziedzic, P.G.
Project Manager

Enclosures

copy: Matthew Gojmerac, Herr's

H:\Projects\10172\101722001\GS\Revised SCR\Ltr-REV SCR-06-09-16.docx

REVISED SITE CHARACTERIZATION REPORT

HERR FOODS, INC. MANUFACTURING FACILITY
273 OLD BALTIMORE PIKE WEST NOTTINGHAM TOWNSHIP, CHESTER COUNTY, PENNSYLVANIA FACILITY ID No. 15-24418

PREPARED FOR:

Herr Foods, Inc.
20 Herr Drive
Nottingham, Pennsylvania 19362

PREPARED BY:

RETTEW Associates, Inc.
3020 Columbia Avenue Lancaster, Pennsylvania 17603

RETTEW Project No. 101722001

June 10, 2016

REVISED SITE CHARACTERIZATION REPORT
 HERR FOODS, INC. MANUFACTURING FACILITY
 273 OLD BALTIMORE PIKE
 NOTTINGHAM, PENNSYLVANIA
 RETTEW PROJECT NO. 101722001

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 SITE DESCRIPTION AND BACKGROUND 1
2.1 1997 UST CLOSURE SUMMARY 2
2.2 PHASE I AND PHASE II ESA SUMMARY 2
2.3 INTERIM REMEDIAL ACTION 3
3.0 GEOLOGIC AND HYDROGEOLOGIC SETTING 4
4.0 SITE CHARACTERIZATION METHODS AND FINDINGS 5
4.1 SOIL BORING INSTALLATION AND SOIL SAMPLE ANALYSIS 5
4.2 GROUNDWATER MONITORING WELL INSTALLATION 6
4.3 GROUNDWATER SAMPLING AND ANALYSIS 7
4.4 SPL BAILDOWN TESTING AND ANALYSIS 8
4.5 AQUIFER TESTING 9
4.6 FORMER SUPPLY WELL DECOMMISSIONING, SAMPLING AND ANALYSIS 11
4.7 WATER SUPPLY SAMPLING 12
5.0 SOIL QUALITY 12
6.0 GROUNDWATER FLOW 13
7.0 GROUNDWATER QUALITY 14
8.0 SOIL GAS SAMPLING AND ANALYSIS 16
9.0 SEDIMENT AND SURFACE WATER SAMPLING AND ANALYSIS 18
10.0 FATE AND TRANSPORT ANALYSIS 19
11.0 SURFACE WATER IMPACTS FROM GROUNDWATER DISCHARGE 22
12.0 EXPOSURE PATHWAY EVALUATION 24
12.1 DIRECT CONTACT 24
12.2 INGESTION - GROUNDWATER AND SURFACE WATER 24
12.3 INHALATION - VAPOR INTRUSION 24
12.4 EVALUATION OF ECOLOGICAL RECEPTORS 24
13.0 ECOLOGICAL RISK ASSESSMENT 25
14.0 CONCEPTUAL SITE MODEL 25
15.0 REMEDIATION STANDARD SELECTION 27

REVISED SITE CHARACTERIZATION REPORT

HERR FOODS, INC. MANUFACTURING FACILITY
 273 OLD BALTIMORE PIKE
 NOTTINGHAM, PENNSYLVANIA
 RETTEW PROJECT NO. 101722001

TABLE OF CONTENTS
(continued)

LIST OF FIGURES

Figure $1 \quad$ Site Location Map
Figure 2 Aerial Basemap
Figure 3 Site Plan
Figure 4 Geology Map
Figure $5 \quad$ Groundwater Elevation Contour Map - March 9, 2015
Figure $6 \quad$ Groundwater Elevation Contour Map - April 1, 2015
Figure $7 \quad$ Groundwater Elevation Contour Map - June 25, 2015
Figure $8 \quad$ Groundwater Elevation Contour Map - July 9, 2015
Figure $9 \quad$ Groundwater Elevation Contour Map - September 10, 2015
Figure 10 Groundwater Elevation Contour Map - October 6, 2015
Figure 11 Groundwater Elevation Contour Map - January 14, 2016
Figure 12 Groundwater Elevation Contour Map - April 6, 2016
Figure 13 Cross Section - Benzene Concentrations in Soil
Figure 14 Benzene Concentrations in Soil
Figure 15 Regional Groundwater Elevation Contour Map - April 6, 2016
Figure 16 Sediment and Surface Water Sample Location Map
Figure 17 Quick Domenico Model Map
Figure 18 Surface Water Drainage Area Map

LIST OF TABLES

Table $1 \quad$ Phase II ESA Soil Sample Analytical Data Summary
Table 2 Soil Sample Analytical Data Summary
Table 3 Groundwater Sample Analytical Data Summary
Table $4 \quad$ Groundwater Trend Analysis

REVISED SITE CHARACTERIZATION REPORT

HERR FOODS, INC. MANUFACTURING FACILITY
 273 OLD BALTIMORE PIKE
 NOTTINGHAM, PENNSYLVANIA
 RETTEW PROJECT NO. 101722001

TABLE OF CONTENTS

(continued)

LIST OF APPENDICES

Appendix A: 1997 UST Closure Report and Supporting Documentation
Appendix B: UST System Inspection and Testing Documentation
Appendix C: Soil Boring and Monitoring Well Logs
Appendix D: Soil Sample Laboratory Analytical Reports
Appendix E: Waste Disposal Manifests
Appendix F: Low Flow Groundwater Purging and Monitoring Data Sheets
Appendix G: Groundwater Sample Laboratory Analytical Reports
Appendix H: Baildown Test Data Plots
Appendix 1: SPL Sample Laboratory Analytical Report
Appendix J: Aquifer Test Data Plots
Appendix K: Soil Gas Sample Laboratory Analytical Reports
Appendix L: Sediment and Surface Water Sample Laboratory Analytical Reports
Appendix M: Concentration vs. Time Plots
Appendix N: Quick Domenico Model Output
Appendix O: SWLOAD5 Model Output
Appendix P: PENTOXSD Model Output
Appendix Q: PaGWIS Well Data
Appendix R Ecological Risk Assessment

1.0 INTRODUCTION

This Revised Site Characterization Report (SCR) has been prepared by RETTEW Associates, Inc. on behalf of Herr Foods, Inc. (Herr's), to document corrective action activities conducted at Herr's manufacturing facility, located at 273 Old Baltimore Pike in West Nottingham Township, Chester County, Pennsylvania. A Site Location Map is included as Figure 1.

This report was prepared in accordance with the corrective action regulations defined in Title 25 Pennsylvania Code Chapter 245 titled Administration of the Storage Tank and Spill Prevention Program and the requirements of the Pennsylvania Land Recycling and Remediation Standards Act (Act 2). Herr's owns the subject property, which is currently operating as a snack food manufacturing facility. Corrective action focused on a regulated underground storage tank (UST) system located at the facility truck garage on the property, which is used for maintaining and fueling Herr's fleet vehicles. Corrective action was initiated following the discovery of petroleum impacted soil during due diligence performed at the property in October 2014. A Notification of Reportable Release was submitted by Herr's to the Pennsylvania Department of Environmental Protection (PADEP) on December 22, 2014.

Site characterization was performed in several iterative phases between February 2015 and April 2016 to delineate soil and groundwater impacts resulting from the release. The methods and findings of each phase of site characterization were presented in various reports submitted to the PADEP, including a Preliminary Site Characterization Report (April 23, 2015), a Remedial Action Progress Report (August 13, 2015), and a Site Characterization Report (November 11, 2015). This Revised SCR summarizes site characterization activities completed to date, fate and transport analysis and remediation standard selection.

2.0 SITE DESCRIPTION AND BACKGROUND

Herr's facility is a 13.8-acre property owned and operated by Herr's and historically used for snack food manufacturing. The property is currently improved with three permanent structures: a 312,000 squarefoot manufacturing facility (known as Nottingham Plant 1), a wastewater treatment plant (WWTP) and a truck garage. Paved access drives, parking lots and grass lawn areas cover the remainder of the property as shown on Figure 2. Nottingham Plant 1 is served by a water supply well located 3,100 feet southeast of the truck garage on a separate parcel owned by Herr's. Sanitary and process wastewater generated at Nottingham Plant 1 is treated at the WWTP. Treated wastewater is discharged off-site to a land application facility in accordance with a PADEP Part II Water Quality Permit.

The truck garage is located on the southern portion of the property as shown on Figure 2. The truck garage was built in 1978 and is currently used for the maintenance of Herr's fleet vehicles. Four sub-slab hydraulic lifts are located within the service bays of the truck garage for vehicle maintenance. The area surrounding the truck garage is covered with impervious asphalt paving and is used for parking Herr's fleet trucks and trailers. The truck garage is connected to the off-site water supply well that serves Plant 1; however, the truck garage was previously served by a decommissioned water supply well located on the property (Figure 3). The former supply well is disconnected from the truck garage and is no longer used. The truck garage is also served by a septic drainfield. A Site Plan showing the truck garage, the former supply well, and the location of the septic drainfield is included as Figure 3.

Regulated gasoline and diesel UST systems and associated dispensers are used for vehicle fueling at the property (PADEP Facility ID No. 15-24418). The current UST systems include a 10,000 -gallon unleaded gasoline tank (Tank 008) and a 10,000-gallon diesel tank (Tank 009). These tanks were installed in 1997
and replaced five former USTs (Tank 003 through Tank 007). Current and former UST locations are shown on Figure $\mathbf{3}$ and are described below.

Tank Registration No.	Capacity	Contents	Status
003	4,000 -gallons	New Motor Oil	Removed
004	4,000 -gallons	Unleaded Gasoline	Removed
005	15,000 -gallons	Unleaded Gasoline	Removed
006	12,000 -gallons	Diesel Fuel	Removed
007	1,000 -gallons	Waste Oil	Removed
008	10,000 -gallons	Unleaded Gasoline	In-Service
009	10,000 -gallons	Diesel Fuel	In-Service

2.1 1997 UST CLOSURE SUMMARY

Tanks 003 through 007 were removed from service between May 28 and June 4, 1997 by a PADEP certified contractor, Clayton Services Corporation, of North Wales, Pennsylvania. During UST closure activities, petroleum impacted soil was encountered and removed. A closure report submitted to the PADEP dated July 2, 1997 detailing the removal of Tank 003 through Tank 007 indicated the following:

- Piping associated with Tank 005 and Tank 006 was described as "suspect" at unions and connections under the pumps;
- Holes were observed in the bottom of Tank 005 and Tank 006;
- Obvious contamination was not observed at Tank 003 or Tank 007, and confirmatory soil samples were collected for laboratory analysis;
- Obvious, localized contamination (elevated soil screening data) was observed at Tank 004;
- Obvious, localized contamination (holes in USTs) was observed at Tank 005 and Tank 006;
- Petroleum-impacted soil was excavated within two feet of the UST systems for Tank 004, Tank 005 , and Tank 006, and confirmatory soil samples were collected for laboratory analysis;
- Confirmatory soil sample analytical results revealed concentrations of methyl tert butyl ether (MTBE) exceeding the unsaturated soil standard/action level of 2,000 micrograms per kilogram ($\mu \mathrm{g} / \mathrm{kg}$) in soil samples 004-2, Pl-5, and PI-6 (Figure 3); and
- A total of 1,200 tons of petroleum-impacted soil was excavated and removed from the Site for proper disposal.

The confirmatory soil samples that exceeded the unsaturated soil standard/action level for MTBE were collected at depths ranging from nine to 12 feet below grade. On July 2, 1997, a Notification of Reportable Release was submitted to the PADEP. The notification indicated that contamination was confirmed at the Site and was described as product stained or product saturated soil, and free product or sheen on ponded water. It is noted that ponded water was described as runoff that collected in the UST excavation and was not groundwater. In correspondence dated November 17, 1997, PADEP indicated that they accepted the Closure Report, and that "no further action is required regarding the closure of the tanks". The UST Closure Report, Notification of Reportable Release, and the PADEP response is included as Appendix A.

2.2 PHASE I AND PHASE II ESA SUMMARY

A previous Phase I and Phase II Environmental Site Assessment (ESA) was conducted at the property by RETTEW between April and October 2014 to satisfy environmental due diligence as part of a loan application package, which identified several recognized environmental condition (RECs) associated with
both past and current land uses. The identified RECs at the property included several trench-style floor drains, which discharge to the septic drainfield, and the five subgrade hydraulic lifts located in the truck garage. The purpose of the Phase II ESA was to investigate soil quality at each REC and compare results to applicable remediation standards. Details of the Phase II ESA methods and findings are documented in the Limited Phase II Environmental Site Assessment Report dated November 17, 2014.

On October 16, 2014, five soil borings (identified as SB-6 through SB-10 - see Figure 3) were advanced at the truck garage to investigate soil quality near the locations of the hydraulic lifts, floor drains and septic drainfield. RETTEW personnel documented the lithology encountered in each soil boring and fieldscreened the soil using a photoionization detector (PID) to detect the presence of volatile organic petroleum compounds.

The soil sample with the highest PID reading in each soil boring was submitted for laboratory analysis. Soil samples collected from SB-6 through SB-8 near the hydraulic lifts were submitted for laboratory analysis of the PADEP Short List of Petroleum Products for lubricating oils. Soil samples collected from SB-9 and SB-10 near the septic drainfield were submitted for laboratory analysis of Priority Pollutant List volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals. A soil sample analytical data summary is presented as Table 1.

Soil sample analytical results showed that benzene, ethylbenzene and toluene were detected in SB-7 and SB-8 at concentrations exceeding their Act 2 non-residential Statewide Health Standards. Naphthalene was detected in SB-8 at a concentration exceeding the Act 2 non-residential Statewide Health Standard of $25,000 \mathrm{ppb}$. Generally, most of the Short List Products for lubricating oils were detected at SB-7 and SB-8 at concentrations below the non-residential Statewide Health Standards. Benzene, toluene, ethylbenzene, xylenes, naphthalene, flourene, phenanthrene and pyrene were also detected at SB-6 at concentrations below the Act 2 non-residential Statewide Health Standards.

The detected concentrations of benzene at SB-7 and SB-8 exceeded their soil-to-groundwater Medium Specific Concentrations (MSCS) protective of groundwater. Similarly, the detected concentration of naphthalene at SB-8 exceeded its soil-to-groundwater MSC. This suggests that benzene and naphthalene could potentially leach from the soil to the groundwater at concentrations exceeding their respective groundwater MSCs. The occurrence of VOCS (i.e., benzene and naphthalene) downgradient of the UST system also suggested that the regulated UST system or former UST system could potentially be a source of the soil impacts.

2.3 INTERIM REMEDIAL ACTION

Herr's maintains and inspects the USTs and leak detection systems on a regular basis. During June 2014, a certified inspector performed a storage tank facility operations inspection that included the results of line tightness testing and leak detection system inspection. The inspection did not reveal any significant compliance issues associated with the UST system. The inspection indicated that the Veeder Root interstitial leak detection system was operational with maintenance and calibration records for the past year. The only noted item was that the tank top sumps contained water, which was removed. Line tightness testing was completed on March 3, 2014 with no leaks detected. The Facility Operations Inspection Report and the results of the line tightness testing is included in Appendix B.

3.0 GEOLOGIC AND HYDROGEOLOGIC SETTING

According to publications of the Pennsylvania Bureau of Topographic and Geologic Survey ${ }^{1}$, the property is located in the Piedmont Upland Section of the Piedmont Physiographic Province of Pennsylvania, and is underlain by complexly folded and faulted schist, gneiss, quartzite and some saprolite. Local topography is characterized by broad, rounded to flat-topped hills and shallow valleys. According to the USGS 7.5minute Rising Sun Quadrangle (Figure 1), the truck garage is situated at an approximate elevation of 510 feet. Surface topography slopes gently to the southeast. The headwater of an unnamed tributary (UNT) to North East Creek is located approximately 300 feet east of the truck garage and flows generally to the southeast.

Soils mapped at the truck garage by the U.S. Department of Agriculture (USDA) Soil Conservation Service's Web Soil Survey are described as the Glenelg silt loam, 3 to 8 percent slopes (GgB), the Glenville silt loam, 3 to 8 percent slopes (GIB), the Urban land, 0 to 8 percent slopes (UrB), and the Urban land-Glenelg complex, 0 to 8 percent slopes (UrmB) ${ }^{2}$. The Urban land map units are comprised of highly disturbed or worked soils that show the effects of earth grading and compaction. Urban land is mapped over the majority of the truck garage. The Glenelg soil series consists of very deep, well drained soils formed in residuum weathered from micaceous schist on uplands of the Blue Ridge and the Northern Piedmont. Depth to bedrock is six to 10 feet or more. Saturated hydraulic conductivity is moderately high in the subsoil and moderately high to high in the substratum. The Glenville soil series consists of very deep, moderately well drained or somewhat poorly drained soils formed primarily in colluvium or residuum affected by soil creep that is weathered from phyllite, micaceous schist, granitic gneiss and other acid crystalline rocks. Depth to bedrock is more than five feet. The profile contains a dense, restrictive horizon called a fragipan that restricts root and water movement. Saturated hydraulic conductivity is moderately low to moderately high.

The geology mapped by the Chester County Water Resources Authority, in cooperation with the USGS³, indicates that the property is underlain by the Wissahickon Schist of the Glenarm Supergroup (see Figure 4). The Wissahickon Schist is described as light to medium gray schist and gneiss. The rocks of the Glenarm Supergroup surround massifs of older pre-Cambrian felsic and ultramafic gneiss basement rock. Ultramafic rock (i.e., serpentinite) associated with the Baltimore Mafic Complex is mapped approximately 1,000 feet south of the property. Geologic strike and structural trend of the Wissahickon Formation is generally oriented to the east-northeast.

In the area of the property, the fractured bedrock aquifers are characterized as crystalline rocks (Wissahickon Schist ${ }^{3}$). In the crystalline rocks, groundwater moves through the granular primary porosity of the weathered saprolite to a network of interconnected secondary fractures and joints in the bedrock aquifer. The groundwater flow systems are local and discharge to streams. Groundwater flows from areas of higher elevation to adjacent streams and flow paths tend to be short. Groundwater basins and surface water basins tend to coincide. Crystalline rock aquifers are generally under water-table (unconfined) conditions and the water table generally mimics surface topography; however, semi-confined conditions may be present locally.

[^0]In the Piedmont Upland, the soils (regolith) are composed of granular to clayey soil, saprolite, and decomposed bedrock ${ }^{4}$. The regolith allows the infiltration of precipitation and is capable of storing large quantities of water in the intergranular pore spaces. Water is then slowly released to the underlying fractured bedrock aquifer. Generally, the porosity of the regolith exceeds the porosity of the fractured bedrock aquifer. The direction and rate of groundwater flow within the regolith can be affected by the degree of bedrock weathering, mineral composition of the parent bedrock, orientation of mineral grains (mica), the presence of shear zones, quartz veins and fractures.

The UNT to North East Creek is classified as an intermittent stream according to the USGS National Hydrography Dataset (NHD). Intermittent streams have flowing water during the wet season (i.e., winter and spring), but are normally dry during hot summer months. Intermittent streams do not have continuous flowing water year-round. The headwater of the UNT is located approximately 300 feet east of the truck garage adjacent to a railroad right of way (Figure 3) and is characterized as an area of seasonal groundwater discharge. During the wet season, standing water forms in this area and flows to a culvert under the railroad, and continues to flow as surface water to the south and southeast toward North East Creek, located 6,700 feet southeast of the property.

4.0 SITE CHARACTERIZATION METHODS AND FINDINGS

Site characterization was performed in iterative phases between February 2015 and April 2016 to delineate soil and groundwater impacts resulting from the release. The discovery of VOCs (i.e., benzene and naphthalene) during the Phase II ESA downgradient of the UST system suggests that the source of the subsurface petroleum impacts likely originated from the UST system area of the Site. For this reason, site characterization focused on delineating soil and groundwater impacts surrounding the unleaded gasoline and diesel UST systems. Site characterization methods included the installation of 20 soil borings to delineate soil quality, and the installation of 13 groundwater monitoring wells to define the hydraulic gradient. Quarterly groundwater monitoring was also initiated at the truck garage in March 2015 to delineate groundwater quality. Site characterization methods are described in the following sections.

4.1 SOIL BORING INSTALLATION AND SOIL SAMPLE ANALYSIS

A total of 20 soil borings (identified as SB-11 through SB-30) were advanced at the truck garage to delineate soil quality as shown on Figure 3. The 20 soil borings were advanced using a track-mounted Geoprobe ${ }^{\circledR}$ operated by Odyssey Environmental Services, Inc. (Odyssey) of Harrisburg, Pennsylvania. The 20 soil borings were completed during two separate mobilizations that occurred in February 2015 and June 2015. Undisturbed soil samples were recovered continuously with the Geoprobe ${ }^{\circledR}$, and RETTEW personnel documented the lithology encountered in each soil boring and field-screened the soil using a PID to detect the presence of VOCs. The soil borings were advanced to a maximum depth of 20 feet, except where equipment refusal was encountered. Lithology encountered consisted of asphalt, sub-base and gravel fill, and soils were generally classified by RETTEW as micaceous silt and sand overlying saprolitic schist and gneiss. Groundwater was noted in most borings at depths ranging from 10 feet to 18 feet below grade. Boring logs are attached in Appendix C.

The soil sample with the highest PID reading in each soil boring was submitted for laboratory analysis. A soil sample was collected at the terminal depth in the borings if PID readings were less than one part per million (ppm). Where PID readings were elevated, more than one soil sample was submitted for laboratory

[^1]analysis in an effort to vertically delineate soil impacts. Each soil sample was preserved in the field, placed in a cooler with ice, and delivered to Lancaster Laboratories Environmental (LLE) of Lancaster, Pennsylvania, following standard chain-of-custody procedures. All soil samples collected at the truck garage were submitted for laboratory analyses of the PADEP Short List of Petroleum Products for unleaded gasoline and diesel fuel. One soil sample, collected at a depth of 14 feet below grade immediately above the water table at SB-11 and considered to be representative of upgradient aquifer material, was submitted to LLE for analysis of organic carbon content. A soil sample analytical data summary is presented as Table 2. Soil sample analytical data sheets are provided in Appendix D.

In addition to the soil sampling and analysis described above, an undisturbed soil sample was collected in the acetate liner of the Geoprobe tooling at SB-11 at a depth of 14 feet below grade. This sample was delivered to Jay Kay Testing, Inc. (Jay Kay) of Spring Grove, Pennsylvania, following standard chain-ofcustody procedures. The undisturbed sample was submitted for laboratory analyses of bulk density and grain size analysis. Analytical results for the sample of representative aquifer material are summarized below.

Physical Parameter	Result
Organic Carbon Content	0.0118% (by weight)
Dry Bulk Density	111.6 PCF
Percent Sand	56.2%
Percent Gravel	0.3%
USCS Classification	Silty Sand (SM)
Moisture Content	17.4%

Notes:
PCF - Pounds per cubic foot
USCS - Unified Soil Classification System

4.2 GROUNDWATER MONITORING WELL INSTALLATION

A total of 13 groundwater monitoring wells (MW-1 through MW-13) were installed by Eichelbergers, Inc., a Pennsylvania licensed driller, under the direction of a RETTEW geologist to delineate groundwater quality. Monitoring wells MW-1 through MW-5 were installed during February 2015. Monitoring wells MW-6 through MW-10 were installed during June 2015. Off-site monitoring wells MW-11 through MW13 were installed on an adjacent parcel owned by Herr's during December 2015. On-site monitoring well locations are shown on Figure 3. Off-site monitoring wells are shown on Figure 2. Drilling logs are attached in Appendix \mathbf{C}.

MW-1 through MW-10 were installed in eight-inch diameter boreholes drilled using air-rotary drilling methods. Due to saturated conditions and borehole collapse below a depth of 10 feet, six-inch steel casing was installed into each boring and reamed with six-inch drilling tools to keep the borehole open. MW-11 through MW-13 were installed in a six-inch diameter borehole drilled using air-rotary drilling methods and a roller bit to minimize disturbance. Weathered schist and quartz fragments were observed at MW4, MW-5, MW-6, MW-7, MW-9 and MW-10 at depths of ranging from 15 to 18 feet below grade. During drilling, borehole cuttings were containerized in 55 -gallon open-top drums and staged on-site pending proper disposal.

Each well was constructed with appropriate lengths of two-inch diameter Schedule 40 PVC 0.020 -inch slotted well screen and solid two-inch PVC well casing. The annular space between the borehole wall and the well casing was filled with a gravel filter pack and a hydrated bentonite seal, and capped with
bentonite slurry to fill the remaining annular space to surface grade. A flush-mount manhole and locking well cap was installed on MW-1 through MW-10 to prevent unauthorized access. MW-11 through MW13 were completed with a protective stickup steel riser and locking lid. Monitoring well construction details are summarized in the following table.

Well No.	Date Drilled	Borehole Diameter	Well Diameter	Total Depth	Screen Interval	Solid Interval	Initial Water
MW-1	$2 / 24 / 15$	8 inch	2 inch	27 feet	$7-20$ feet	$0-7$ feet	17 feet
MW-2	$2 / 25 / 15$	8 inch	2 inch	23 feet	$3-23$ feet	$0-3$ feet	12 feet
MW-3 2	$2 / 25 / 15$	8 inch	2 inch	25 feet	$5-25$ feet	$0-5$ feet	13 feet
MW-4 1	$2 / 26 / 15$	8 inch	2 inch	19 feet	$0-19$ feet	None	10 feet
MW-5	$2 / 26 / 15$	8 inch	2 inch	27 feet	$7-27$ feet	$0-7$ feet	12 feet
MW-6	$6 / 18 / 15$	8 inch	2 inch	20 feet	$3-20$ feet	$0-3$ feet	Unknown
MW-7	$6 / 18 / 15$	8 inch	2 inch	20 feet	$3-20$ feet	$0-3$ feet	18 feet
MW-8	$6 / 18 / 15$	8 inch	2 inch	20 feet	$3-20$ feet	$0-3$ feet	Unknown
MW-9	$6 / 18 / 15$	8 inch	2 inch	20 feet	$3-20$ feet	$0-3$ feet	10 feet
MW-10	$6 / 18 / 15$	8 inch	2 inch	20 feet	$3-20$ feet	$0-3$ feet	Unknown
MW-11	$12 / 16 / 15$	6 inch	2 inch	15 feet	$2-15$ feet	$0-2$ feet	9 feet
MW-12	$12 / 16 / 15$	6 inch	2 inch	12 feet	$2-12$ feet	$0-2$ feet	6 feet
MW-13	$12 / 16 / 15$	6 inch	2 inch	12 feet	$2-12$ feet	$0-2$ feet	8 feet
P-1	$3 / 25 / 16$	2 inch	1 inch	8 feet	$4-8$ feet	$0-4$ feet	Unknown

Upon completion of drilling and well construction, each well was developed by surging and over-pumping to remove drilling residuals. The purged water generated during well development was containerized in 55 -gallon open-top drums and staged on-site pending proper disposal. Due to the low volume of purged water generated during the development of MW-11 through MW-13, purge water was treated with granular activated carbon and discharged to the surface. All drilling waste was transported and disposed as residual waste at a PADEP-approved facility by Environmental Recovery Corporation (ERC) of Lancaster, Pennsylvania. Non-hazardous waste disposal manifests are provided in Appendix E.

The top-of-casing elevation of each monitoring well was surveyed by a RETTEW professional land surveyor and referenced to sea-level datum. Groundwater monitoring well top-of-casing elevations are shown on Table 3.

Two drive point wells (DPW-1 and DPW-2) were manually installed on April 6, 2016 in the area of seasonal groundwater discharge (see Section 6.0) as shown on Figure 3. The purpose of the drive point wells was to provide water level measurements and to aide in the delineation of discharging groundwater. Each drive point consisted of a 24 -inch length of 1.25 -inch diameter galvanized steel inner pipe with 60 -mesh stainless steel gauze and screen and a cast iron point. Each drive point was installed in a three-inch diameter hand-augured hole to a depth of 24 inches below grade, and then driven to a depth of 30 inches with a threaded coupling and a 24 -inch galvanized steel riser pipe and threaded cap. The annular space around the screen was filled with clean gravel and capped with bentonite hole plug to prevent surface infiltration of water. The top of each drive point was surveyed by RETTEW and referenced to sea-level datum.

4.3 GROUNDWATER SAMPLING AND ANALYSIS

RETTEW initiated groundwater sampling at the truck garage on March 9, 2015, with subsequent sampling events conducted on April 1, 2015, July 9, 2015, October 6, 2015, January 14, 2016 and April 6, 2015. In
addition, groundwater levels were collected from the monitoring well network on June 25 and September 10,2015 . During each monitoring event, groundwater levels were measured with an electronic water level indicator capable of measuring water levels to the nearest 0.01 foot. Water levels were also measured at the former supply well beginning on June 25,2015 . Low flow groundwater purging and sampling techniques were used during each monitoring event as described below. Groundwater monitoring data collected to date is summarized on Table 3. Since the expansion of the monitoring well network in December 2015, quarterly groundwater monitoring was conducted on January 14, 2016 and April 6, 2016. Groundwater elevation contours and resulting groundwater sample analytical data for each groundwater sampling event is illustrated on Figure 5 through Figure 12.

RETTEW performed groundwater sampling on March 9, 2015 and April 1, 2015, and retained Suburban Testing Labs (STL) of Gilbertsville, Pennsylvania to conduct the groundwater monitoring events on July 9, 2015, October 6, 2015, January 14, 2016 and April 6, 2016. After gauging static water levels, groundwater was purged from each well with a peristaltic pump to maintain flow rates at approximately 250 milliliters per minute ($\mathrm{ml} / \mathrm{min}$) with minimal drawdown in accordance with the PADEP Groundwater Monitoring Guidance Manual (December 2001) low-flow purging methods. The pump tubing was set at a depth of eight to 10 feet below grade, corresponding to the depth of the greatest observed soil impacts at the truck garage. Purged groundwater was routed through a flow-cell and a YSI 556 water quality meter to monitor intrinsic groundwater quality parameters including pH , conductivity, dissolved oxygen (DO), total dissolved solids (TDS), temperature, and oxidation-reduction potential (ORP). Intrinsic parameters were monitored frequently until stabilization, indicative of representative groundwater chemistry. Purged groundwater was then treated with granular activated carbon (GAC) and discharged to the surface. Low flow purging and monitoring data sheets for each groundwater monitoring event are included as Appendix F.

Upon intrinsic parameter stabilization, groundwater samples were collected from the pump discharge tubing. To reduce the likelihood of cross-contamination, new tubing was used and nitrile gloves were worn during the collection of each groundwater sample. Groundwater samples were collected in laboratory bottleware, placed in a cooler with ice, and delivered to STL for analysis of PADEP Short List parameters for unleaded gasoline and diesel fuel. A summary of groundwater sample analytical data is provided as Table 3. Groundwater sample analytical reports are provided in Appendix G.

Groundwater samples were collected from the drive point wells (DPW-1 and DPW-2) by RETTEW on April 13,2016 by manually bailing three well volumes from each point, and collecting a sample with a disposable bailer and nitrile gloves. Groundwater samples were collected in laboratory bottleware, placed in a cooler with ice, and delivered to LLE for analysis of PADEP Short List parameters for unleaded gasoline and diesel fuel. It is noted that drive point wells are generally not properly constructed for groundwater quality analyses. The purpose of collecting groundwater samples was to improve delineation of groundwater quality as it discharges for use in subsequent phases of site characterization. Groundwater sample analytical reports are provided in Appendix G. Drive point well water level measurements and groundwater sample analytical results are discussed further in Section 6.0.

4.4 SPL BAILDOWN TESTING AND ANALYSIS

Separate phase liquid (SPL) petroleum was observed in MW-4 during the June 25 and July 9, 2015 groundwater monitoring events. An SPL baildown test was performed by RETTEW at MW-4 on July 9, 2015 to evaluate the recoverability of SPL at the Site. Prior to the baildown test, SPL and water levels were measured with an electronic interface probe capable of measuring SPL and water levels to the nearest 0.01 foot. An apparent SPL thickness of 0.15 feet was noted in MW-4 (Table 3). A bailer was then used to manually remove SPL from the well. After removing SPL, water and SPL measurements were recorded in

MW-4 each minute for the first 10 minutes, then every 10 minutes thereafter to monitor SPL recharge to the well.

The plotted baildown test data indicated that a mobile SPL thickness of 0.04 feet recharged and stabilized in MW-4 after approximately 20 minutes. At the conclusion of the baildown test, the remaining SPL was removed from MW-4. All recovered SPL was placed into laboratory bottleware and transported in a cooler with ice to LLE for analysis of PADEP Short List parameters for unleaded gasoline and diesel fuel, and for quantitative fingerprint analysis. It is noted that on July 10, 2015, an apparent SPL thickness of 0.02 feet was measured at MW-4 by STL prior to groundwater purging and sampling, over 24 hours after the MW4 baildown test. This suggests that the mobile SPL thickness ranges from 0.02 to 0.04 feet and the potential for SPL recovery at MW-4 is low. SPL was not detected in MW-4 during any subsequent groundwater monitoring events. Baildown test data and data plot are provided in Appendix \mathbf{H}.

The findings of the quantitative fingerprint analysis characterized the SPL as gasoline. Based on the chromatograph peak intensities and ratios, the fingerprint analysis concluded that the SPL did not appear to be weathered, and that hydrocarbons in the $\mathrm{C}_{8}-\mathrm{C}_{40}$ range were present at 56 percent by weight. A summary of SPL sample analytical data is provided below.

Analytical Parameter	Concentration in SPL	Aqueous Solubility	Abundance in SPL
Benzene	$600,000 \mu \mathrm{~g} / \mathrm{L}$	$1780.5 \mathrm{mg} / \mathrm{L}$	0.4%
Ethylbenzene	$12,000,000 \mu \mathrm{~L} / \mathrm{L}$	$161 \mathrm{mg} / \mathrm{L}$	8.3%
Isopropylbenzene	$1,300,000 \mu \mathrm{~g} / \mathrm{L}$	$50 \mathrm{mg} / \mathrm{L}$	0.9%
MTBE	$<10,000 \mu \mathrm{~g} / \mathrm{L}$	$45,000 \mathrm{mg} / \mathrm{L}$	0%
Naphthalene	$380,000 \mu \mathrm{~g} / \mathrm{L}$	$30 \mathrm{mg} / \mathrm{L}$	0.3%
Toluene	$22,000,000 \mu \mathrm{~g} / \mathrm{L}$	$532 \mathrm{mg} / \mathrm{L}$	15.1%
$1,2,4-\mathrm{TMB}$	$38,000,000 \mu \mathrm{~g} / \mathrm{L}$	$56 \mathrm{mg} / \mathrm{L}$	26.1%
$1,3,5-\mathrm{TMB}$	$12,000,000 \mu \mathrm{~g} / \mathrm{L}$	$48.9 \mathrm{mg} / \mathrm{L}$	8.3%
Xylenes	$59,000,000 \mu \mathrm{~g} / \mathrm{L}$	$175 \mathrm{mg} / \mathrm{L}$	40.6%

The above parameters comprise over 14.5 percent of the SPL sample by weight. It is noted that the two most soluble parameters, benzene and MTBE, are either present at relatively low concentrations or are not detected in the SPL sample. Most of MTBE in the SPL appears to have dissolved and migrated from the source in the aqueous-phase. Both benzene and MTBE were detected in groundwater at downgradient wells MW-10 and MW-11. It is noted that the original composition of the gasoline released at the Site and the mole fraction of each parameter in the released gasoline are unknown. The SPL sample analytical report is included in Appendix I.

4.5 AQUIFER TESTING

Three short-duration constant-rate groundwater pumping tests were performed by RETTEW at selected wells (MW-3, MW-5 and MW-7) on July 14, 2015 to determine the hydraulic conductivity of aquifer materials. A submersible Mega Monsoon pump and control box was used for each test to maintain a constant pumping rate less than one gallon per minute (gpm). The duration of each test was approximately 40 minutes. During the tests, water levels were continuously monitored using an In -Situ, Inc. LevelTroll ${ }^{\circledR}$ pressure transducing data logger. All groundwater withdrawn during the test was treated with GAC and discharged to the surface. After pumping was terminated, water levels were continuously monitored until each well recovered to within 90 percent of the static water level. Plotted pumping test data is summarized below.

Well	Static Water Level	Pump Setting	Available Drawdown	Pumping Rate	Pumping Level	Drawdown
MW-3	3.68 feet	24 feet	20.32 feet	0.875 gpm	8.08 feet	4.40 feet
MW-5	3.61 feet	25 feet	21.39 feet	0.875 gpm	6.87 feet	3.28 feet
MW-7	4.47 feet	19 feet	14.53 feet	0.625 gpm	11.90 feet	7.43 feet

A review of the plotted pumping test data included as Appendix J shows the following:

- The downward slope of the plotted data for MW-5 remained constant as pumping continued, suggesting that groundwater was removed from storage as the cone of depression expanded into areas of groundwater recharge;
- The downward slope of the plotted data for MW-7 decreases after four minutes of pumping, suggesting that casing storage was depleted and the cone of depression expanded into areas of groundwater recharge; and
- The slope of the plotted data for MW-3 stabilizes after three minutes of pumping, then decreases sharply after 15 minutes of pumping, suggesting that a shallow water-bearing zone was dewatered.

Aquifer parameters were calculated using the Cooper and Jacob straight-line method ${ }^{5}$. The Cooper and Jacob method was derived from the Theis nonequilibrium equation and can be used to predict drawdown in the aquifer at any time after pumping begins but before the cone of depression fully stabilizes. Drawdown data for each well was plotted to determine the slope of the time-drawdown curve and calculate the aquifer transmissivity.

Transmissivity is defined as the rate at which water flows through a vertical section of the aquifer with a width of one foot extending through the full saturated thickness under a hydraulic gradient of one. When the pumping rate (Q) is held constant, transmissivity (T) is constant, and a best-fit line is drawn through the plotted data points. The slope of the line (Δs or drawdown) is used to estimate the aquifer transmissivity using the modified nonequilibrium equation as follows:

$$
T=264 Q / \Delta s
$$

, where T is in units of gallons per day (gpd) per foot.
Recovery data collected at the completion of each pumping test were used to calculate residual drawdowns, which were plotted to provide an independent check on the transmissivity calculated from the pumping test results. In theory, complete recovery will occur when residual drawdown reaches " 0 " as the time ratio approaches " 1 " in an ideal aquifer, and the transmissivity can be estimated from the slope of the curve. The estimated transmissivities from the pumping and recovery tests are provided below.

	MW-3	MW-5	MW-7
Pumping Test Transmissivity	$7.5 \mathrm{ft}^{2} /$ day	$29.4 \mathrm{ft}^{2} /$ day	$10.0 \mathrm{ft}^{2} /$ day
Recovery Test Transmissivity	$23 \mathrm{ft}^{2} /$ day	$28 \mathrm{ft}^{2} / \mathrm{day}^{2}$	$8.7 \mathrm{ft}^{2} / \mathrm{day}^{2}$

The time-recovery plot is often more accurate than the time-drawdown plot. Recovery data can be collected without being disturbed or influenced by pump vibrations and momentary variations in pumping

[^2]rate ${ }^{5}$. The hydraulic conductivity $(\boldsymbol{K}$) of the saprolite aquifer was calculated from the recovery test data using the saturated aquifer thickness (b) as follows:
$$
K=T / b
$$
, where K is in units of feet per day.
A saturated aquifer thickness of 61 feet was used based on the casing depth (74 feet) and static water level (3.3 feet) observed in the former supply well as described in Section 4.6, assuming the casing is set at a depth of 10 feet into competent bedrock. Calculated hydraulic conductivities are provided below.

	MW-3	MW-5	MW-7
Recovery Test Transmissivity	$23 \mathrm{ft}^{2} /$ day	$28 \mathrm{ft}^{2} /$ day	$8.7 \mathrm{ft}^{2} /$ day
Recovery Test Hydraulic Conductivity	$0.37 \mathrm{ft} /$ day	$0.45 \mathrm{ft} /$ day	$0.14 \mathrm{ft} /$ day

4.6 FORMER SUPPLY WELL DECOMMISSIONING, SAMPLING AND ANALYSIS

RETTEW retained Odyssey to decommission the former supply well on February 29, 2016 using a portable pump hoist. Upon removal of the pump, power cable and the one-inch diameter black poly piping, the pump setting was determined to be 200 feet below the pitless adapter (total depth 203 feet below grade). RETTEW and Odyssey returned on March 1, 2016 and video-logged the former supply well. During video logging, the water table was observed at a depth of 3.3 feet below grade and the bottom of the six-inch diameter well casing was observed at 74 feet below grade. Significant iron flaking and scaling resulted in poor visibility in the open rock portion of the well; however, fractures and weathered zones were noted at 121 feet, 132 feet, 145 to 148 feet, and 172 feet. At a depth of 196 feet, water quality became clear and a steep open fracture was observed, followed by a broken and weathered zone from 198 feet to 204 feet. The well was observed to have a total depth of 210 feet, and it appears that drilling was terminated after a significant water bearing zone was encountered from 198 feet to 204 feet.

The former supply well was purged on March 25, 2016 by Odyssey using an electric submersible pump set at a depth of 100 feet. A static water level of 5.17 feet was measured prior to purging the well. Groundwater was purged from the well at a rate of 9.3 gpm for approximately 180 minutes, resulting in a pumping level of 33.09 feet and a drawdown of 28.92 feet. Over 1,700 gallons (equivalent to 5.7 well volumes) of water was purged and treated through a 55 -gallon GAC vessel and discharged to the surface. Based on a drawdown of 28.92 feet and a pumping rate of 9.3 gpm , the specific capacity of the well is approximately $0.32 \mathrm{gpm} / \mathrm{ft}$.

During the April 6, 2016 groundwater sampling event, STL collected a groundwater sample from the former supply well. Low flow groundwater purging and sampling techniques were used to collect the sample. Groundwater was purged with an electric submersible Mega Monsoon SS ${ }^{\text {M }}$ pump to maintain flow rates at approximately 250 milliliters per minute ($\mathrm{ml} / \mathrm{min}$) with minimal drawdown in accordance with the PADEP Groundwater Monitoring Guidance Manual (December 2001) low-flow purging methods. The pump was set at a depth of 100 feet below grade, below the casing depth observed in the well. Purged groundwater was routed through a flow-cell and a YSI 556 water quality meter to monitor intrinsic groundwater quality parameters including pH , conductivity DO, TDS, temperature, and ORP. Intrinsic parameters were monitored frequently until stabilization, indicative of representative groundwater chemistry. Purged groundwater was then treated with GAC and discharged to the surface.

Upon intrinsic parameter stabilization, a groundwater sample was collected from the pump discharge tubing. Groundwater samples were collected in laboratory bottleware, placed in a cooler with ice, and delivered to STL for analysis of the PADEP Short List parameters for unleaded gasoline and diesel fuel. Groundwater sample analytical results are provided in Table 3. Groundwater sample analytical reports are provided in Appendix G.

4.7 WATER SUPPLY SAMPLING

During the April 6, 2016 groundwater sampling event, RETTEW collected a raw groundwater sample from the water supply well for Plant 1 and the truck garage. The supply well is located 3,100 feet southeast of the truck garage on a separate parcel owned by Herr's as shown on Figure 1. Raw water is conveyed from the supply well 3,700 feet to Plant 2, located on an adjacent parcel (Parcel 68-2-96, Figure 2). A raw groundwater sample was collected inside Plant 2 from in-line sample ports installed prior to chlorination and distribution to Plant 1 and the truck garage. The raw groundwater sample was collected in laboratory bottleware, placed in a cooler with ice, and delivered to STL for analysis of the PADEP Short List parameters for unleaded gasoline and diesel fuel using EPA Method 524.2. The sample analytical results indicate that none of the PADEP Short List parameters for unleaded gasoline and diesel fuel were detected. The raw groundwater sample analytical report is provided in Appendix G.

5.0 SOIL QUALITY

During the collection of continuous soil samples with the Geoprobe ${ }^{\circledR}$, lithology was observed to be primarily micaceous silty sand overlying completely decomposed saprolitic schist. Saprolitic schist was generally encountered at depths ranging from seven to 14 feet below grade. Groundwater was first encountered in the borings at depths ranging from 10 to 18 feet below grade. Geoprobe ${ }^{\circledR}$ refusal was noted in several borings (SB-12, SB-16, SB-17, SB-20 and SB-21) at depths ranging from 15 to 18 feet below grade, where weathered schist bedrock was encountered. During the drilling of MW-4 and MW-5, weathered schist and quartz fragments were observed during air rotary drilling at depths ranging from 14 to 18 feet below grade. A strike-perpendicular geologic cross-section is provided as Figure 13.

Static groundwater levels measured at the truck garage between March 2015 and April 2016 (Table 3) show that the water table fluctuated between two and six feet below grade. Soil between two and six feet below grade is within the zone of groundwater saturation during the wetter seasons, and soil below a depth of six feet is in contact with groundwater on a year-round basis. For these reasons, one-tenth of the Generic Value was used in the process to determine the Act 2 soil-to-groundwater MSC for each parameter in soil as shown on Table 1 and Table 2.

Soil sample analytical results (Table 1 and Table 2) show that benzene was detected in six borings (SB-7, SB-8, SB-18, SB-20, SB-23 and SB-24) at concentrations exceeding the Act 2 non-residential Statewide Health Standard of $500 \mu \mathrm{~g} / \mathrm{kg}$. Toluene was detected in SB-7 and SB-8 at concentrations exceeding the Act 2 non-residential Statewide Health Standard of $100,000 \mu \mathrm{~g} / \mathrm{kg}$. Ethylbenzene was detected in SB-7, SB-8 and SB-17 at concentrations exceeding the Act 2 non-residential Statewide Health Standard of 70,000 $\mu \mathrm{g} / \mathrm{kg}$. Naphthalene was detected in SB-7 and SB-8 at concentrations exceeding the Act 2 non-residential Statewide Health Standard of $10,000 \mu \mathrm{~g} / \mathrm{kg}$. 1,2,4-trimethylbenzene ($1,2,4-\mathrm{TMB}$) and $1,3,5-\mathrm{TMB}$ were detected in SB-12, SB-23, SB-27 and SB-29 at concentrations exceeding their respective Act 2 nonresidential Statewide Health Standards of $6,200 \mu \mathrm{~g} / \mathrm{kg}$ and $5,300 \mu \mathrm{~g} / \mathrm{kg}$. The regulated substances exceeding their Act 2 remediation standards noted above occurred at depths ranging from five to 13 feet below grade. Shallow soil impacts were observed at three feet below grade at SB-29 inside the truck garage. Isopropylbenzene, MTBE and xylenes were also detected in soil, but at concentrations below their respective non-residential Statewide Health Standards.

Of the six regulated substances exceeding the Statewide Health Standard, benzene is present in soil at the greatest distance from the UST system area, while $1,2,4-\mathrm{TMB}$ and $1,3,5-\mathrm{TMB}$ are present at the shortest distance. The aerial distribution of benzene in soil is shown on Figure 13. Maximum xylene concentrations were also detected near the UST system area, while maximum ethylbenzene and toluene concentrations were detected at an intermediate distance from the UST system area.

The aerial distribution of BTEX in soil is reflective of the aqueous solubility of each substance, which are provided below.

Parameter	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4-TMB	1,3,5-TMB
Solubility (mg / L)	$1,780.5$	532	161	175	56	48.9
$\mathrm{~K}_{\text {oc }}(1 / \mathrm{kg})$	58	130	220	350	2,200	660

Notes:
$\mathrm{K}_{\text {oc }}=$ Soil-water partitioning coefficient
Due to their lower solubilities, ethylbenzene, xylenes and TMB are preferentially retained in soil and are more resistant to degradation than benzene and toluene. In contrast, the higher solubility of benzene may account for its presence in soil at a greater distance from the current and former UST systems.

The vertical distribution of benzene in soil is shown on Figure 14. The maximum benzene concentrations were observed in the eight to 12 -foot depth range.

6.0 GROUNDWATER FLOW

Groundwater at the property occurs in pores and relict fractures in the weathered decomposed schist saprolite overlying a fractured bedrock aquifer system. Based on static water level data, the water table is generally within six feet of surface grade. Groundwater flow patterns and hydraulic gradients are similar during each monitoring event, with an apparent groundwater flow direction to the east ($\mathrm{N} 80^{\circ} \mathrm{E}$) and an average hydraulic gradient of 0.018 as shown on Figure 5 through Figure 12. As groundwater flows off the property, the hydraulic gradient shows an apparent groundwater flow direction to the southeast as shown on Figure 17. Groundwater elevations shown on Figure 17 were based in part on water levels measured during the April 6, 2016 monitoring event at selected monitoring wells surrounding Herr's wastewater disposal fields.

The median thickness of the regolith (including saprolite) in the Piedmont Upland is reported to be 40 feet ${ }^{6}$. The degree of fracturing in the parent rock contributes to the development of saprolite, as more highly fractured parent rocks tend to weather and produce a thicker saprolite mantle. The saprolite thickness at the property is assumed to be 61 feet based on the observed water level (3.3 feet) and casing depth (74 feet) of the former supply well described in Section 4.5.

The property is located in an upland area within 1,000 feet of the drainage divide between Octoraro Creek and North East Creek (Figure 1). The groundwater recharge area for the property extends to the northwest and southwest toward the divide, with elevations of the contributing areas ranging from 540 to 560 feet. Based on local topography, regional drainage patterns and interpreted fracture traces (Figure 4), regional groundwater is expected to flow to the east and southeast toward the UNT to North East Creek, located 150 feet east of the property boundary. An inferred fracture trace trends from northwest to southeast through the property, resulting in a topographic depression (Figure 2). Surface elevations at the property

[^3]range from 513 feet (MW-1) to 508 feet (MW-10). As described in Section 3.0, groundwater flow systems in the area of the property are local and discharge to streams. Groundwater from contributing areas of higher elevation flows across the property to the inferred fracture trace, and ultimately discharges to form the headwater of the UNT to North East Creek southeast of the property on the downgradient parcel owned by Herr's. Culverted stormwater flow from Plant 1 and the parking area north of the truck garage also discharges at the endwall (Figure 3) located at the headwater of the UNT.

The UNT is classified as an intermittent stream according to the USGS (see Section 3.0). Intermittent streams do not have continuous flowing water year-round. Water level data collected from MW-11 and the drive point wells between April 6 and April 13, 2016 is presented in the following table.

Well	Screened Interval	Depth to Water	Casing Elevation	Groundwater Elevation	Surface Elevation
MW-11	2 to 13 feet	0.34 feet	501.65 feet	501.31 feet	498.65 feet
DPW-1	0 to 2 feet	2.76 feet	499.03 feet	496.26 feet	497.15 feet
DPW-2	0 to 2 feet	1.86 feet	500.00 feet	498.14 feet	498.26 feet

The observed water levels indicate the depth of groundwater is 0.89 feet below grade at DPW-1 and essentially at-grade at DPW-2. Based on the greater depth of MW-11 and the higher groundwater elevation, an upward hydraulic gradient is apparent, which supports the surface water flow observed adjacent to MW-11 and DPW-2.

7.0 GROUNDWATER QUALITY

Groundwater sample analytical results (Table 3) for wells at the truck garage show that all of the PADEP Short List parameters for unleaded gasoline and diesel fuel except isopropylbenzene were detected at concentrations exceeding their Act 2 non-residential Statewide Health Standards in MW-3, MW-4, MW5, MW-7 and the former supply well. SPL petroleum was observed in MW-4 during the June 25 and July 9, 2015 groundwater monitoring events. None of the PADEP Short List parameters for unleaded gasoline and diesel fuel were detected in groundwater at MW-1, MW-2, MW-6 and MW-8. Benzene and MTBE are the only parameters detected at concentrations exceeding their Act 2 non-residential Statewide Health Standards in MW-10 at the downgradient property boundary (the Act 2 point of compliance [POC]). Groundwater monitoring data collected during site characterization is shown on Figure 5 through Figure 12.

Groundwater sample analytical results (Table 3) for the off-site wells (MW-11, MW-12 and MW-13) show that benzene and MTBE were detected at MW-11, located 150 feet downgradient of MW-10. Maximum concentrations of dissolved benzene and MTBE detected at MW-11 were $19.4 \mu \mathrm{~g} / \mathrm{L}$ and $137 \mu \mathrm{~g} / \mathrm{L}$, respectively, and exceed their Act 2 non-residential Statewide Health Standards. To date, none of the PADEP Short List parameters for unleaded gasoline and diesel fuel have been detected at MW- 12 or MW13. Groundwater sample analytical results for parameters detected in the samples collected on April 13, 2016 from the shallow drive point wells DPW- 1 and DPW- 2 are presented in the table below.

Detected Parameters	DPW-1	DPW-2
Benzene	$<0.5 \mu \mathrm{~g} / \mathrm{L}$	$13 \mu \mathrm{~g} / \mathrm{L}$
MTBE	$2 \mu \mathrm{~g} / \mathrm{L}$	$5 \mu \mathrm{~g} / \mathrm{L}$
Xylenes	$<0.5 \mu \mathrm{~g} / \mathrm{L}$	$0.7 \mu \mathrm{~g} / \mathrm{LJ}$

Notes:

$\mathrm{J}=$ Parameter not detected above the laboratory limit of quantitation.

The results indicate that off-site groundwater discharge is impacted by dissolved benzene and MTBE.
Intrinsic groundwater quality parameters monitored during low-flow purging and sampling on October 10, 2015 are provided in Appendix F and are summarized below.

Well	DO	ORP	pH
MW-1	$5.47 \mathrm{mg} / \mathrm{l}$	99.1 mV	6.86
MW-2	$1.12 \mathrm{mg} / \mathrm{l}$	128.4 mV	6.10
MW-3	$3.21 \mathrm{mg} / \mathrm{l}$	-151.8 mV	6.62
MW-4	$4.53 \mathrm{mg} / \mathrm{l}$	-145.2 mV	6.51
MW-5	$1.51 \mathrm{mg} / \mathrm{l}$	-51.5 mV	7.60
MW-6	$6.54 \mathrm{mg} / \mathrm{l}$	73.3 mV	6.76
MW-7	$2.22 \mathrm{mg} / \mathrm{l}$	-14.0 mV	6.75
MW-8	$3.86 \mathrm{mg} / \mathrm{l}$	98.9 mV	6.48
MW-9	$1.32 \mathrm{mg} / \mathrm{l}$	97.8 mV	6.39
MW-10	$1.18 \mathrm{mg} / \mathrm{l}$	13.0 mV	8.84

The intrinsic parameters indicate that dissolved oxygen decreases with groundwater flow along the centerline of the plume ($\mathrm{MW}-3, \mathrm{MW}-5$ and MW-10). The lowest ORP was observed in the source area (MW-3 and MW-4). This suggests that as groundwater flows from the UST systems toward downgradient areas, aerobic biodegradation ($D O>2.0 \mathrm{mg} / \mathrm{I}$) is occurring ${ }^{7}$. As oxygen is depleted, anaerobic conditions ($\mathrm{DO}<2.0 \mathrm{mg} / \mathrm{I}$) have developed at MW-5, MW-9 and MW-10. Although MW-10 is downgradient of the source area, the plume is covered by an impervious asphalt surface, which restricts infiltration and recharge of groundwater to replenish dissolved oxygen in the subsurface.

As described in Section 5.0, benzene diffuses most rapidly out of SPL and partitions into groundwater, followed by toluene, ethylbenzene and xylenes. Table 3 shows that the highest dissolved benzene concentrations in groundwater typically occur at MW-7 and MW-10. Lower detected dissolved benzene concentrations were observed at MW-3 nearest the UST system area. The highest dissolved toluene concentrations were observed at MW-3, and with lower concentrations observed at MW-10. Toluene is known to have the highest biodegradation rate of the BTEX compounds, and coupled with evidence of anaerobic conditions along the centerline of the plume, may be evidence of natural attenuation. The highest dissolved ethylbenzene and xylenes concentrations were observed at MW-4 and MW-7.

Maximum dissolved concentrations of BTEX in water were estimated based on the SPL fingerprint analysis (see Section 4.4) and the reported fuel-water partition coefficient ($K_{f w}$) for each substance ${ }^{8}$. The fuelwater partition coefficient of a substance is related to the solubility in water using the equation $K_{f w}=C_{f}$ / \boldsymbol{C}_{w}, where \boldsymbol{C}_{f} is the concentration in fuel and $\boldsymbol{C}_{\boldsymbol{w}}$ is the concentration in water. Using published values of $K_{f w}$ for a typical gasoline blend, the estimated BTEX concentrations in water are provided in the following table.

[^4]| Substance | Concentration
 in SPL
 $\left(\mathbf{C}_{f}\right)$ | Fuel $/$ Water
 Partition
 Coefficient
 $\left(\mathrm{K}_{\mathrm{fw}}\right)$ | Estimated
 Concentration
 in Water
 $\left(\mathbf{C}_{w}\right)$ | Maximum
 Observed
 Concentration | Location of
 Maximum
 Observed
 Concentration |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Benzene | $600,000 \mu \mathrm{~g} / \mathrm{L}$ | 248 | $2,419 \mu \mathrm{~g} / \mathrm{L}$ | $2,770 \mu \mathrm{~g} / \mathrm{L}$ | $\mathrm{MW}-7$ |
| Toluene | $22,000,000 \mu \mathrm{~g} / \mathrm{L}$ | 1,062 | $20,715 \mu \mathrm{~g} / \mathrm{L}$ | $17,000 \mu \mathrm{~g} / \mathrm{L}$ | $\mathrm{MW}-3$ |
| Ethylbenzene | $12,000,000 \mu \mathrm{~g} / \mathrm{L}$ | 3,488 | $3,440 \mu \mathrm{~g} / \mathrm{L}$ | $2,820 \mu \mathrm{~g} / \mathrm{L}$ | $\mathrm{MW}-4$ |
| Xylenes | $59,000,000 \mu \mathrm{~g} / \mathrm{L}$ | 3,859 | $15,289 \mu \mathrm{~g} / \mathrm{L}$ | $10,300 \mu \mathrm{~g} / \mathrm{L}$ | $\mathrm{MW}-7$ |
| MTBE | $<10,000 \mathrm{~g} / \mathrm{L}$ | 15.5 | $<645 \mu \mathrm{~g} / \mathrm{L}$ | $137 \mu \mathrm{~g} / \mathrm{L}$ | $\mathrm{MW}-11$ |

The original composition of the gasoline released at the truck garage and the fraction of each substance in the released gasoline are unknown; however, the maximum observed concentrations of BTEX that occur within the source area compare closely to the estimated concentrations. Although MTBE was not detected in the SPL, its concentration within the source area is uncertain. MTBE was detected in MW-5 at a maximum concentration of $21 \mu \mathrm{~g} / \mathrm{L}$ near the source area, and at a concentration of $137 \mu \mathrm{~g} / \mathrm{L}$ at $\mathrm{MW}-11$, located 320 feet downgradient of MW-4 where SPL was observed.

8.0 SOIL GAS SAMPLING AND ANALYSIS

Soil vapor intrusion to non-residential indoor air was evaluated in accordance with the PADEP guidance document titled Vapor Intrusion into Buildings from Groundwater and Soil under the Act 2 Statewide Health Standard. Soil impacted by the release is within the zone of groundwater saturation, and compounds of potential indoor air concern (COPIACS) are present in groundwater (see Table 3). There is less than five feet of soil-like material present. Therefore, the Site cannot "screen out" of vapor intrusion. As an alternative, an assessment was conducted inside the truck garage through the collection and analysis of soil gas samples.

On February 29, 2016, RETTEW installed a permanent, sub-slab soil gas sampling implant (SG-1) below the truck garage as shown on Figure 15. SG-1 was installed below the truck garage within the area of maximum observed impacts of unleaded gasoline and diesel to soil and groundwater (near SB-7 and MW4). The truck garage is a slab-on-grade structure. The exterior area surrounding the truck garage is paved with impervious asphalt cover with minimal air permeability. No preferential pathways were observed at the truck garage.

SG-1 was installed using direct-push Geoprobe ${ }^{\circledR}$ methodology to a depth of 3.5 feet below grade based on observed water levels at MW-4. A smooth, eight-inch diameter core was removed from the building slab prior to installation. The slab was observed to be eight inches thick with an additional four inches of crushed stone subbase. A six-inch stainless steel screened implant, manufactured by Geoprobe ${ }^{\circledR}$, was advanced 2.5 feet into native soil with associated Teflon tubing and attached to an anchor point used during installation when the target depth was reached. As the drilling tools were removed from the borehole, the implant and 0.275 -inch inner-diameter Teflon tubing remained firmly anchored at the bottom. The annular space around the stainless steel screen was packed with silica sand to a depth of two feet below grade, and capped with a granular bentonite seal above the subbase to prevent atmospheric short-circuiting during soil vapor sample collection. Construction of the soil vapor implant was completed with a flush mount manhole set in concrete. A schematic of SG-1 is presented in Appendix C.

RETTEW attempted to collect a soil gas sample at SG-1 on March 1, 2016; however, the sample point became vacuum-locked due to the presence of shallow water and a sample could not be collected. For this reason, a sub-slab soil gas sample port (SG-2) was installed on March 25, 2016 by using a hammer drill
to advance a 0.375 -inch hole through the slab and subbase material into native soil at a depth of 13 inches. The upper two inches of the hole was over-drilled to one-inch diameter. Swagelo ${ }^{\text {rm }}$ stainless steel fittings were attached to 0.250 -inch outer-diameter 316 stainless steel tubing and inserted into the 0.375 -inch hole to a depth of 12.5 inches. The fittings and tubing were sealed with Quickrete ${ }^{\text {TM }}$ sealant and allowed to cure for two hours. SG-2 was completed with a threaded plug flush to the slab floor. A schematic of SG2 is presented in Appendix C.

Two rounds of sub-slab soil gas sampling were conducted at SG-2 on March 25 and April 13, 2016 using evacuated 6 liter (L) stainless steel Summa canisters provided by LLE, a PADEP-certified laboratory, connected directly to the stainless steel sub-slab tubing with a one-hour regulator set at a sampling flow rate of $83 \mathrm{~mL} / \mathrm{min}$. Prior to each sampling event, a shut-in test was performed to verify the airtightness of the compression fittings by applying a vacuum to the sample train tubing between SG-2 and the Summa canister. During the shut-in test, valves to SG-2 and Summa canister are closed and air is removed (using a 60 ml syringe) from the sampling train, inducing a vacuum of 15 inches of mercury. No changes in vacuum were observed for two minutes. The sampling train was then purged a minimum of three volumes of air through SG-2 and connecting tubing with a 60 ml syringe. The purge volume $(\mathrm{V})=3.0 \pi r 2 h$, where r is the inner radius of the probe and connecting tubing, and h is the length of the implant and the connecting tubing. The soil vapor samples were submitted to LLE for analysis of PADEP Short List petroleum products for unleaded gasoline and diesel fuel by EPA Method TO-15 following standard chain-of-custody protocols.

The laboratory analytical results indicated that none of the PADEP Short List petroleum products for unleaded gasoline and diesel fuel were detected in the sample collected on March 25, 2016. Toluene and xylenes were the only parameters detected in the soil gas sample collected on April 13, 2016; however, both parameters were detected at concentrations below the laboratory limit of quantitation. Concentrations of toluene and total xylenes were estimated to be 0.98 micrograms per cubic meter ($\mathrm{ug} / \mathrm{m}^{3}$), or 0.61 parts per billion volume (ppbv), and $2.7 \mathrm{ug} / \mathrm{m}^{3}$ (or 0.64 ppbv), respectively. Soil gas sample laboratory analytical reports are attached in Appendix K.

The PADEP has set Statewide Health Standard MSCs for unleaded gasoline and diesel fuel parameters in indoor air. The MSCs for soil gas are calculated as $100 x$ the MSC for indoor air and are compared to the soil gas sample results below.

Parameter	MSCs for Non- Residential Indoor Air	$3 / 25 / 2016$ Sample Results	$4 / 13 / 2016$ Sample Results
Benzene	0.011	<0.00064	<0.00064
Cumene	1.1	<0.00098	<0.00098
Ethylbenzene	0.073	<0.00087	<0.00087
MTBE	0.31	<0.00072	<0.00072
Naphthalene	0.0088	<0.00260	<0.00260
Toluene	1.2	<0.00075	0.00098 J
1,2,4-TMB	0.017	<0.00098	<0.00098
1,3,5-TMB	0.017	<0.00098	<0.00098
Total Xylenes	0.3	<0.00174	0.00270 J

Notes:

All units in milligrams per cubic meter ($\mathrm{mg} / \mathrm{m}^{3}$).
MSCs for Soil Gas MSC SG $_{6}=$ MSC $_{1 A Q} / 0.01$ transfer factor.
$\mathrm{J}=$ Parameter not detected above the laboratory limit of quantitation.

Detected concentrations of toluene and total xylenes are below their respective non-residential soil gas MSCs of $120 \mathrm{mg} / \mathrm{m}^{3}$ and $30 \mathrm{mg} / \mathrm{m}^{3}$. Based on the soil vapor sample analytical results, the non-residential vapor intrusion pathway is not a concern at the truck garage in accordance with the Act 2 vapor intrusion guidance.

9.0 SEDIMENT AND SURFACE WATER SAMPLING AND ANALYSIS

Sediment and surface water samples were collected at various points in the UNT to North East Creek to determine the extent of petroleum impacts resulting from discharging groundwater. Two sediment samples (Sed-1 and Sed-2) and two surface water samples (Stream-1 and Stream-2) were collected on February 22, 2016 as shown on Figure 15 and Figure 16. Sampling was initiated at the downstream location (Sed-2 and Stream-2) and proceeded toward the upstream location (Sed-1 and Stream-1) to preclude disturbance of the stream and the potential sample interference. Sediment samples were collected at a depth of approximately six inches below the stream bed using a hand auger and placed directly into laboratory bottleware. The hand auger was decontaminated with an Alconox ${ }^{\text {TM }}$ solution and rinsed with clean water between sampling locations. Surface water samples were collected with a decontaminated 500 ml plastic bottle, which was used to fill laboratory bottleware. All samples were stored in a cooler with ice and delivered to LLE for analysis of the PADEP Short List parameters for unleaded gasoline and diesel fuel. The sediment and surface water sample analytical reports are provided in Appendix L for February 22, 2016, and detected parameters are summarized in the following table.

Analytical Parameter	Stream-1	Stream-2	Sed-1	Sed-2
Benzene	$19 \mu \mathrm{~g} / \mathrm{L}$	$1 \mu \mathrm{~g} / \mathrm{L}$	$5 \mu \mathrm{~g} / \mathrm{kg}$	$<0.5 \mu \mathrm{~g} / \mathrm{kg}$
MTBE	$25 \mu \mathrm{~L} / \mathrm{L}$	$12 \mu \mathrm{~L} / \mathrm{L}$	$160 \mu \mathrm{~g} / \mathrm{kg}$	$<0.5 \mu \mathrm{gg}$

The results show petroleum impacts to surface water and sediment at the upstream sampling locations Stream-1 and Sed-1. Petroleum impacts were not detected in the downstream sample Sed-2. Benzene and MTBE were detected in surface water in the downstream sample Stream-2, but at lower concentrations than Stream-1. The lower dissolved petroleum concentrations at Stream-2 are likely due to dilution and mixing with discharging groundwater as surface water flows downstream.

An additional set of sediment samples (Sed-3 and Sed-4), surface water samples (Stream-1, Stream-3 and Stream-4) and a stormwater sample (Stormwater-1) were collected on April 6, 2016 to delineate petroleum impacts to surface water and sediment as shown on Figure 18. Sampling was initiated at the downstream location (Stream-1) and proceeded toward the first upstream location (Sed-3 and Stream-3 adjacent to MW-11), and then to the second upstream location (Sed-4 and Stream-4 adjacent to DPW-2) to preclude potential sample interference. The stormwater sample was collected from within the endwall culvert piping prior to discharging to the UNT. All samples were collected, transported and analyzed using the same methodology as the February 22, 2016 sampling event described above. The sample analytical reports are provided in Appendix L for April 6, 2016 and detected parameters in surface water are summarized in the following table.

Analytical Parameter	Stormwater	Stream-1	Stream-3	Stream-4
Benzene	$<0.5 \mu \mathrm{~g} / \mathrm{L}$	$14 \mu \mathrm{~g} / \mathrm{L}$	$<0.5 \mu \mathrm{~g} / \mathrm{L}$	$<0.5 \mu \mathrm{~g} / \mathrm{L}$
MTBE	$<0.5 \mu \mathrm{~g} / \mathrm{L}$	$19 \mu \mathrm{~g} / \mathrm{L}$	$0.7 \mu \mathrm{~g} / \mathrm{L}$	$<0.5 \mu \mathrm{~g} / \mathrm{L}$

The surface water sample analytical results show that dissolved benzene and MTBE are discharging with groundwater to surface water between the endwall and Stream-4, adjacent to DPW-2. No dissolved petroleum substances were detected in surface water from upstream areas (i.e., stormwater flow or
surface water upstream of Stream-3). The detected parameters in sediment are summarized in the following table.

Analytical Parameter	Sed-1	Sed-2	Sed-3	Sed-4
Benzene	$5 \mu \mathrm{~g} / \mathrm{kg}$	$<0.5 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$38 \mu \mathrm{~g} / \mathrm{kg}$
MTBE	$160 \mu \mathrm{~g} / \mathrm{kg}$	$<0.5 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{gg}$	$5 \mu \mathrm{~g} / \mathrm{kg}$
Isopropylbenzene	$<0.9 \mu \mathrm{~g} / \mathrm{kg}$	$<1 \mu \mathrm{gg}$	$<3 \mu \mathrm{~kg} / \mathrm{kg}$	$6 \mu \mathrm{~g} / \mathrm{kg}$

The sediment impacts are not likely the result of source erosion, since source soils are covered by paved surfaces and the truck garage. In addition, benzene and MTBE partition into water easily and have a low affinity to sorb to soil; therefore, these detections in sediment are probably more indicative of petroleum impacts to pore water resulting from discharging groundwater.

10.0 FATE AND TRANSPORT ANALYSIS

Fate and transport analysis was performed for detected substances in groundwater (Table 3) that exceeded the Statewide Health Standards at monitoring wells MW-3, MW-4, MW-5, MW-7 and MW-10. Groundwater sample analytical data was plotted over time for each well. Concentration trends over time were analyzed to determine if concentrations are increasing, decreasing, or stable. A trend line was fitted to each plot and an R-squared value was determined to describe the trend variation as "high" (R -squared value ranging from 0 to 30%), "moderate" (R-squared value ranging from 30% to 60%), or "low" (R squared value ranging from 60% to 100%). Concentration versus time plots are presented in Appendix M. The findings of the trend analysis are summarized in Table 4.

The concentration versus time plots indicate a decreasing trend at MW-3 nearest the UST systems. Trends are also generally decreasing at MW-5, although the trends have high variation. Trends are generally decreasing at MW-4 with the exception of benzene and $1,3,5-\mathrm{TMB}$; however, the decreasing trends have high variation. Increasing trends are generally noted at MW-7, although there is high variation in the trends. In particular, benzene concentrations are increasing at MW-4 and MW-7, and migrating downgradient with groundwater flow.

Trends could not be evaluated at MW-10 for most of the substances analyzed in groundwater due to nondetect data and/or insufficient data; however, benzene and MTBE have been detected at MW-10 during each of the four groundwater sampling events since MW-10 was installed. Dissolved benzene and MTBE concentrations are increasing at MW-10, and both substances have been detected above their respective Statewide Health Standards during each sampling event.

The concentration versus time plots show high variation in data from source area wells MW-4 and MW5. This could indicate that trends are somewhat stable, or that a weak decreasing trend is occurring. Increasing trends are apparent at MW-7, and MW-10 at the POC, suggesting that the plume is expanding downgradient. This is particularly true for benzene. Due to the presence of SPL at MW-4 during site characterization, and benzene detected in groundwater at concentrations exceeding estimated concentrations based on SPL fingerprint analysis (see Section 7.0), there is little evidence of source decay in the area of MW-4 and MW-7. Further groundwater monitoring is required to verify trends over time.

RETTEW evaluated the migration of dissolved benzene and MTBE using the PADEP Quick Domenico (QD) model spreadsheet following the methodologies presented in the PADEP guidance document titled User's Manual for the Quick Domenico Groundwater Fate and Transport Model. The QD model was selected based on the presence of an unconsolidated (saprolite) aquifer, organic petroleum contaminants and a
non-decaying source. The QD model was used to estimate steady state concentrations of benzene and MTBE at the point of groundwater discharge (MW-11). The findings will be used to support subsequent modelling to evaluate the loading of the benzene and MTBE plumes to surface water (see Section 11.0).

A systematic approach was used to calibrate the QD model by matching the model to actual field data along the centerline of the plume. A range of selected model calibration parameters were used in various combinations to identify the model(s) that closely approximates observed concentrations. This approach utilized nine combinations of parameters, referred to as Model 1 through Model 9. The QD model input parameters and their sources used in the calibration process are described below.

Parameter	Symbol	Value	Comments
Source Concentration	C_{o}	$2.419 \mathrm{mg} / \mathrm{L}$	Estimated benzene concentration in SPL
Source Concentration	C_{o}	$0.200 \mathrm{mg} / \mathrm{L}$	Estimated MTBE concentration in SPL
Longitudinal Dispersivity	α_{x}	3 to 150 feet	Variable calibration parameter scaled to plume
Transverse Dispersivity	α_{y}	$\alpha_{x} / 10$	Estimate
Vertical Dispersivity	α_{z}	0.001 foot	Minimized for 2-D transport
Source Width	Y	40 feet	Estimated SPL plume width
Source Depth	Z	10 feet	Site characterization data
Hydraulic Conductivity	K	0.03 to $3.1 \mathrm{ft} /$ day	Site characterization data, calibration parameter
Hydraulic Gradient	i	$0.018 \mathrm{ft} / \mathrm{ft}$	Groundwater monitoring data
Effective Porosity	n_{e}	0.08	Published value for Wissahickon Formation
Density	ρ	$1.788 \mathrm{~g} / \mathrm{cm}^{3}$	Site characterization data
Organic Carbon Coefficient	$K_{o c}$	$58 \mathrm{~L} / \mathrm{kg}$	Chapter 25 Table VA for Benzene
Organic Carbon Coefficient	$K_{o c}$	$12 \mathrm{~L} / \mathrm{kg}$	Chapter 25 Table VA for MTBE
Fraction Organic Carbon	$f_{o c}$	0.0118	Site characterization data
Degradation Coefficient	λ	0.00096 day $^{-1}$	Chapter 25 Table VA initial value for Benzene
Degradation Coefficient	λ	0.0019 day $^{-1}$	Chapter 25 Table VA initial value for MTBE

Notes:
Shaded parameters are used as model calibration variables.

The source is considered to be the extent of SPL. The estimated benzene concentration in groundwater based on SPL fingerprint analysis ($2,419 \mu \mathrm{~g} / \mathrm{L}$, see Section 7.0) is slightly less than the maximum benzene concentrations detected in MW-5 and MW-7. This suggests that the SPL plume surrounds MW-4 and extends outward toward MW-5, MW-7 and the former supply well as shown on Figure 17. The average benzene concentrations in MW-4, MW-5 and MW-7 are below the estimated concentration by at least a factor of 1.7. For this reason, and the observed increasing benzene trends in MW-4, MW-7 and MW-10, the estimated benzene concentration of $2.419 \mathrm{mg} / \mathrm{L}$ was used as the source concentration.

MTBE has been mostly non-detect in groundwater within the source area, with a maximum concentration of $21 \mu \mathrm{~g} / \mathrm{L}$ at MW-5. MTBE was detected in soil at SB-18 within the source area at a depth of 10 feet and a concentration of $260 \mu \mathrm{~g} / \mathrm{kg}$. An initial source concentration of $200 \mu \mathrm{~g} / \mathrm{L}(0.200 \mathrm{mg} / \mathrm{L})$ was used based on the observed occurrence of MTBE in saturated soil and the estimated concentration in groundwater based on SPL fingerprint analysis (< $645 \mathrm{ug} / \mathrm{L}$).

The range of values used for longitudinal dispersity were scaled with the distance to the surface water receptor within the plume at a distance of 300 feet measured from the source to MW- 11 (i.e., the point of groundwater discharge) as shown on Figure 17. An initial value of α_{x} was set equal to 10 percent of the distance from the source to MW-11 (30 feet). A range of values from one-tenth (0.3 feet) to five times (150 feet) the initial value was used to represent an order of magnitude uncertainty factor. It is noted that calibration well MW-10 is located along the plume centerline 140 feet from the source.

The range of hydraulic conductivity (K) values used was based on the calculated values from the aquifer testing described in Section 4.5. The average calculated hydraulic conductivity of $0.31 \mathrm{ft} /$ day was varied by an order of magnitude to produce a range of values from $0.031 \mathrm{ft} /$ day to $3.1 \mathrm{ft} /$ day. The average porosity of saprolite developed from rocks of the Wissahickon Formation is reported to be about 48 percent, and estimates of the effective porosity of the saturated decomposed saprolite in the Piedmont Upland range from eight percent to 10 percent ${ }^{9}$.

The time used in the calibration models was based on the number of elapsed days $(6,888)$ between the discovery of contamination (May 28, 1997) and the most recent groundwater monitoring event (April 6, 2016). The model domain was set to 300 feet, equal to the distance to MW-11. Average centerline concentrations for MW-10 (140 feet) and MW-11 (300 feet) were used to calibrate the models. The QD model output is attached in Appendix \mathbf{N}. Calibration data and the resulting degradation coefficients are summarized in the following table.

Model No.	K $(\mathrm{ft} /$ day $)$	$\boldsymbol{\alpha}_{\boldsymbol{x}}$ (ft)	Benzene $\boldsymbol{\lambda}$ $\left(\right.$ day $\left.^{-1}\right)$	MTBE $\boldsymbol{\lambda}$ $\left(\right.$ day $\left.^{-1}\right)$	Comment
1	0.31	30	0	0	Baseline model calibrated to MW-10
2	0.31	3	0	0	
3	0.31	150	0	0	
4	0.031	30	0	0	
5	0.031	3	0	0	
6	0.031	150	0	0	
7	3.1	30	0	0	
8	3.1	3	0.00006	0.00056	Benzene is not at steady state
9	3.1	150	0	0	

Model 8 is the only calibration model that achieves a centerline concentration for benzene and MTBE at MW-10 with some degree of degradation. All other calibration models result in centerline concentrations below observed concentrations with no degradation. In addition, Model 8 is the only calibration model that is not at steady state for benzene. For this reason, Model 8 was selected for further calibration.

Model 8 was further calibrated for benzene and MTBE by adjusting the hydraulic conductivity downward to closely approximate the plume centerline concentrations at MW-10 and MW-11. During the final step in the calibration process, the source concentration of MTBE was adjusted due to uncertainty to more closely match centerline concentrations. An MTBE source concentration of $0.16 \mathrm{mg} / \mathrm{L}$ results in the best match. The recalibrated Model 8 is referred to as Model 10, with calibration data summarized in the following table.

ModeI No.	K $(\mathrm{ft} /$ day $)$	$\boldsymbol{\alpha}_{\boldsymbol{x}}$ (ft)	Benzene $\boldsymbol{\lambda}$ $\left(\mathrm{day}^{-1}\right)$	MTBE $\boldsymbol{\lambda}$ $\left(\right.$ day $\left.^{-1}\right)$	Comment
10	2.46	3	0.00006	0.00056	Calibrated to centerline at MW-10 and MW-11

Model 10 results indicate that the benzene plume has not reached steady state conditions, whereas the MTBE plume has reached steady state conditions. A predictive model was developed by increasing the time parameter in Model 10 to incrementally evaluate steady state conditions. Predictive model plots are

[^5]provided for benzene and MTBE at various times in Appendix \mathbf{N} and are summarized in the following table.

Time	Benzene concentration at MW-11	MTBE Concentration at MW-11	Comment
7,670 days	$218 \mu \mathrm{~g} / \mathrm{L}$	$79 \mu \mathrm{~g} / \mathrm{L}$	21-year projection (5/28/2018)
10,958 days	$1,167 \mu \mathrm{~L} / \mathrm{L}$	$79 \mu \mathrm{~g} / \mathrm{L}$	30 -year projection (5/29/2027)
11,689 days	$1,210 \mu \mathrm{~g} / \mathrm{L}$	$79 \mu \mathrm{~g} / \mathrm{L}$	Benzene at steady state $(5 / 29 / 2029)$
14,000 days	$1,233 \mu \mathrm{~g} / \mathrm{L}$	$79 \mu \mathrm{~g} / \mathrm{L}$	38 -year projection $(9 / 26 / 2035)$

Benzene concentrations at MW-11 are expected to increase to over $200 \mu \mathrm{~g} / \mathrm{L}$ by May 28, 2018, and continue to increase until the benzene plume essentially reaches steady state during 2029. The steady state benzene plume is not expected to exceed the Statewide Health Standard ($5 \mu \mathrm{~g} / \mathrm{L}$) beyond a distance of 610 feet and should not be detected in groundwater at MW-12, located 700 feet downgradient of the source. The MTBE plume has reached steady state, and MTBE concentrations are not expected to increase at MW-11. Additional groundwater monitoring will be required to verify predicted QD model trends.

11.0 SURFACE WATER IMPACTS FROM GROUNDWATER DISCHARGE

RETTEW evaluated impacts to surface water from diffuse groundwater flow using the PADEP's SWLOAD5 model spreadsheet. The SWLOAD5 model was used to develop average concentrations of benzene and MTBE in a cross-sectional flow of the plume discharging to surface water, and to estimate the mass loading of benzene and MTBE to surface water under steady state conditions. The SWLOAD5 output was then used to determine applicable surface water quality standards for benzene and MTBE using the PADEP's PENTOXSD model.

The selection of the SWLOAD5 model is based on the same assumptions as the QD model (i.e., an unconsolidated [saprolite] aquifer and organic petroleum contaminants). The SWLOAD5 model input parameters and their sources are generally the same as the QD model to describe two dimensional flow. The sources of the SWLOAD5 input parameters are, for the most part, taken from the calibrated QD models described in Section 10. Key parameter input differences between the models pertain to time, vertical dispersivity, and the "edge criterion" established for each substance at the edge of the plume as described in the Act 2 Technical Guidance Manual (TGM), Section IV.A.3. These SWLOAD5 input parameters are described below.

Parameter	Symbol	Value	Comments
Time	t	1×10^{99} days	Assures model output is at steady state
Vertical Dispersivity	α_{z}	0.00001 foot	Variable calibration parameter
Benzene Plume View Width	None	112.1 feet	Variable calibration parameter
Benzene Plume View Depth	None	10.2 feet	Variable calibration parameter
Benzene Edge Criterion	None	$5 \mu \mathrm{~g} / \mathrm{L}$	Per Table IV-1 of the TGM
MTBE Plume View Width	None	60 feet	Variable calibration parameter
MTBE Plume View Depth	None	10.1 feet	Variable calibration parameter
MTBE Edge Criterion	None	$20 \mu \mathrm{~g} / \mathrm{L}$	Per Table IV-1 of the TGM

A vertical dispersivity value of 0.00001 was used to match the edge criterion concentration for each substance at a plume depth of 10 feet, since the entire source thickness and plume depth is assumed to discharge to surface water. The plume view width was adjusted to match the edge criterion
concentrations for each substance at the lateral bounds of each plume. The SWLOAD5 output is attached in Appendix \mathbf{O} and summarized in the following table.

Substance	Highest Modeled Concentration	Average Concentration	Plume Flow
Benzene	$1,233.6 \mu \mathrm{~g} / \mathrm{L}$	$421.2 \mu \mathrm{~g} / \mathrm{L}$	0.00059 cfs
MTBE	$78.9 \mu \mathrm{~g} / \mathrm{L}$	$47.9 \mu \mathrm{~g} / \mathrm{L}$	0.00031 cfs

Notes:

cfs = Cubic feet per second

The PENTOXSD surface water mixing model was then used to calculate Water Quality Based Effluent Limits (WQBELs) for the portions of the benzene and MTBE plumes that exceeded their edge criterion based on the SWLOAD5 model output. Specifically, the average groundwater concentrations and plume flow rates noted above were used as PENTOXSD input parameters. The analysis was performed for a reach of the UNT to North East Creek shown on Figure 18, from Node 1, located at the Stream-1 sampling point, to Node 2, located at the confluence of the UNT with North East Creek. Hydrodynamic input parameters used in the PENTOXSD model are listed in the following table.

Parameter	Node 1	Node 2	
River Mile Index	1.44 mi	0.0 mi	GoogleEarth measurement
Elevation	495 ft	390 ft	GoogleEarth measurement
Drainage Area	$0.04 \mathrm{mi}^{2}$	$0.98 \mathrm{mi}^{2}$	StreamStats
Qh Flow	0.0083 cfs	0.29 cfs	StreamStats
Q7-10Flow	0.0012 cfs	0.0059 cfs	StreamStats
Qh Width	3.3 ft	6 ft	GoogleEarth measurement
Q7-10 Width	1.5 ft	3 ft	Estimated (approx. $1 / 2$ Qh width)

The PENTOXSD output and the StreamStats datasheets used in the model are attached in Appendix \mathbf{P}. The waste load allocations (WLAs) calculated by PENTOXSD are provided in the following table.

Water Quality Criteria	Benzene WLAs	MTBE WLAs
Acute Fish Criterion (AFC)	$14,351 \mu \mathrm{~g} / \mathrm{L}$	NA
Chronic Fish Criterion (CFC)	$2,915 \mu \mathrm{~g} / \mathrm{L}$	NA
Threshold Human Health (THH)	NA	$448 \mu \mathrm{~g} / \mathrm{L}$
Cancer Risk Level (CRL)	$185 \mu \mathrm{~g} / \mathrm{L}$	NA
Governing Criteria	$185 \mu \mathrm{~g} / \mathrm{L}$	$47.9 \mu \mathrm{~g} / \mathrm{L}$

Notes:

NA = Not applicable
The PENTOXSD model selects the most restrictive WLA as the Governing Criterion, which is the applicable water quality criteria. The PENTOXSD model results indicate that the maximum average benzene concentration at steady state ($421.2 \mu \mathrm{~g} / \mathrm{L}$) exceeds the Governing Criterion (CRL $-185 \mu \mathrm{~g} / \mathrm{L}$); therefore, attainment of surface water criteria has not been obtained for benzene. The maximum average MTBE concentration at steady state ($47.9 \mu \mathrm{~g} / \mathrm{L}$) is more restrictive than any of the calculated WLAs; therefore, attainment of surface water criteria is successful for MTBE.

12.0 EXPOSURE PATHWAY EVALUATION

The findings of site characterization were used to conduct an evaluation of present and future exposure pathways to aid in the selection of a remediation standard. Potential exposure pathways are described in the following sections.

12.1 DIRECT CONTACT

None of the PADEP Short List Petroleum Products for diesel and unleaded gasoline detected in soil during site characterization exceeded the non-residential Statewide Health Standard Direct Contact MSCs (see Table 1 and Table 2). Based on these results, the exposure pathway of potential direct contact with petroleum impacted soil is acceptable.

12.2 INGESTION - GROUNDWATER AND SURFACE WATER

According to the West Nottingham Township Public Works Department, the area surrounding the property is not provided with a public water supply system. Local water supplies are provided through the use of private water wells. A search of available well records using the Pennsylvania Ground Water Information System (PaGWIS) revealed 13 existing private water wells within one-quarter mile of the Site. Six of the wells identified are owned by Herr's and are no longer in service. The remaining seven wells are privately owned and located upgradient of the truck garage to the north and west. The PaGWIS database information is attached in Appendix \mathbf{Q}.

According to Chester County parcel data, Herr's owns and controls all properties south and east of the truck garage, from the property boundary to Stoney Lane and east of Stoney Lane, approximately 3,000 feet downgradient (Figure 2). The results of fate and transport analysis (Section 10.0) show that no groundwater impacts above the applicable MSCs are expected downgradient of MW-12. Based on these findings, the release does not pose an immediate threat to private water supply wells.

The surface water ingestion pathway was evaluated by performing a review of the eMapPA ${ }^{10}$ database for public water supplies and surface water intakes downstream of the property in North East Creek. The eMapPA database did not reveal the presence of any surface water withdrawals in North East Creek between the property and the Maryland state line, located 2.5 miles downstream.

12.3 INHALATION - VAPOR INTRUSION

Vapor intrusion to non-residential indoor air from groundwater was evaluated for the Site in accordance with the PADEP guidance document titled Vapor Intrusion into Buildings from Groundwater and Soil under the Act 2 Statewide Health Standard. As described in Section 8.0, detected concentrations of toluene and total xylenes in sub-slab soil gas samples collected at the truck garage are below their respective nonresidential soil gas MSCs of $120 \mathrm{mg} / \mathrm{m}^{3}$ and $30 \mathrm{mg} / \mathrm{m}^{3}$. No other parameters were detected in the soil gas samples. Based on the soil vapor sample analytical results, the vapor intrusion pathway is incomplete at the truck garage in accordance with the Act 2 vapor intrusion guidance.

12.4 EVALUATION OF ECOLOGICAL RECEPTORS

Groundwater quality does not meet the Statewide Health Standard MSCs for benzene and MTBE at the POC (parcel boundary). Benzene and MTBE have been detected in surface water and sediment samples in an area of groundwater discharge downgradient of the truck garage on an adjacent parcel owned by

[^6]Herr's. The presence of dissolved benzene and MTBE in surface water and sediment samples warranted an evaluation of ecological receptors identified in 25 PA Code Chapter 250.311, which was performed as described in Section 13.0.

13.0 ECOLOGICAL RISK ASSESSMENT

A site-specific ecological risk assessment was performed in accordance with the process outlined in TGM Section IV.H and the Statewide Ecological Screening Process to evaluate eco-exposure to the media (groundwater) and substances (benzene and MTBE) addressed under the Site-Specific Standard. The assessment focused on the field identification of wetlands and habitat types present in the area of plume discharge, and an evaluation of the overall health and ecological value of the wetlands and habitats in reference areas adjacent to the area of plume discharge. A search of the Pennsylvania Natural Diversity Index (PNDI) was also conducted for species and habitats of concern within 1,000 feet. A summary memo of the ecological risk assessment is included as Appendix R.

The findings of the ecological risk assessment indicated that there is no substantial ecological risk associated with the release based on the following:

- No species of concern were identified.
- No evidence of stressed, discolored or deformed vegetation was observed.
- Benzene and MTBE are not known to bioaccumulate and are not known to have an adverse effect on the food chain or present a food-chain exposure hazard.
- The wetland in the area of plume discharge compared closely to the reference wetland with respect to the abundance and diversity of species present. No substantial ecological impacts were identified.
- The AFC and CFC surface water quality standards (see Section 11.0) are met and are protective of aquatic ecological receptors.
- Published sediment screening values indicate that the potential adverse effect of the release on terrestrial ecological receptors is low.
- No additional ecological risk assessment is warranted.

Three wetland areas were identified that contain suitable bog turtle habitat within the study area. It is noted that bog turtles were not observed during the ecological risk assessment. Potential impacts of remediation on wetlands and bog turtle habitat will be considered during the development of a Remedial Action Plan.

14.0 CONCEPTUAL SITE MODEL

A release of petroleum was discovered at the truck garage during UST system closure activities in May 1997. During UST closure, holes were noted in two USTs containing diesel fuel and unleaded gasoline. Approximately 1,200 tons of petroleum impacted soil and fill material were removed and disposed; however, complete source removal was not feasible due to space constraints and concerns regarding the structural integrity of the truck garage. Although water was observed in the UST excavation, it was not characterized as groundwater. A UST Closure Report was prepared in July 1997, which indicated concentrations of MTBE exceeding the unsaturated soil standard/action level in three soil samples. A new UST system was installed in the excavation following UST closure activities, and no further assessment or remediation was conducted at that time.

Site characterization performed between February 2015 and April 2016 by RETTEW at the truck garage has delineated the extent of soil and groundwater impacts resulting from the 1997 release as shown on Figure 17. Some of the key findings of site characterization are summarized below.

- The truck garage is underlain by micaceous schist bedrock and approximately 64 feet of saprolite comprised of micaceous silt and sand that forms an unconsolidated, unconfined aquifer.
- The area of maximum soil impacts (benzene concentrations greater than $500 \mu \mathrm{~g} / \mathrm{kg}$) is delineated and located directly downgradient of the UST system at depths ranging from three to 13 feet below grade. The aerial distribution of BTEX in soil is reflective of the aqueous solubility of each substance.
- Soil impacted by the release is below the seasonally high water table (two feet below grade) and within the zone of groundwater saturation.
- SPL has been observed in MW-4 within the area of maximum soil impacts. The occurrence of SPL at MW-4 coincides with the highest concentrations of BTEX in soil (SB-7). The SPL thickness is low (0.02 feet), and the recoverability of the SPL is low. Fingerprint analysis characterized the SPL as unweathered gasoline.
- All of the substances monitored in groundwater (except isopropylbenzene) have been detected at concentrations exceeding their Act 2 non-residential Statewide Health Standards in groundwater. Groundwater quality meets the Statewide Health Standard MSCs at the POC (downgradient property boundary) for all of the PADEP Short List Petroleum Products for diesel and unleaded gasoline except benzene and MTBE.
- Based on local topography, regional drainage patterns and interpreted fracture traces (Figure 4), regional groundwater is expected to flow to the east and southeast across the property toward the UNT to North East Creek, located 150 feet east of the property boundary.
- Groundwater discharges to the UNT downgradient of the property on an adjacent, separate parcel owned by Herr Foods, Inc. Discharging groundwater also supports a wetland, which forms the headwater to the UNT to North East Creek.
- Benzene and MTBE have been detected above Statewide Health Standard MSCs in groundwater at the point of groundwater discharge (MW-11).
- Benzene and MTBE have been detected in surface water and sediment in the northern portion of the wetland area.

The property obtains its water supply from an off-site groundwater source owned and operated by Herr's located 3,100 feet downgradient of the truck garage. Raw water sample analytical results indicated no detectable concentrations of diesel or gasoline parameters in the water supply. The area surrounding the property obtains domestic water supplies from water wells. There are no downgradient water supplies threatened by the release, and Herr's owns and controls land downgradient of the property.

Fate and transport analysis shows that the plume is not stable for benzene in groundwater. The benzene plume is expanding and is not expected to reach steady state for 13 years. The MTBE plume is currently at steady state. Groundwater monitoring data shows that there is some evidence of natural attenuation and degradation of petroleum substances in groundwater; however, fate and transport modelling of benzene and MTBE suggests that degradation rates are low.

Fate and transport analysis also shows that surface water will continue to be impacted by dissolved benzene and MTBE into the future. Steady state discharge of MTBE is not expected to exceed applicable water quality criteria; however, steady state discharge of benzene is expected to exceed the calculated Cancer Risk Level (CRL) water quality criteria for the UNT to North East Creek. Steady state discharge of benzene is expected to meet the calculated Acute Fish Criteria (AFC) and Chronic Fish Criteria (CFC) water
quality criteria for fish and aquatic life in the UNT to North East Creek. A search of the eMapPA database did not reveal the presence of any public water supplies or surface water withdrawals in North East Creek between the property and the Maryland state line, located 2.5 miles downstream. An ecological risk assessment of the area of plume discharge indicated that no species of concern were identified within the study area, no evidence of stressed vegetation was observed, and no substantial ecological impacts were identified.

15.0 REMEDIATION STANDARD SELECTION

Per Act 2, the extent of petroleum impacts resulting from the release within the property boundaries, and all areas in close proximity to the impacts necessary for the implementation of remediation action, is defined as the "Site". At the truck garage, the Site includes the area defined by UST system, the benzene plume in groundwater, and the UNT to North East Creek as shown on Figure 17. The Site represents the area proposed for remediation and attainment of an Act 2 standard.

Petroleum impacted soil is present below the seasonally high water table (i.e., soil in the zone of groundwater saturation). Because petroleum impacted soil will continue to leach to groundwater, remediation will focus on groundwater quality; therefore, Herr's proposes to attain the Act 2 Site-Specific Standard for groundwater. The following actions are proposed to demonstrate attainment of the SiteSpecific Standard for groundwater.

- Remediation of groundwater at the source to reduce dissolved benzene in groundwater to concentrations below the CRL WLA ($185 \mu \mathrm{~g} / \mathrm{L}$) surface water quality criteria prior to discharge to surface water.
- Revised fate and transport analysis to demonstrate that the CRL for benzene in surface water will be met in the future.
- A post-remedial care plan that includes the following:
- Groundwater monitoring to verify that the CRL will be met;
- An activity use restriction to prohibit the use of groundwater at the Site and eliminate potential human exposure to the release;
- A land use restriction to prohibit future residential use; and
- An activity use restriction requiring worker health and safety provisions and waste handling protocols during future disturbance of the Site to eliminate potential human exposure to the release.

SPL has been detected at the Site at MW-4. Based on the findings of baildown testing, SPL recovery does not appear to be feasible using conventional pumping technology. SPL has not been detected at MW-4 since baildown testing was conducted on July 9, 2015. Continued monitoring of MW-4 for the presence of SPL is recommended.

Remedial alternatives analysis and a selected remedial approach to protect surface water will be presented in a Remedial Action Plan (RAP) and submitted to the PADEP. It is anticipated that the RAP will be submitted within 45 days of PADEP approval of this Revised SCR.

H:\Projects \10172\101722001\GS\Revised SCR\Rpt-Revised SCR-06-10-16.docx

FIGURES

TABLES

Table 1
Phase II ESA Soil Sample Analytical Data Summary
Herr Foods, Inc. - 273 Old Baltimore Pike, Nottingham, Pennsylvania RETTEW Project No. 101722001

PADEP Short List Petroleum Products for Lubricating Oils and Fluids	Act 2 Statewide Health Standard Medium Specific Concentrations (MSCs)							$\begin{aligned} & \text { SB-6 } \\ & 10 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \text { SB-7 } \\ & 8 \mathrm{ft} . \end{aligned}$	$\begin{gathered} \text { SB-8 } \\ 7 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-9 } \\ 10 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-10 } \\ 5 \mathrm{ft} . \end{gathered}$
	Soil to Groundwater (Used Aquifers)				Direct Contact							
	TDS ≤ 2500				Residential	Non-Residential						
	Residential		Non-residential			Surface Soil	Subsurface Soil					
	$100 \mathrm{X}$ GW MSC	1/10 Generic Value	100 X GW MSC	1/10 Generic Value								
					0-15 feet	0-2 feet	2-15 feet					
BENZENE	500	13	500	13	57,000	290,000	330,000	120	22,000	21,000	< 0.6	8
ETHYLBENZENE	70,000	4,600	70,000	4,600	10,000,000	10,000,000	10,000,000	6,500	85,000	120,000	NA	NA
NAPHTHALENE	10,000	2,500	10,000	2,500	4,400,000	56,000,000	190,000,000	1,500	18,000	30,000	< 5	< 45
TOLUENE	100,000	4,400	100,000	4,400	10,000,000	10,000,000	10,000,000	2,600	270,000	450,000	NA	NA
XYLENES	1,000,000	99,000	1,000,000	99,000	1,900,000	8,000,000	9,100,000	28,000	390,000	560,000	NA	NA
ANTHRACENE	6,600	35,000	6,600	35,000	66,000,000	190,000,000	190,000,000	< 4	29	29	< 5	<45
BENZO(A)ANTHRACENE	29	32,000	360	32,000	5,700	110,000	190,000,000	<4	10 J	10 J	< 5	<45
BENZO(A)PYRENE	20	4,600	20	4,600	570	11,000	190,000,000	< 4	6 J	<4	< 5	<45
BENZO(B)FLUORANTHENE	29	17,000	120	17,000	5,700	110,000	190,000,000	< 4	<4	< 4	< 5	<45
BENZO(G, H, l) PERYLENE	26	18,000	26	18,000	13,000,000	170,000,000	190,000,000	<4	81	<4	< 5	<45
CHRYSENE	190	23,000	190	23,000	570,000	11,000,000	190,000,000	<4	11 J	10 J	< 5	<45
FLOURENE	150,000	380,000	190,000	380,000	8,800,000	110,000,000	190,000,000	71	92	89	< 5	<45
PHENANTHRENE	110,000	1,000,000	110,000	1,000,000	66,000,000	190,000,000	190,000,000	11 J	150	150	< 5	<45
PYRENE	13,000	220,000	13,000	220,000	6,600,000	84,000,000	190,000,000	5 J	49	45	< 5	<45

Notes:

1) All units in milligrams per kilogram (ug/kg)
2) Bold $\&$ shaded MSCs represent the applicable Act 2 non-residential Statewide Health Standard.
3) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.
4) Soil samples were collected on October 6, 2014
5) PADEP Short List petroleum products in itafics are COPIACs.
6) $N A=$ Not analyzed.
7) $\mathbf{1 / 1 0}$ of the Soil to Groundwater Generic Value used for soil in the zone of groundwater saturation below a depth of two feet.

Table 2
Soil Sample Analytical Data Summary Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

PADEP Short List Petroleum Products for Diesel Fuel and Unleaded Gasoline	Act 2 Statewride Health Standard Medium Speific Concentrations (MSCs)							Soil sample Identifications (Depth in feet below grade below sample 1.D.)									
	Soil to Groundwater (Used Aquifers)				Direct Contact												
	TDS ≤ 2500				Residential	Non-Residential											
	Residential		Non-residential			Surface Soil	Subsurface Soil										
	$\begin{gathered} 100 \mathrm{x} \\ \text { GW MSC } \end{gathered}$	1/10 Generic Value	$100 \mathrm{x}$ GW MSC	1/10 Generic Value				$\begin{gathered} \text { SB-11 } \\ 14 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-12 } \\ 5 \mathrm{ft.} \end{gathered}$	$\begin{gathered} \text { SB-12 } \\ 8 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \mathrm{SB}-12 \\ 12 \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \text { SB-12 } \\ & 18 \mathrm{ft.} \end{aligned}$	$\begin{gathered} \hline \text { SE-13 } \\ 10 \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \hline \text { SB-14 } \\ & 11 \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \text { se-15 } \\ & 11 \mathrm{ft.} \end{aligned}$	$\begin{array}{r} \text { SB-16 } \\ 12 \mathrm{ft} . \end{array}$	$\begin{gathered} \text { SB-17 } \\ 7 \mathrm{ft.} \end{gathered}$
					0-15 feet	0-2 feet	2-15 feet										
Benzene	500	13	500	13	5,700	290,000	330,000	<29	<29	< 58	<29	<30	< 30	<29	<28	<28	<27
ETHYLEEMZENE	70,000	4,600	70,000	4,600	10,000,000	10,000,000	10,000,000	< 57	480	16,000	3,800	<61	< 60	< 58	< 56	< 56	100
ISOPROPYLEENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	< 57	2501	5,200	2,200	< 61	< 60	< 58	<56	<56	< 54
METHYLTERT BuTYLETHER	2,000	28	2,000	28	620,000	3,200,000	3,700,000	<29	<29	< 58	<29	<30	< 30	<29	< 28	<28	<27
NAPHTHALENE	10,000	2,500	10,000	2,500	4,400,000	56,000,000	190,000,000	< 57	880	9,000	2,400	1001	< 60	< 58	<56	<56	350
toluene	100,000	44,000	100,000	4,400	10,000,000	10,000,000	10,000,000	<57	< 57	<120	<58	<61	<60	< 58	< 56	<56	1,100
1,2,4-TRIMETHYLEENZENE	1,500	840	6.200	3,500	130,000	560,000	640,000	79.	6,600	120,000	68,000	500	< 60	< 58	< 56	<56	450
1,3,5-TRIMETHYLEENZENE	1,300	230	5,300	930	110,000	480,000	550,000	< 57	2,600	39,000	15,000	1901	<60	< 58	< 56	< 56	250 ,
XVILENES	1,000,000	99,000	1,000,000	99,000	1,900,000	8,000,000	9,100,000	< 57	1,100	34,000	8,900	< 61	<60	< 58	< 56	<56	1,100
MOISTURE (\%)				No Standard				15.4	18.7	20.0	27.3	16.5	19.4	22.9	28.2	27.9	17.6

Nates

1) All units in milligrams per kilogram (u / kg)
2) Bald \& staded MS Cs represent the applicable Act 2 non residential Statevide Health Standard.
3) Shaded results represent an exceedence of the applicable non-residential Statewide H ealth standard.
4) Soil samples were onllected from SB-11 through SE 21 on February 5, 2015
5) PADEP Short List petroleum products in itaics are OOPACS.
6) $1 / 10$ of the Soil to Grounduater Generic Value used for sail in the zone of groundwater saturation belowra depth of turo feet.

Table 2
Soil Sample Analytical Data Summary
Herr Foods, Inc. Nottingham Plant
RETTEW Project No. 101722001

PADEP Short List Petroleum Products for Diesel Fuel and Unleaded Gasoline	Act 2 Statewride Health Standard Medium Speific Concentrations (MSCs)							Sample Identifications (Depth in feet below grade below sample i. i.)									
	Soil to Groundwater (Used Aquifers)				Direct Contact												
	TDS ≤ 2500				Residential	Non-Residential											
	Residential		Non-residential			Surface Soil	Subsurface Soil										
	$\begin{gathered} 100 \mathrm{x} \\ \text { GW MSC } \end{gathered}$	1/10 Generic Value	$100 \mathrm{x}$ GW MSC	1/10 Generic Value				$\begin{gathered} \text { SB-17 } \\ 11 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-17 } \\ 15 \mathrm{ft.} \end{gathered}$	$\begin{gathered} \text { SB-18 } \\ 10 \mathrm{ft} . \end{gathered}$	$\begin{array}{r} \text { SB-18 } \\ 13 \mathrm{ft} . \end{array}$	$\begin{gathered} \text { SB-18 } \\ 15 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \hline \text { SB-19 } \\ 10 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \hline \text { se-20 } \\ 8 \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \text { SB-20 } \\ & 11 \mathrm{ft} . \end{aligned}$	$\begin{gathered} \mathrm{SB}-20 \\ 15 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SE-21 } \\ 8 \mathrm{ft} . \end{gathered}$
					0-15 feet	0-2 feet	2-15 feet										
Benzene	500	13	500	13	5,700	290,000	330,000	2401	<25	1,900	3,200	<30	< 25	1,300	1,900	<26	<33
EHYYLEMZENE	70,000	4,600	70,000	4,600	10,000,000	10,000,000	10,000,000	130,000	<51	710	810	< 59	< 49	630	680	< 53	< 66
ISOPROPYLEENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	7,400	< 51	<56	< 59	<59	<49	< 55	<61	<53	< 66
METHYLTERT BuTYLETHER	2,000	28	2,000	28	620,000	3,200,000	3,700,000	<60	< 25	260 J	31.	<30	< 25	< 28	< 31	<26	< 33
NAPHTHALENE	10,000	2,500	10,000	2,500	4,400,000	56,000,000	190,000,000	120	< 51	160 J	120.1	<59	< 49	1301	${ }^{93} 1$	<53	761
toluene	100,000	44,000	100,000	4,400	10,000,000	10,000,000	10,000,000	12,000	< 51	280	9,500	<59	<49	4,500	5,000	<53	<66
1,2,4-TRIMETHYLEENZENE	1,500	840	6.200	3,500	130,000	560,000	640,000	1,200	<51	990	890	<59	2301	590	500	<53	<66
1,3,5-TRIMETHYLEENZENE	1,300	230	5,300	930	110,000	480,000	550,000	1,200	< 51	300	2901	< 59	891	1801	150.1	< 53	< 56
XVILENES	1,000,000	99,000	1,000,000	99,000	1,900	110,000	580,000	1,200	< 51	3,500	3,800	<59	<49	2,500	2,900	<53	<66
MOISTURE (\%)				No Standard				26.2	16.0	22.4	25.2	15.7	18.7	21.4	24.2	12.3	22.2

Nates

1) All units in milligrams per kilogram (u / kg)
2) Bald \& staded MS Cs represent the applicable Act 2 non residential Statevide Health Standard.
3) Shaded results represent an exceedence of the applicable non-residential Statewide H ealth standard.
4) Soil samples were onllected from SB-11 through SB 21 on February 5 , 2015.
5) PADEP Short List petroleum products in itaics are OOPACS.
6) $1 / 10$ of the Soil to Grounduater Generic Value used for sail in the zone of groundwater saturation belowr depth of turo feet

Table 2
Soil Sample Analytical Data Summary
Herr Foods, Inc. Nottingham Plant
RETTEW Project No. 101722001

PADEP Short List Petroleum Products for Diesel Fuel and Unleaded Gasoline	Act 2 Statewride Health Standard Medium Speific Concentrations (MSCs)							Sample Identifications (Depth in feet below grade below sample i. i.)									
	Soil to Groundwater (Used Aquifers)				Direct Contact												
	TDS ≤ 2500				Residential	Non-Residential											
	Residential		Non-residential			Surface Soil	Subsurface Soil										
	$\begin{gathered} 100 \mathrm{x} \\ \text { GW MSC } \end{gathered}$	1/10 Generic Value	$100 \mathrm{x}$ GW MSC	1/10 Generic Value				$\begin{gathered} \text { SB-21 } \\ 10 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-22 } \\ 7 \mathrm{ft.} \end{gathered}$	$\begin{gathered} \text { SB-22 } \\ 19 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \hline \mathrm{sB}-23 \\ 8 \mathrm{ft.} \end{gathered}$	$\begin{gathered} \text { se-23 } \\ 15 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \hline \text { SB-24 } \\ 10 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \hline \text { SB-24 } \\ 19 \mathrm{ft} . \\ \hline \end{gathered}$	$\begin{gathered} \text { SB-25 } \\ 9 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-25 } \\ 15 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { SB-26 } \\ 10 \mathrm{ft} . \end{gathered}$
					0-15 feet	0-2 feet	2-15 feet										
Benzene	500	13	500	13	5,700	290,000	330,000	$30 \cdot 1$	<29	<25	3,400	<29	1,300	<21	<31	<29	< 31
EHYYLEMZENE	70,000	4,600	70,000	4,600	10,000,000	10,000,000	10,000,000	180.	<58	< 50	50,000	< 57	200	<42	< 62	< 57	< 62
ISOPROPYLEENZENE	84,000	60,000	350,000	250,000	7,700,000	10,000,000	10,000,000	< 51	< 58	< 50	3,400	<57	< 58	< 42	< 62	<57	< 52
METHYLTERT BuTYLETHER	2,000	28	2,000	28	620,000	3,200,000	3,700,000	< 26	<29	< 25	<120	<29	<29	<21	< 31	<29	< 31
NAPHTHALENE	10,000	2,500	10,000	2,500	4,400,000	56,000,000	190,000,000	< 51	< 58	< 50	9,700	<57	< 58	< 42	< 62	<57	< 62
toluene	100,000	44,000	100,000	4,400	10,000,000	10,000,000	10,000,000	270	< 58	< 50	100,000	<57	3,300	< 42	< 62	<57	< 62
1,2,4-TRIMETHYLEENZENE	1,500	840	6.200	3,500	130,000	560,000	640,000	670	< 58	< 50	90,000	59.	1201	<42	<62	<57	< 62
1,3,5-TRIMETHYLEENZENE	1,300	230	5,300	930	110,000	480,000	550,000	240	< 58	< 50	28,000	< 57	< 58	442	$\leqslant 62$	< 57	< 52
XVILENES	1,000,000	99,000	1,000,000	99,000	1,900	110,000	580,000	1,100	< 58	< 50	220,000	${ }^{721}$	1,000	< 42	< 62	<57	< 62
MOISTURE (\%)				No Standard				10.6	22.3	13.7	21.8	18.5	21.8	13.1	27.6	16.6	18.7

Nates

1) All units in milligrams per kilogram (u / kg)
2) Bald \& staded MS Cs represent the applicable Act 2 non residential Statevide Health Standard.
3) Shaded results represent an exceedence of the applicable non-residential Statewide H ealth standard.
4) Soil samples were onllected from SB-11 through SB 21 on February 5 , 2015.
5) PADEP Short List petroleum products in itaics are OOPACS.
6) $1 / 10$ of the Soil to Grounduater Generic Value used for sail in the zone of groundwater saturation belowr depth of turo feet

Table 2
Soil Sample Analytical Data Summary
Herr Foods, Inc. Nottingham Plant
RETTEW Project No. 101722001

Nates

1) All units in milligrams per kilogram (u / kg)
2) Bald \& staded MS Cs represent the applicable Act 2 non residential Statevide Health Standard.
3) Shaded results represent an exceedence of the applicable non-residential Statewide H ealth standard.
4) Soil samples were onllected from SB-11 through SB 21 on February 5 , 2015.
5) PADEP Short List petroleum products in itaics are OOPACS.
6) $1 / 10$ of the Soil to Grounduater Generic Value used for sail in the zone of groundwater saturation belowr depth of turo feet

Table 3
Groundwater Sample Analytical Data Summary Herr Foods，Inc．Nottingham Plant RETTEW Project No． 101722001

well	Toc Elev． （feet）	Date	$\begin{gathered} \text { Depth to } \\ \text { SPL } \\ \text { (feet) } \\ \hline \hline \end{gathered}$	Depth to Water （feet）	$\begin{gathered} \text { SPL } \\ \text { Thikness } \\ \text { (feet) } \end{gathered}$	Water Table Elev． ［feet）	Adj． Water Table Elev． （feet）	岂			$\begin{aligned} & \text { 嵌 } \\ & \hline \end{aligned}$					威
MW－1	512.95	3／9／2015	0.00	2.20	0.00	510.75	510.75	＜0．5	＜0．5	＜0．5	＜0．5	＜1．0	＜0．5	＜0．5	＜0．5	＜0．5
		4／1／2015	0.00	1.39	0.00	511.56	511.56	＜0．5	＜0．5	＜0．5	＜0．5	＜1．0	＜0．5	＜0．5	＜0．5	＜0．5
		6／25／2015	0.00	2.96	0.00	509.99	509.99	ns								
		7／9／2015	0.00	2.85	0.00	510.10	510.10	＜0．5	<0.5	<0.5	＜0．5	<0.5	＜0．5	＜0．5	<0.5	＜1．0
		9／10／2015	0.00	4.94	0.00	508.01	508.01	NS								
		10／6／2015	0.00	4.79	0.00	508.16	508.16	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜1．0
		1／14／2016	0.00	3.84	0.00	509.11	509.11	ns								
		4／6／2016	0.00	3.24	0.00	509.71	509.71	Ns								
MW－2	512.64	3／9／2015	0.00	2.96	0.00	509.68	509.68	＜0．5	＜0．5	＜0．5	＜0．5	＜1．0	＜0．5	＜0．5	＜0．5	＜0．5
		4／1／2015	0.00	2.18	0.00	510.46	510.46	＜0．5	＜0．5	＜0．5	＜0．5	＜1．0	＜0．5	＜0．5	＜0．5	＜0．5
		6／25／2015	0.00	3.08	0.00	509.56	509.56	NS								
		7／9／2015	0.00	3.21	0.00	509.43	509.43	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜ 0.5	＜0．5	＜0．5	＜1．0
		9／10／2015	0.00	5.28	0.00	507.36	507.36	NS								
		10／6／2015	0.00	5.62	0.00	507.02	507.02	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	<1.0
		1／14／2016	0.00	5.24	0.00	507.40	507.40	NS								
		4／6／2016	0.00	2.45	0.00	510.19	510.19	NS								
MW－3	511.61	3／9／2015	0.00	3.38	0.00	508.23	508.23	180	1，100	33.	＜25	140」	14，000	670	180	6，500
		4／1／2015	0.00	2.96	0.00	508.65	508.65	270	1，600	49.0	＜5	240	17，000	1100	310	9，000
		6／25／2015	0.00	3.44	0.00	508.17	508．17	NS								
		7／9／2015	0.00	3.61	0.00	508．00	508．00	141	1，400	50.8	＜ 5.0	254	11，100	866	252	6，840
		9／10／2015	0.00	5.34	0.00	506.27	506.27	NS								
		10／6／2015	0.00	5.26	0.00	506.35	506.35	42.7	430	21.5	＜ 5.0	88.7	3，890	292	111	1，610
		1／14／2016	0.00	4.91	0.00	506.70	506.70	88.5	802	20.8	＜0．5	116	6，550	337	93.3	4，020
		4／6／2016	0.00	2.55	0.00	509.06	509.06	160	1，110	42.8	1.3	196	8，400	514	197	4，750
MW－4	511.96	3／9／2015	0.00	3.94	0.00	508.02	508.02	580	2，500	63.0	＜ 5.0	310	7，300	1，400	400	9，900
		4／1／2015	0.00	3.37	0.00	508.59	508.59	1，000	2，200	67.0	＜ 5.0	310	9，000	1，500	440	9，200
		6／25／2015	4.07	4.22	0.15	507.74	507.64	NS								
		7／9／2015	4.25	4.37	0.12	507.59	507.51	237	1，330	65.8	＜ 5.0	346	2，280	1，550	406	7，320
		9／10／2015	0.00	6.27	0.00	505.69	505.69	NS								
		10／6／2015	0.00	6.04	0.00	505.92	505.92	1，760	1，600	68.1	＜ 5.0	199	8，610	857	228	6，180
		1／14／2016	0.00	5.81	0.00	506.15	506.15	1，790	1，290	36.5	＜0．5	129	8，710	725	220	5，860
		4／6／2016	0.00	3.08	0.00	508.88	508．88	1，170	2，820	79.5	1.9	313	4，870	1，970	2，180	9，430
MW－5	510.57	3／9／2015	0.00	3.44	0.00	507.13	507.13	1，100	740	25.	15．	100	1，900	280	68	1，600
		4／1／2015	0.00	2.94	0.00	507.63	507.63	1，700	1300	42	21	190	3，500	500	130	3，000
		6／25／2015	0.00	3.37	0.00	507.20	507.20	Ns								
		7／9／2015	0.00	3.54	0.00	507.03	507.03	2，620	1，580	58.2	＜ 5.0	306	9，020	1，090	284	8，260
		9／10／2015	0.00	5.09	0.00	505.48	505.48	NS								
		10／6／2015	0.00	4.86	0.00	505.71	505.71	1，040	694	21.7	9.0	86.8	1，550	299	77.3	1，650
		1／14／2016	0.00	4.60	0.00	505.97	505.97	187	94.7	5.6	4.1	21.8	6.4	56.8	17.9	151
		4／6／2016	0.00	4.61	0.00	505.96	505.96	594	304	12.5	10.6	36.7	155	156	35.2	643
MW－6	509.57	6／25／2015	0.00	2.00	0.00	507.57	507.57	NS								
		7／9／2015	0.00	1.90	0.00	507.67	507.67	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜ 0.5	＜ 0.5	＜0．5	＜1．0
		9／10／2015	0.00	3.90	0.00	505.67	505.67	NS								
		10／6／2015	0.00	3.42	0.00	506.15	506.15	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	＜0．5	<1.0
		1／14／2016	0.00	2.70	0.00	506.87	506.87	NS								
		4／6／2016	0.00	4.54	0.00	505.03	505.03	NS								
MW－7	511.31	6／25／2015	0.00	4.37	0.00	506.94	506.94	Ns								
		7／9／2015	0.00	4.47	0.00	506.84	506.84	1，820	1，300	59.3	＜ 0.5	352	3，200	1，060	275	7，940
		9／10／2015	0.00	6.55	0.00	504.76	504.76	NS								
		10／6／2015	0.00	6.20	0.00	505.11	505.11	514	728	53.4	＜0．5	240	741	622	169	3，050
		1／14／2016	0.00	5.96	0.00	505.35	505.35	692	681	50.0	＜0．5	171	784	623	167	3，760
		4／6／2016	0.00	4.33	0.00	506.98	506.98	2，770	2，050	91.4	0.9	389	＜0．5	1，680	373	10，300

Table 3
Groundwater Sample Analytical Data Summary
Herr Foods, Inc. Nottingham Plant
RETTEW Project No. 101722001

Well	TOC Elev. (feet)	Date	Depth to SPL (feet)	Depth to Water (feet)	$\begin{gathered} \text { SPL } \\ \text { Thickness } \\ \text { (feet) } \end{gathered}$	Water Table Elev. (feet)	Adj. Water Table Elev. (feet)	\|üd								(1)
MW-8	508.04	6/25/2015	0.00	2.86	0.00	505.18	505.18	NS								
		7/9/2015	0.00	2.89	0.00	505.15	505.15	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<1.0
		9/10/2015	0.00	4.15	0.00	503.89	503.89	NS								
		10/6/2015	0.00	3.84	0.00	504.20	504.20	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 1.0
		1/14/2016	0.00	3.23	0.00	504.81	504.81	NS								
		4/6/2016	0.00	3.70	0.00	504.34	504.34	NS								
MW-9	508.62	6/25/2015	0.00	2.31	0.00	506.31	506.31	NS								
		7/9/2015	0.00	2.55	0.00	506.07	506.07	4.8	<0.5	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	2
		9/10/2015	0.00	4.49	0.00	504.13	504.13	NS								
		10/6/2015	0.00	4.16	0.00	504.46	504.46	2.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 1.0
		1/14/2016	0.00	3.94	0.00	504.68	504.68	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	<1.0
		4/6/2016	0.00	2.05	0.00	506.57	506.57	5.3	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<1.0
MW-10	508.03	6/25/2015	0.00	4.22	0.00	503.81	503.81	NS								
		7/9/2015	0.00	3.05	0.00	504.98	504.98	1,450	23	13.2	122	59.1	11	0.7	0.8	17
		9/10/2015	0.00	5.51	0.00	502.52	502.52	NS								
		10/6/2015	0.00	4.88	0.00	503.15	503.15	2,040	< 50	< 50	91	< 50	< 50	< 50	< 50	<100
		1/14/2016	0.00	4.01	0.00	504.02	504.02	2,190	13.6	22.6	114	75.4	43.6	3.9	3.2	42.2
		4/6/2016	0.00	3.63	0.00	504.40	504.40	2,050	10.4	28.0	122	62.6	22.3	3.0	4.0	23.9
MW-11	500.78	1/14/2016	0.00	0.24	0.00	500.54	500.54	0.9	<0.5	<0.5	137	<0.5	0.6	<0.5	<0.5	< 1.0
		4/6/2016	0.00	0.34*	0.00	501.31	501.31	19.4	<0.5	<0.5	19.4	0.7	<0.5	<0.5	<0.5	<1.0
MW-12	489.67	1/14/2016	0.00	2.20	0.00	487.47	487.47	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 1.0
		4/6/2016	0.00	2.09	0.00	487.58	487.58	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 1.0
MW-13	486.88	1/14/2016	0.00	3.41	0.00	483.47	483.47	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0
		4/6/2016	0.00	3.98	0.00	482.90	482.90	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 1.0
Former Supply Well	511.21	6/25/2015	0.00	5.08	0.00	506.13	506.13	NS								
		7/9/2015	0.00	5.19	0.00	506.02	506.02	NS								
		9/10/2015	0.00	6.61	0.00	504.60	504.60	NS								
		10/6/2015	0.00	6.28	0.00	504.93	504.93	NS								
		1/14/2016	0.00	5.09	0.00	506.12	506.12	NS								
		4/6/2016	0.00	5.31	0.00	505.90	505.90	2,310	1,280	33.4	47.5	118	4,730	518	120	3,160
End Wall (Stream)	499.32	6/25/2015	0.00	3.55	0.00	495.77	495.77	NS								
		7/9/2015	0.00	3.53	0.00	495.79	495.79	NS								
		9/10/2015	0.00	3.44	0.00	495.88	495.88	NS								
		10/6/2015	0.00	3.57	0.00	495.75	495.75	NS								
		1/14/2016	0.00	5.39	0.00	493.93	493.93	NS								
		4/6/2016	0.00	3.66	0.00	495.66	495.66	NS								
Act 2 Statewide Health Standards for Used, Non-Residential Aquifers								5	700	3,500	20	100	1,000	62	53	10,000

Notes:

1) TOC = Top of casing.
2) SPL = Separate phase liquid.
3) All units in milligrams per kilogram (ug/f).
4) Shaded results represent an exceedence of the applicable non-residential Statewide Health Standard.
5) PADEP Short List petroleum products in italics are COPIACs.
6) $\mathrm{J}=$ Estimated concentration detected between the method detection limit and the limit of quantitation.
7) NS = Not sampled.
8) Adjusted water table elevation based on an assumed SPL specific gravity of 0.68 .

* Water level measured from the top of the protective casing felevation 501.65) due to static water above TOC.

Table 4
Groundwater Trend Analysis Herr Foods, Inc. Nottingham Plant RETTEW Project No. 101722001

Parameter	Mw-3			MW-4			MW-5			MW-7			MW-10		
	Trend	R^{2} Value	Variation												
Benzene	Decreasing	28.55\%	High	Increasing	33.67\%	Moderate	Decreasing	36.62\%	Moderate	Increasing	12.65\%	High	Increasing	59.69\%	Moderate
Toluene	Decreasing	55.99\%	Low	Decreasing	1.74\%	High	Decreasing	23.48\%	High	Decreasing	77.58\%	Low		fficient Da	
Ethylbenzene	Decreasing	22.50\%	Moderate	Decreasing	0.07\%	High	Decreasing	49.44\%	Moderate	Increa sing	18.20\%	High		fficient Dat	
Naphthalene	Decreasing	7.29\%	High	Decreasing	19.47\%	High	Decreasing	34.75\%	Moderate	Increa sing	0.09\%	High		fficient Da	
1,2,4-TMB	Decreasing	46.39\%	Moderate	Decreasing	0.06\%	High	Decreasing	21.15\%	High	Increa sing	21.38\%	High		fficient Da	
1,3,5-TMB	Decreasing	27.77\%	High	Increasing	34.36\%	Moderate	Decreasing	20.77\%	High	Increa sing	13.30\%	High		fficient Da	
Xylenes	Decreasing	40.24\%	Moderate	Decreasing	14.20\%	High	Decreasing	17.64\%	High	Increa sing	7.68\%	High		fficient Da	
MTBE	Insufficient Data			Insufficient Data			Decreasing	21.15\%	High	Insufficient Data			Increasing	4.40\%	High

NOTES:

1) High variation defined as an R-squared vaule in the range of 0 to 30%.
2) Moderate variation defined as an R-squared vaule in the range of 30% to 60%.
3) Low variation defined as an R-squared vaule in the range of 60% to 100%.

APPENDIX A

1997 UST Closure Report and Supporting Documentation

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

Closure Method (Check all that apply):

【 Removal
\square Closure-In-Place
\square Change-In-Service

Site Assessment Results (Check all that apply):
\square No Obvious Contamination - Sample Results Meet Standards/Levels

No Obvious Contamination - Sample Results Do Not Meet Standards/LevelsObvious, Localized Contamination - Sample Results Meet Standards/Levels

【 Obvious, Localized Contamination - Sample Results Do Not Meet Standards/Leveis - Some

Obvious, Extensive Contamination

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

Owners who are permanently closing underground storage tanks may use this form to demonstrate that an underground storage tank closure was performed in accordance with the "Closure Requirements For Underground Storage Tank Systems" document. PLEASE PRINT OR TYPE. COMPLETE ALL QUESTIONS.

SECTION I. Owner/Facility/Tank/Waste Management and Disposal Information

1. Facility ID Number
15-24418
2. Facility Name

Herr Foods Inc.
3. Facility County

Chester
4. Facility Municipality W. Nottingham
5. Facility Address

Route 272 \& Herr Drive, PO Box 300, Nottingham, PA 19362
6. Facility Contact Person

Steve Moran
7. Facility Telephone Number
(610)9326500
8. Owner Name

Herr Foods Inc.
9. Owner Mailing Address PO Box 300, Nottingham, PA 19362
10. Description of Underground Storage Tanks (Complete for each tank closed)

Yes N/A
11. Briefly describe the storage tank facility and the nature of the operations which were conducted at the facility (both historical and present) including use of tanks: Herr Foods Inc. is a potato chip, pretzel and other snack food manufacturer. The facility was a farm prior to the current use.
$\boxtimes \quad$ 12. A site location and sampling map of the site, drawn to scale, is attached. See page 11 of 11.
13. Original, color photographs of the closure process are attached (i.e., inside of excavation/piping runs, pit water, tanks showing condition).
\boxtimes 14. An amended "Registration of Storage Tanks" form was submitted to the DEP, Bureau of Water Quality Management, Division of Storage Tanks, P.O. Box 8762, Harrisburg, PA 17105-8762.

Date: 6/16/97
$\boxtimes \quad \square \quad$ 15. If a reportable release was confirmed, the appropriate regional office of DEP was notified by the owner or operator.
Date: 6/6/97
Office: Southeast Regional

Yes N/A
16. If tanks were cleaned on-site:
a. Briefly describe the disposition of usable product: All usable product was utilized by the owner prior to tank cleaning and removal.
b. Briefly describe the disposal of unusable product, sludges, sediments, and wastewater generated during cleaning. Provide the name and permit number of the processing, treatment, storage or disposal facility. (Attach documentation of proper disposal): All tank liguids and bottom sediments were transported by Associated Environmental Technologies (MD2000006908) and transported to Internation Petroleum Corporation as Nonhazardous waste (MDD 985389816). Documentation attached.
c. If tank contents were determined/deemed to be hazardous waste, provide:
(1) Generator ID Number: N/A
(2) Licensed Hazardous Waste Transporter Name and ID Number: N/A
17. If tanks were removed from the site for cleaning:
a. Provide the name and permit number of the processing, treatment, storage or disposal facility performing the tank cleaning:
b. If tank contents were determined/deemed to be hazardous waste, provide:
(1) Generator ID Number:
(2) Licensed Hazardous Waste Transporter Name and ID Number:
18. Briefly describe the disposition of tanks/piping (Attach documentation of proper disposal): All tanks and associated piping were transported by Zadinsky Contractors for ultimate disposal at Luria Brothers located in Modena, PA. Proper docuemntation is attached.
$\boxtimes \quad \square \quad$ 19. If contaminated soil is excavated:
a. Briefly describe the disposition and amount approximatelv 1200 (tons) of contaminated soil. Provide the name and permit number of the processing, treatment, storage or disposal facility. (Attach documentation of proper disposal):
All excavated contaminated soil is properly stockpiled under plastic awaiting disposal at a licensed recycling facility. Proper disposal documentation will be forwarded when completed.
b. If contaminated soil is determined/deemed to be hazardous waste, provide:
(1) Generator ID Number:
(2) Licensed Hazardous Waste Transporter Name and ID Number:

Yes N/A
■ \square
20. Briefly describe the disposition of and amount 15 (tons) of uncontaminated soil (attach analyses): Approximately 15 tons of uncontaminated soil was backfilled into the waste oil UST excavation. Backfilling was completed after excavation and piping samples did not reveal impact from the removed UST. No backfill sample was required as per PADEP Technical Document, Page 17, section C.

1, STEUE MORAN, hereby certify, under penalty of law as provided in 18 Pa. C.S. S4904 (relating to unsworn falsification to authorities) that I am the owner of the above referenced storage tank(s) and that the information provided by me in this closure report (Section I) is true, accurate and complete to the best of my knowledge and belief.

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION II. Tank Handling Information

Facility ID Number 15-24418

Yes N/A

1. Briefly describe the excavation and initial on-site staging of uncontaminated/contaminated soil: All excavated soils were placed under 6 mil plastic awaiting testing and disposal options.
2. Briefly describe the method of piping system closure and the closure of the piping systems including the quantity and condition of the piping:
All piping systems were drained back to their respective tanks and any residuals were then vacuumed out. Upon removal, all piping exhibited external corrosion with the piping associated with Tanks 005 \& 006 being suspect at unions and connections under pumps. No visible holes were observed in any piping.
3. Briefly describe the condition of the tanks and any problems encountered during tank removal:

All tanks exhibited external corrosion and minor pitting upon inspection. Tank 005 (unl gas) exhibited several weep holes along the entire bottom. Tank 006 exhibited several holes along the bottom centerline of the tank.
4. Briefly describe the method used to purge the tanks of and monitor for explosive vapors:

Tanks were vacuumed out, purged with an air eductor (venturi) and monitored with an LEL/O2 meter prior to, during, and after cleaning..
$\boxtimes \quad$ 5. If tanks were cleaned on-site:
a. Briefly describe the tank cleaning process: The tanks were vacuumed out, squeegeed clean, and rag wiped dry with absorbent material.
b. If subcontracted, name and address of company that performed the tank cleaning:
\boxtimes 6. If tanks were closed-in-place, briefly describe the tank fill material:

7. If contamination was suspected or observed, the "Notification of Contamination" form was submitted.

SECTION II. (continued)

1, Michael Donovan, hereby certify, under penalty of law as provided in 18 PA. C.S. 54904 (relating to unsworn falsification to authorities) that I am the certified installer who performed the tank handling activities associated with the closure of the above referenced storage tanks) and that the information provided by me in this closure report (Section II) is true, accurate and complete to the best of my knowledge and belief.

2830
Installer Certification Number

36
Company Certification Number

Enercon Services, Inc.
Company Name

PO Box 174
Street

Bear, DE 19701
City/Town, State, Zip

302-834-9402

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION III. Site Assessment Information
 Tank Registration \# SO 3 (complete one sheet for EACH tank system and attach ALL laboratory sheets pertaining to that system)

Facility ID Number
A. Provide depth of BEDROCK and WATER IE encountered during excavation or soil boring (write "N/A" if NOT encountered).
Bedrock N/A feet below land surface Water N / A feet below land surface
B. Provide Length of PIPING IE piping was closed-in-place (write "N/A" if NOT closed-in-place).

Length of piping N / A feet
C. TANK SYSTEM REMOVED FROM THE GROUND

1) Was obvious contamination observed while excavating?

Х NO ——. Conduct confirmatory sampling See end of this section for options on submission and maintenance of closure records-...-...... Do not complete item C.2. below.
$\square \quad$ YES YES -...... Report release to DEP within 2 hours ——_ Describe contamination observed and likely source(s) (tank, piping, dispenser, spills, overfills): ___ Complete item C.2. below.
2) Was contamination localized (within three feet of the tank system in every direction with no obvious water contamination)?
$\square \quad$ YES \quad Remove or remediate contaminated soil -_....... Conduct confirmatory sampling -......... See end of this section for options on submission and maintenance of closure records---------- Call Indemnification Fund (717-787-0763).
$\square \quad \mathrm{N}$
NO -_-_Continue interim remedial actions See end of this section for options on submission and maintenance of closure records \qquad Call Indemnification Fund (717-787-0763).
D. TANK SYSTEM CLOSED-IN-PLACE OR CHANGED-IN-SERVICE

Was obvious contamination observed during sampling, boring or assessing water depths?
$\square \quad$ NO - Conduct confirmatory sampling \qquad See end of this section for options on submission and maintenance of closure records.
\square YES
Report release to DEP within 2 hours \qquad Describe contamination observed and likely sources (i.e., tank, piping, dispenser, spills, overfills): \qquad .-......- Continue with corrective action See end of this section for options on submission and maintenance of closure records _-_-_ Call Indemnification Fund (717-787-0763).
E. If the answer to C.1. is "no", the answer to C.2. is "yes" or the answer to D. is "no", confirmatory samples are required. Use the sample/analysis information sheet on page 10 of $\mathbf{1 1}$ to provide the information on confirmatory sampling and complete the diagram on Page 11 of 11.

Options for Submission and Maintenance of Closure Site Assessment Records
Records of the site assessment must be maintained for at least three years after completion of permanent closure or change-in-service in one of the following ways:
(a) By the owners and operators who took the UST system out of service;
(b) By the current owners and operators of the UST system site; or
(c) By mailing these records to the implementing agency if they cannot be maintained at the closed facility.

At least one option must be chosen. If option (c) is chosen, the closure report form should be sent to the DEP regional office responsible for the county in which the tank was located.

Where the results of the site assessment indicate that obvious, localized soil contamination was encountered and the analytical results of the confirmatory sampling show levels below the statewide standard/action levels, this closure report form (Sections I, II, and III) or some other acceptable site characterization report must be received by the Department within 180 days of verbally reporting the release.

Where the results of the site assessment indicate that no obvious contamination or obvious, localized contamination was encountered, but the analytical results of the confirmatory sampling show levels above the statewide standard/action levels, or where there is obvious, extensive contamination, Section 245.310 (a)(8) of the CAP regulation requires that details of removal from service be included in the site characterization report. A copy of the completed closure report form should be submitted as part of the site characterization report to satisfy the requirements of Section 245.310(a)(8) of the CAP regulations.

I, Michael Williams, hereby certify, under penalty of law as provided in 18 Pa . C.S. S 4904 (relating to unsworn falsification to authorities) that I am the person who performed the site assessment activities associated with the closure of the above referenced storage tanks) and that the information provided by me in this closure report (Section III) is true, accurate and complete to the best of my knowledge and belief.

Signature of Person Performing Site Assessment

Project Manager
Title of Person Performing Site Assessment

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION III. Site Assessment Information
 Tank Registration \# OOL (complete one sheet for EACH tank system and attach ALL laboratory sheets pertaining to that system)

Facility ID Number
A. Provide depth of BEDROCK and WATER IE encountered during excavation or soil boring (write "N/A" if NOT encountered).
Bedrock N / A feet below land surface Water N / A feet below land surface
B. Provide Length of PIPING if piping was closed-in-place (write "N/A" if NOT closed-in-place).

Length of piping N / A feet

C. TANK SYSTEM REMOVED FROM THE GROUND

1) Was obvious contamination observed while excavating?
\square NO Conduct confirmatory sampling _-_ See end of this section for options on submission and maintenance of closure records_—_D._Do not complete item C.2. below.

区 YES _ Report release to DEP within 2 hours \quad Describe contamination obsenved and likely source(s) (tank, piping, dispenser, spills, overfills): ___ Complete item C.2. below. - Elevated frela readings. Appeales to have migrateo from Tank oos Dispenser
2) Was contamination localized (within three feet of the tank system in every direction with no obvious water contamination)?
(X. YES Ree Rend of this section for options on submission and \square Conduct confirmatory sampling See end of this section for options on submission and maintenance of closure records-an-_ Call Indemnification Fund (717-787-0763).
$\square \mathrm{N}$
NO Continue interim remedial actions \qquad See end of this section for options on submission and maintenance of closure records \qquad Call indemnification Fund (717-787-0763).

D. TANK SYSTEIA CLOSED-HN-PLACE OR CHANGED-IN-SERVICE

Was obvious comtemination observed during sampling, boring or assessing water depths?
\square NO Conduct confirmatory sampling _ See end of this section for options on submission and maintenance of ctosure records.
\square YES \qquad Report release to DEP within 2 hours
-_Describe contamination observed and likely sources (i.e., tank, piping, dispenser, spills, overfilis): \qquad - Continue with corrective action See end of this section for options on submission and maintenance of closure records Indemnification Fund (717-787-0763).
E. If the answer to C.1. is "no", the answer to C.2. is "yes" or the answer to D. is "no", confirmatory samples are required. Use the sample/analysis information sheet on page 10 of 41 to provide the information on confirmatory sampling and complete the diagram on Page 11 of 11.

Options for Submission and Maintenance of Closure Site Assessment Records

Records of the site assessment must be maintained for at least three years after completion of permanent closure or change-in-service in one of the following ways:
(a) By the owners and operators who took the UST system out of service;
(b) By the current owners and operators of the UST system site; or
(c) By mailing these records to the implementing agency if they cannot be maintained at the closed facility.

At least one option must be chosen. If option (c) is chosen, the closure report form should be sent to the DEP regional office responsible for the county in which the tank was located.

Where the results of the site assessment indicate that obvious, localized soil contamination was encountered and the analytical results of the confirmatory sampling show levels below the statewide standard/action levels, this closure report form (Sections I, II, and III) or some other acceptable site characterization report must be received by the Department within 180 days of verbally reporting the release.

Where the results of the site assessment indicate that no obvious contamination or obvious, localized contamination was encountered, but the analytical results of the confirmatory sampling show levels above the statewide standard/action levels, or where there is obvious, extensive contamination, Section 245.310(a)(8) of the CAP regulation requires that details of removal from service be included in the site characterization report. A copy of the completed closure report form should be submitted as part of the site characterization report to satisfy the requirements of Section 245.310(a)(8) of the CAP regulations.

1. Michael Williams, hereby certify, under penalty of law as provided in 18 Pa . C.S. S4904 (relating to unswom falsification to authorities) that I am the person who performed the site assessment activities associated with the closure of the above referenced storage tanks) and that the information provided by me in this closure report (Section III) is true, accurate and complete to the best of my knowledge and belief.

Signature of Person Performing Site Assessment

Project Manager
Title of Person Performing Site Assessment

7/7/97
Date

Clayton Services Corporation

[^7]
UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION III. Site Assessment Information
 Tank Registration \# OOS (complete one sheet for EACH tank system and attach ALL laboratory sheets pertaining to that system)

Facility ID Number

A. Provide depth of BEDROCK and WATER IF encountered during excavation or soil boring (write "N/A" if NOT encountered).
Bedrock N / A feet below land surface Water N / A feet below land surface
B. Provide Length of PIPING IE piping was closed-in-place (write "N/A" if NOT closed-in-place).

Length of piping N / A feet

C. TANK SYSTEM REMOVED FROM THE GROUND

1) Was obvious contamination observed while excavating?
\square NO .--.... Conduct confirmatory sampling
 See end of this section for options on submission and maintenance of closure records-............. Do not complete item C.2. below.

X YES Mn...... Report release to DEP within 2 hours Mm..... Describe contamination observed and likely source (s) (tank, piping, dispenser, spills, overfills): \qquad - Complete item C.2. below. - Wisp holes in tank seams
2) Was contamination localized (within three feet of the tank system in every direction with no obvious water contamination)?
YES \quad See end of this section for options on submission and maintenance of closure records-ampling - Call Indemnification Fund (717-787-0763).
\square NO \qquad Continue interim remedial actions
__ See end of this section for options on submission and maintenance of closure records \qquad Call Indemnification Fund (717-787-0763).
D. TANK SYSTEM CLOSED-IN-PLACE OR CHANGED-IN-SERVICE

Was obvious contamination observed during sampling, boring or assessing water depths?
\square NO -... Conduct confirmatory samplingSee end of this section for options on submission and maintenance of closure records.
\square YES \qquad Report release to DEP within 2 hours
 Describe contamination observed and likely sources (ie., tank, piping, dispenser, spills, overfills): \qquad -----...-. Continue with corrective action -...... See end of this section for options on submission and maintenance of closure records \qquad Call Indemnification Fund (717-787-0763).
E. If the answer to C.1. is "no", the answer to C.2. is "yes" or the answer to D. is "no", confirmatory samples are required. Use the sample/analysis information sheet on page 10 of 11 to provide the information on confirmatory sampling and complete the diagram on Page 11 of 11.

Options for Submission and Maintenance of Closure Site Assessment Records

Records of the site assessment must be maintained for at least three years after completion of permanent closure or change-in-service in one of the following ways:
(a) By the owners and operators who took the UST system out of service;
(b) By the current owners and operators of the UST system site; or
(c) By mailing these records to the implementing agency if they cannot be maintained at the closed facility.

At least one option must be chosen. If option (c) is chosen, the closure report form should be sent to the DEP regional office responsible for the county in which the tank was located.

Where the results of the site assessment indicate that obvious, localized soil contamination was encountered and the analytical results of the confirmatory sampling show levels below the statewide standard/action levels, this closure report form (Sections I, II, and III) or some other acceptable site characterization report must be received by the Department within 180 days of verbally reporting the release.

Where the results of the site assessment indicate that no obvious contamination or obvious, localized contamination was encountered, but the analytical results of the confirmatory sampling show levels above the statewide standard/action levels, or where there is obvious, extensive contamination, Section $245.310(a)(8)$ of the CAP regulation requires that details of removal from service be included in the site characterization report. A copy of the completed closure report form should be submitted as part of the site characterization report to satisfy the requirements of Section 245.310(a)(8) of the CAP reguiations.

I, Michael Williams, hereby certify, under penalty of law as provided in 18 Pa . C.S. S 4904 (relating to unswom falsification to authorities) that I am the person who performed the site assessment activities associated with the closure of the above referenced storage tank(s) and that the information provided by me in this closure report (Section III) is true, accurate and complete to the best of my knowledge and belief.

Signature of Person Performing Site Assessment

Project Manager
Title of Person Performing Site Assessment

7/7/97
Date

Clayton Services Corporation

[^8]
UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION III. Site Assessment Information
 Tank Registration \# OOL (complete one sheet for EACH tank system and attach ALL laboratory sheets pertaining to that system)

Facility ID Number

A. Provide depth of BEDROCK and WATER IE encountered during excavation or soil boring (write "N/A" if NOT encountered),
Bedrock P / A feet below land surface Water N / Δ feet below land surface
B. Provide Length of PIPING \mathbb{E} piping was closed-in-place (write "N/A" if NOT closed-in-place).

Length of piping N / A fee
C. TANK SYSTEM REMOVED FROM THE GROUND

1) Was obvious contamination observed while excavating?
\square NO - Conduct confirmatory sampling - \qquad See end of this section for options on submission and maintenance of closure records-_-...-...... Do not complete item C.2. below.
(YES ——_ Report release to DEP within 2 hours --_ Describe contamination observed and likely sources) (tank, piping, dispenser, spills, overfills): \qquad - Complete item C.2. below. - Hokes in bottom of Tank.
2) Was contamination localized (within three feet of the tank system in every direction with no obvious water contamination)?
区

YES

\qquad Remove or remediate contaminated soil \qquad Conduct confirmatory sampling See end of this section for options on submission and maintenance of closure recordsCall Indemnification Fund (717-787-0763).
$\square \quad$ NO _-_ Continue interim remedial actions _-_._. See end of this section for options on submission and maintenance of closure records \qquad Call Indemnification Fund (717-787-0763).
D. TANK SYSTEM CLOSED-IN-PLACE OR CHANGED-IN-SERVICE

Was obvious contamination observed during sampling, boring or assessing water depths? \square NO Conduct confirmatory sampling ——_ See end of this section for options on submission and maintenance of closure records.
\square YES \qquad Report release to DEP within 2 hours \qquad sources (i.e., tank, piping, dispenser, spills, overfills): \qquad - Describe contamination observed and rely sources (ie., tank, piping, dispenser, spills, overniss and maintenance of closure records ant Call Indemnification Fund (717-787-0763).
E. If the answer to C.1. is "no", the answer to C.2. is "yes" or the answer to D. is "no", confirmatory samples are required. Use the sample/analysis information sheet on page 10 of 11 to provide the information on confirmatory sampling and complete the diagram on Page 11 of 11.

Options for Submission and Maintenance of Closure Site Assessment Records

Records of the site assessment must be maintained for at least three years after completion of permanent closure or change-in-service in one of the following ways:
(a) By the owners and operators who took the UST system out of service;
(b) By the current owners and operators of the UST system site; or
(c) By mailing these records to the implementing agency if they cannot be maintained at the closed facility.

At least one option must be chosen. If option (c) is chosen, the closure report form should be sent to the DEP regional office responsible for the county in which the tank was located.

Where the results of the site assessment indicate that obvious, localized soil contamination was encountered and the analytical results of the confirmatory sampling show levels below the statewide standard/action levels, this closure report form (Sections I, II, and III) or some other acceptable site characterization report must be received by the Department within 180 days of verbally reporting the release.

Where the results of the site assessment indicate that no obvious contamination or obvious, localized contamination was encountered, but the analytical results of the confirmatory sampling show levels above the statewide standard/action levels, or where there is obvious, extensive contamination, Section $245.310(a)(8)$ of the CAP regulation requires that details of removal from service be included in the site characterization report. A copy of the completed closure report form should be submitted as part of the site characterization report to satisfy the requirements of Section 245.310(a)(8) of the CAP regulations.

I, Michael Williams, hereby certify, under penalty of law as provided in 18 Pa . C.S. S4904 (relating to unsworn falsification to authorities) that I am the person who performed the site assessment activities associated with the closure of the above referenced storage tank(s) and that the information provided by me in this closure report (Section III) is true, accurate and complete to the best of my knowledge and belief.

Project Manager
Title of Person Performing Site Assessment

UNDERGROUND STORAGE TANK SYSTEM CLOSURE REPORT FORM

SECTION III. Site Assessment Information
 Tank Registration $\#$ 307 (complete one sheet for EACH tank system and attach ALL laboratory sheets pertaining to that system)

Facility ID Number
A. Provide depth of BEDROCK and WATER IF encountered during excavation or soil boring (write "N/A" if NOT encountered).
Bedrock N / A feet below land surface Water N / A feet below land surface
B. Provide Length of PIPING IF piping was closed-in-place (write "N/A" if NOT closed-in-place).

Length of piping N / A feet

C. TANK SYSTEM REMOVED FROM THE GROUND

1) Was obvious contamination observed while excavating?

X NO - Conduct confirmatory sampling _-_ See end of this section for options on submission and maintenance of closure records_-........... Do not complete item C.2. below.

YES \qquad Report release to DEP within 2 hours \qquad Describe contamination observed and likely source(s) (tank, piping, dispenser, spills, overfills): ___ Complete item C.2. below.
2) Was contamination localized (within three feet of the tank system in every direction with no obvious water contamination)?
\square YES \qquad Remove or remediate contaminated soil \qquad Conduct confimatory sampling See end of this section for options on submission and maintenance of closure recordsCall Indemnification Fund (717-787-0763).
$\square \quad$ NO _._ Continue interim remedial actions _-... See end of this section for options on submission and maintenance of closure records --.-.-.-. Call Indemnification Fund (717-787-0763).

D. TANK SYSTEM CLOSED-IN-PLACE OR CHANGED-IN-SERVICE

Was obvious contamination observed during sampling, boring or assessing water depths?
NO -... Conduct confirmatory samplingSee end of this section for options on submission and maintenance of closure records.
\square YES -m Report release to DEP within 2 hours \qquad Describe contamination observed and likely sources (i.e., tank, piping, dispenser, spills, overfills): \qquad .-....... Continue with corrective action See end of this section for options on submission and maintenance of closure records Indemnification Fund (717-787-0763).
E. If the answer to C.1. is "no", the answer to C.2. is "yes" or the answer to D. is "no", confirmatory samples are required. Use the sample/analysis information sheet on page 10 of 11 to provide the information on confirmatory sampling and complete the diagram on Page 11 of 14.

Options for Submission and Maintenance of Closure Site Assessment Records

Records of the site assessment must be maintained for at least three years after completion of permanent closure or change-in-service in one of the following ways:
(a) By the owners and operators who took the UST system out of service;
(b) By the current owners and operators of the UST system site; or
(c) By mailing these records to the implementing agency if they cannot be maintained at the closed facility.

At least one option must be chosen. If option (c) is chosen, the closure report form should be sent to the DEP regional office responsible for the county in which the tank was located.

Where the results of the site assessment indicate that obvious, localized soil contamination was encountered and the analytical results of the confirmatory sampling show levels below the statewide standard/action levels, this closure report form (Sections I, II, and III) or some other acceptable site characterization report must be received by the Department within 180 days of verbally reporting the release.

Where the results of the site assessment indicate that no obvious contamination or obvious, localized contamination was encountered, but the analytical results of the confirmatory sampling show levels above the statewide standard/action levels, or where there is obvious, extensive contamination, Section $245.310(a)(8)$ of the CAP regulation requires that details of removal from service be included in the site characterization report. A copy of the completed closure report form should be submitted as part of the site characterization report to satisfy the requirements of Section 245.310(a)(8) of the CAP regulations.

1, Michael Williams, hereby certify, under penalty of law as provided in 18 Pa . C.S. S4904 (relating to unswom falsification to authorities) that I am the person who performed the site assessment activities associated with the closure of the above referenced storage tanks) and that the information provided by me in this closure report (Section III) is true, accurate and complete to the best of my knowledge and belief.

Signature of Person Performing Site Assessment

Project Manager
Title of Person Performing Site Assessment

7/7/97
Date

Clayton Services Corporation

[^9]UNDERGROUND STORAGE TANK CLOSURE REPORT FORM

SAMPLE/ANALYSIS INFORMATION (Attachment for Section III)

LOCATION: Herr Foods Inc., Route 272 \& Herr Drive, Nottingham, PA

SAMPLE ID	PARAMETER	ANALYTIC METHOD	開EDIA	RESULTS (unlts)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
007-1	BENZENE	EPA 8021A	SOIL.	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-1	TOLUENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-1	XYLENES	EPA 8021A	SOIL	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-1	NAPHTHALENE	EPA 8021A	SOIL.	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-1	PYRENE	EPA 8270B	SOIL	<,03 ppm	. 03 ppm	5/28/97	6/12/97
007-1	$\begin{gathered} \text { BENZO- } \\ \text { FLUORANTHENE } \end{gathered}$	EPA 8270 B	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-1	BENZO- ANTHRACENE	EPA 8270B	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-1	BENZOPYRENE	EPA 8270B	SOIL.	$<.03 \mathrm{ppm}$. 03 ppm	5/28/97	6/12/97
007-1	INDENOPYRENE	EPA 8270B	SOIL	<.03 ppm	. 03 ppm	5/28/97	6/12/97
007-1	BENZOPERYLENE	EPA 8270B	SOIL	$<.03 \mathrm{ppm}$. 03 ppm	5/28/97	6/12/97
007-1	LEAD (TOTAL)	7421	SOIL	< 6 ppm	6 ppm	5/28/97	6/5/97

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
007-2	BENZENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-2	TOLUENE	EPA 8021A	SOIL	<,005ppm	. 005 ppm	5/28/97	5/30/97
007-2	XYLENES	EPA 8021A	SOIL	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-2	NAPHTHALENE	EPA 8021A	SOIL	<,005ppm	. 005 ppm	5/28/97	5/30/97
007-2	PYRENE	EPA 8270B	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-2	BENZOFLUÓRANTHENE	EPA 82708	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-2	BENZOANTHRACENE	EPA $8270 B$	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-2	BENZOPYRENE	EPA $8270 B$	SOIL	<, 03 ppm	. 03 ppm	5/28/97	6/12/97
007-2	INDENOPYRENE	EPA 8270B	SOIL	<. 03 ppm	.03 ppm	5/28/97	6/12/97
007-2	BENZOPERYLENE	EPA $8270 B$	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-2	LEAD (TOTAL)	7421	SOIL	14 ppm	6 ppm	5/28/97	6/5/97

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (unlts)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
007-P	BENZENE	EPA 8021A	SOIL	<,005ppm	. 005 ppm	5/28/97	5/30/97
007-P	TOLUENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-P	XYLENES	EPA 8021A	SOIL	<,005ppm	. 005 ppm	5/28/97	5/30/97
007-P	NAPHTHALENE	EPA 8021A	SOIL.	<.005ppm	. 005 ppm	5/28/97	5/30/97
007-P	PYRENE	EPA 8270B	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-P	BENZOFLUORANTHENE	EPA $8270 B$	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-P	BENZOANTHRACENE	EPA 8270B	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-P	BENZOPYRENE	EPA 8270B	SOIL.	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-P	INDENOPYRENE	EPA 8270B	SOIL	<. 03 ppm	. 03 ppm	5/28/97	6/12/97
007-P	BENZOPERYLENE	EPA 8270B	SOIL.	<.03 ppm	. 03 ppm	5/28/97	6/12/97
007-P	LEAD (TOTAL)	7421	SOIL	7 ppm	6 ppm	5/28/97	6/5/97

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$003-1$	TPH	EPA 418.1	SOIL	$<5 \mathrm{ppm}$	5 ppm	$6 / 4 / 97$	$6 / 6 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$003-2$	TPH	EPA 418.1	SOIL	$<5 \mathrm{ppm}$	5 ppm	$6 / 4 / 97$	$6 / 6 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$003-3$	TPH	EPA 418.1	SOIL	$<5 \mathrm{ppm}$	5 ppm	$6 / 4 / 97$	$6 / 6 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (unlts)	DETECTION LIMIT (unlts)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$003-P$	TPH	EPA 418.1	SOIL	$<5 \mathrm{ppm}$	5 ppm	$6 / 4 / 97$	$6 / 6 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
004-1	BENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$004-1$	TOLUENE	EPA 8021A	SOIL.	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$004-1$	ETHYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$004-1$	XYLENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$004-1$	ISOPROPYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$\mathbf{0 0 4 - 1}$	MTBE	EPA 8021A	SOIL	.014 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$\mathbf{0 0 4 - 1}$	NAPHTHALENE	EPA 8021A	SOIL	.024 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$\mathbf{0 0 4 - 1}$	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$\mathbf{0 0 4 - 1}$	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
004-2	BENZENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	6/4/97	6/13/97
004-2	TOLUENE	EPA 8021A	SOIL	<,005ppm	. 005 ppm	6/4/97	6/13/97
004-2	ETHYLBENZENE	EPA 8021A	SOIL.	<.005ppm	. 005 ppm	6/4/97	6/13/97
004-2	XYLENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	6/4/97	6/13/97
004-2	ISOPROPYLBENZENE	EPA 8021A	SOIL.	<.005ppm	. 005 ppm	6/4/97	6/13/97
004-2	MTBE	EPA 8021A	SOIL	2.8 ppm	. 005 ppm	6/4/97	6/13/97
004-2	NAPHTHALENE	EPA 8021A	SOIL	. 031 ppm	. 005 ppm	6/4/97	6/13/97
004-2	BENZOANTHRACENE	EPA 8270	SOIL	<, 03 ppm	. 03 ppm	6/4/97	6/12/97
004-2	BENZOPYRENE	EPA 8020	SOIL	<. 03 ppm	. 03 ppm	6/4/97	6/12/97
SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
004-3	BENZENE	EPA 8021A	SOIL	<,005ppm	. 005 ppm	6/4/97	6/13/97
004-3	TOLUENE	EPA 8021A	SOIL	<.005ppm	.005 ppm	6/4/97	6/13/97
004-3	ETHYLBENZENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	6/4/97	6/13/97
004-3	XYLENE	EPA 8021A	SOlL	<,005ppm	. 005 ppm	6/4/97	6/13/97
004-3	ISOPROPYLBENZENE	EPA 8021A	SOIL	<.005ppm	. 005 ppm	6/4/97	6/13/97
004-3	MTBE	EPA 8021A	SOIL	. 044 ppm	. 005 ppm	6/4/97	6/13/97
004-3	NAPHTHALENE	EPA 8021A	SOIL.	. 018 ppm	. 005 ppm	6/4/97	6/13/97
004-3	BENZOANTHRACENE	EPA 8270	SOIL	<, 03 ppm	.03 ppm	6/4/97	6/12/97
004-3	BENZOPYRENE	EPA 8020	SOIL	<. 03 ppm	. 03 ppm	6/4/97	6/12/97

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$005-1$	BENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	TOLUENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	ETHYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	XYLENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	ISOPROPYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	MTBE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	NAPHTHALENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 9 / 97$
$005-1$	BENZOANTHRACENE	EPA 8270	SOIL.	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$005-1$	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (unlts)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$005-2$	BENZENE	EPA 8021A	SOIL.	$<.005 p \mathrm{pm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	TOLUENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	ETHYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	XYLENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	ISOPROPYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	MTBE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	NAPHTHALENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-2$	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$005-2$	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (unlts)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$005-3$	BENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	TOLUENE	EPA 8021A	SOIL	$<.005 p p m$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	ETHYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	XYLENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	ISOPROPYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	MTBE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	NAPHTHALENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
$005-3$	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$005-3$	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
PI-1	BENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	TOLUENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	ETHYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	XYLENE	EPA 8021A	SOIL	.007 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	ISOPROPYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	MTBE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	NAPHTHALENE	EPA 8021A	SOIL	.027 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-1	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
PI-1	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
PI-4	BENZENE	EPA 8021A	SOIL	$<.005 p p m$.005 ppm	6/4/97	6/13/97
Pl-4	TOLUENE	EPA 8021A	SOIL	$<.005 p p m$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-4	ETHYLBENZENE	EPA 8021A	SOIL	$<.005 p p m$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-4	XYLENE	EPA 8021A	SOIL	$<.005 p p m$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-4	ISOPROPYLBENZENE	EPA 8021A	SOIL	$<.005 \mathrm{ppm}$.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-4	MTBE	EPA 8021A	SOIL	.019 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-4	NAPHTHALENE	EPA 8021A	SOIL	.009 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-4	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
Pl-4	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
Pl-5	BENZENE	EPA 8021A	SOIL	.007 ppm	.005 ppm	$6 / 4 / 97$	6/13/97
PI-5	TOLUENE	EPA 8021A	SOIL	.082 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-5	ETHYLBENZENE	EPA 8021A	SOIL	.540 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-5	XYLENE	EPA 8021A	SOIL	5.70 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-5	ISOPROPYLBENZENE	EPA 8021A	SOIL	.660 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-5	MTBE	EPA 8021A	SOIL	2.30 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-5	NAPHTHALENE	EPA 8021A	SOIL	9.80 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-5	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
Pl-5	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
PI-6	BENZENE	EPA 8021A	SOIL	.010 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-6	TOLUENE	EPA 8021A	SOIL	.010 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-6	ETHYLBENZENE	EPA 8021A	SOIL	.049 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-6	XYLENE	EPA 8021A	SOIL	.480 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-6	ISOPROPYLBENZENE	EPA 8021A	SOIL	.021 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
Pl-6	MTBE	EPA 8021A	SOIL.	4.40 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-6	NAPHTHALENE	EPA 8021A	SOIL	1.20 ppm	.005 ppm	$6 / 4 / 97$	$6 / 13 / 97$
PI-6	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
PI-6	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

| SAMPLE
 ID | PARAMETER | ANALYTIC
 METHOD | MEDIA | RESULTS
 (unIts) | DETECTION
 LIMIT
 (units) | DATE
 SAMPLE
 TAKEN | DATE
 SAMPLE
 ANALYZE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PI-2 | NAPHTHALENE | EPA 8270 | SOIL | $<.03$ PPM | .03 ppm | $6 / 4 / 97$ | 6/12/97 |
| PI-2 | FLUORENE | EPA 8270 | SOIL | $<.03 \mathrm{ppm}$ | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| PI-2 | PHENANTHRENE | EPA 8270 | SOIL | $<.03 \mathrm{ppm}$ | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| PI-2 | BENZOANTHRACENE | EPA 8270 | SOIL | $<.03 \mathrm{ppm}$ | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| PI-2 | BENZOPYRENE | EPA 8020 | SOIL | $<.03 \mathrm{ppm}$ | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$006-1$	NAPHTHALENE	EPA 8270	SOIL	$<.03$ PPM	.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-1$	FLUORENE	EPA 8270	SOIL.	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-1$	PHENANTHRENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-1$	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-1$	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (units)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$006-2$	NAPHTHALENE	EPA 8270	SOIL	$<.03$ PPM	.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-2$	FLUORENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-2$	PHENANTHRENE	EPA 8270	SOIL.	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-2$	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-2$	BENZOPYRENE	EPA 8020	SOIL.	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

SAMPLE ID	PARAMETER	ANALYTIC METHOD	MEDIA	RESULTS (units)	DETECTION LIMIT (unIts)	DATE SAMPLE TAKEN	DATE SAMPLE ANALYZE
$006-3$	NAPHTHALENE	EPA 8270	SOIL	$<.03 \mathrm{PPM}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-3$	FLUORENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-3$	PHENANTHRENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-3$	BENZOANTHRACENE	EPA 8270	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$
$006-3$	BENZOPYRENE	EPA 8020	SOIL	$<.03 \mathrm{ppm}$.03 ppm	$6 / 4 / 97$	$6 / 12 / 97$

| SAMPLE
 ID | PARAMETER | ANALYTIC
 METHOD | MEDIA | RESULTS
 (units) | DETECTION
 LIMIT
 (unIts) | DATE
 SAMPLE
 TAKEN | DATE
 SAMPLE
 ANALYZE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PI-3 | NAPHTHALENE | EPA 8270 | SOIL | .08 PPM | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| PI-3 | FLUORENE | EPA 8270 | SOIL | .23 ppm | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| Pl-3 | PHENANTHRENE | EPA 8270 | SOIL | .33 ppm | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| Pl-3 | BENZOANTHRACENE | EPA 8270 | SOIL | $<.03 \mathrm{ppm}$ | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |
| Pl-3 | BENZOPYRENE | EPA 8020 | SOIL | $<.03 \mathrm{ppm}$ | .03 ppm | $6 / 4 / 97$ | $6 / 12 / 97$ |

ILFC Laboratory Report

Clayton Services Corp.

1201 Bethlehem Pike, Suite 105 North Wales PA
(215) 362-6400

Project No:	Not Given Her Foods Inc. Nottingham, PA	
Project Location:		
Sampler:	Michael Williams D/215)	(21562-6400
Date Sampled:	$5 / 28 / 97$	
Date Received:	$5 / 30 / 97$	
Date Reported:	$06 / 16 / 1997$	
Report\#:	97091	

ILFC Laboratory Report

Sample Date:	5/28/97	Clayton Services Corp.		007-1
Registed Datertime:	05/30/1997 10:57:06 AM	Herr Foods Ine.		
		Sont	ILFC 矣	10418
Eatch	97091			

EPA Method 82703				
Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.12	6/12/97	Kay Baker
FFluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	60.03		
Benzo(a)anthracene	0.03 mg/kg	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Pyrene	$10.03 \mathrm{mg} / \mathrm{kg}$	00.03		
Benzo(b)fluoranthene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Indeno(123-col)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	40.03		
Qenzo(gh)perylene	$10.03 \mathrm{mg} / \mathrm{kg}$	10.03		---

Total Lead - Method 6010

Analyte	Concentration	MDL	Date Anatyzed	Analyst
Lead	66	$6 \mathrm{mg} / \mathrm{kg}$	$6 / 6 / 97$	Robert Furlong

Percent Hfoisture

\% Moisture	Date Analyzed	Analyst
16.4		Cindy Logan

Waste Motor Oil (PA) Mrethod 8260A				
Analyte	Resutit	MDL	Units	E
Benzene	45	5	Mofkg (ppb)	
Toluene	45	5	ug/kg (ppb)	
Xyienes	<5	5	ug/kg (ppb)	
Naphthalene	<5	5	ug/kg (ppb)	
		5	ugikg (ppb)	
Analyst	Kay Baker	5	ugikg (ppb)	
Date Analyzed	513097	5	ug/kg (ppb)	

ILFC Laboratory Report

Sample Date:	5/28/97	Clayton Services Corp.		$007-2$
Registered Daterime:	05/3014997 10:57:23 AM	Herr Foods inc.		
		Soil	ILFC W	10420

EPA Method 82708				
Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12997$	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	10.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.03		
Berzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	00.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	$1<0.03$		
Pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(b)fuoranthene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Indeno(123-ed)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	60.03		
Benzo(ghi)perylene	$0.03 \mathrm{mg} / \mathrm{kg}$	10.03		

Total Lead - Method 6010

Analyte		Concentration	MDL	Date Analyzed
Lead	14	$6 \mathrm{mg} / \mathrm{kg}$	$6 / 6 / 97$	Analyst

Percent Moisture

Porcent Moisture		Date Analyzed
191.8	$8 / 5 / 97$	Anatyst

Wasto Mfotor Oil (PA)-method 8260A				
Analyte	Result	MDL	Units	E
Benzene	<5	5	pugkg (ppb)	
Toluene	55	5	ug/kg (ppb)	
Xyienes	-5	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)	
Naphthalene	<	5	ug/kg (ppb)	
		5	ug/kg (ppb)	
Analyst	Kay Baker	5	ug/kg (ppb)	
Date Anzlyzed	5/30/97	5	ug/kg (ppb)	

ILFC Laboratory Report

Sample Date:	5/28/97	Clayton Services Corp.	
Registered Date/Time:	05/30/4997 10:57:31 AM	Her Foods Inc.	007-P
	97091	Soil	HLFCH

EPA 俱ethod 82708				
Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	6/12/97	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	180.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.07		
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	40.03		
Benzo(b)nuoranthene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.03		
Pndeno(123 -cd)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.03		
Benzo(ghi)perylene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.03		

Total Lead - Method 6010

Analyte	Concentration	MDL	Date Analyzed	Andyst
Lead	7	$6 \mathrm{mg} / \mathrm{kg}$	$6 / 6 / 97$	Robert Furlong

Percent Moisture

$\%$ Moisture	Date Analyzed	Analyst
15.8	$6 / 5 / 97$	Cindy Logan

Waste Miotor Oil (PA) Hethod 8260A

Waste Motor Oil (PA)-method 8260A				
Anatyto	Result	MDL	Units	E
Benzene	45	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)	
Toluene	<5	5	ug/kg (ppb)	
Xyienes	<5	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)	
Naphthalene	$\leqslant 5$	5	ug/kg (ppb)	
		5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)	
Analyst	Kay Baker	5	ug/kg (ppb)	
Oate Anatyzed	5/3097	5	ughkg (ppb)	

ILFC Laboratory Report

Clayton Services Corp.

1201 Bethlehem Pike, Suite 105 North Wales PA (215) 362-6400

Project No:	Not Given	
Project Location:	Herr Foods, Inc. Nottingham, PA	
Sampler:	Michael Williams	(215) 362-6400
Date Sampled:	$6 / 4 / 97$	
Date Received:	$6 / 6 / 97$	
Date Reported:	$06 / 16 / 1997$	
Report \#:	97094	

ILFC Laboratory Report

End of Analyses

ILFC Laboratory Report

ILFC Laboratory Report

Sample Date: Registered Date/Time:		6/4/97		Clayton Services Corp.			003-P
		06/06/1997 11:19:12 AM		Herr Foods, Inc.			
	ch \#	97094		Soil		ILFC \#	10437
Method: EPA 418.1							
		alysis	MDL	Concentration	Date Analyzed	Analyst	
	TPH		$5 \mathrm{mg} / \mathrm{kg}$	<5	'6/6/97	Cindy Logan	

ILFC Laboratory Report

ILFC Laboratory Report

Sample Date:	6/4/97	Clayton Services Corp.		004-3
Registered Date/Time:	06/06/1997 11:29:36 AM	Herr Foods, Inc.		
ch\#	97094	Soil	ILFC \#	10440

Unleaded Gasoline (PA)			
Analyte	- Result	MDL	Units
Benzene	<5	5	ug/kg (ppb)
Toluene	<5	5	ug/kg (ppb)
Ethylbenzene	<5	5	ug/kg (ppb)
m,p-Xylene	<5	5	ug/kg (ppb)
o-Xylene	<5	5	ug/kg (ppb)
MTBE	44	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)
Isopropylbenzene	< 5	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)
Naphthalene	18	5	ug/kg (ppb)
Data Analyzed	6/13/97		
Analyst	Kay Baker		

Percent Moisture

\% Moisture	Date Analyzed	Analyst
14.1	$6 / 9 / 97$	Cindy Logan

8270PA (Gasoline)
Analyte MDL Concentration Date Analyzed Analyst Benzo(a)anthracene $0.03 \mathrm{mg} / \mathrm{kg}$ <0.03 $6 / 12 / 97$ Kay Baker Benzo(a)pyrene $0.03 \mathrm{mg} / \mathrm{kg}$ <0.03

ILFC Laboratory Report

Sample Date:	$6 / 4 / 97$	Clayton Services Corp.	
Registered Date/Time:	06/06/1997 11:29:42 AM	Herr Foods, Inc.	005-1
	97094	Soil	ILFC \#

Unleaded Gasoline (PA)			
Analyte	Result	MDL	Units
Benzene	<5	5	ug/kg (ppb)
Toluene	<5	5	ug/kg (ppb)
Ethylbenzene	<5	5	ug/kg (ppb)
m,p-Xylene	< 5	5	ug/kg (ppb)
o-Xylene	<5	5	ug/kg (ppb)
MTBE	<5	5	ug/kg (ppb)
lsopropylbenzene	<5	5	ug/kg (ppb)
Naphthalene	<5	5	ug/kg (ppb)
Data Analyzed	'6/9/97		
Analyst	Kay Baker		

Percent Moisture

\% Moisture	Date Analyzed	Analyst
17.0	$6 / 9 / 97$	Cindy Logan

8270PA (Gasoline)

Analyte	MDL	Concentration	Date Analyzed	Analyst
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date: 6/4/9

Registered Date/Time: 06/06/1997 11:29:48 AM
Clayton Services Corp.
Herr Foods, Inc.

Soil
ILFC \#

Unleaded Gasoline (PA)			
Analyte	Result	MDL	Units
Benzene	<5	5	ug/kg (ppb)
Toluene	<5	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)
Ethylbenzene	<5	5	ug/kg (ppb)
m,p-Xylene	<5	5	ug/kg (ppb)
O-Xylene	<5	5	ug/kg (ppb)
MTBE	<5	5	ug/kg (ppb)
Isopropylbenzene	<5	5	ug/kg (ppb)
Naphthalene	<5	5	ug/kg (ppb)
Data Analyzed	6/13/97		
Analyst	Kay Baker		

Percent Moisture

\% Moisture	Date Analyzed	Analyst
14.6	$6 / 9 / 97$	Cindy Logan

8270PA (Gasoline)

Analyte	MDL	Concentration	Date Analyzed	Analyst
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	6/4/97	Clayton Services Corp.		
Registered Date/Time:	06/06/1997 11:29:54 AM	Herr Foods, Inc.	005-3	
\therefore ch\#	97094	Soil	LLFC \#	$\mathbf{1 0 4 4 3}$

Unleaded Gasoline (PA)			
Analyte	Result	MDL	Units
Benzene	<5	5	ug/kg (ppb)
Toluene	<5	5	ug/kg (ppb)
Ethylbenzene	< 5	5	ug/kg (ppb)
m,p-Xylene	<5	5	ug/kg (ppb)
o-Xylene	<5	5	ug/kg (ppb)
MTBE	<5	5	ug/kg (ppb)
Isopropylbenzene	< 5	5	Jug/kg (ppb)
Naphthalene	<5	5	ug/kg (ppb)
Data Analyzed	6/13/97		
Analyst	Kay Baker		

Percent Moisture

\% Moisture	Date Analyzed	Analyst
15.4	$6 / 9 / 97$	Cindy Logan

8270PA (Gasoline)

Analyte	MDL	Concentration	Date Analyzed	Analyst
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

ILFC \# 10444

Unleaded Gasoline (PA)

Percent Moisture

\% Moisture	Date Analyzed	Analyst
16.0	$6 / 9 / 97$	Cindy Logan

8270PA (Gasoline)

8270PA (Gasoline)				
Analyte	MDL	Concentration	Date Analyzed	Analyst
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	6/4/97	Clayton Services Corp.		PI-5
Registered Date/Time:	06/06/1997 11:30:08 AM	Herr Foods, Inc.		
, ch\#	97094	Soil	ILFC \#	10445

Unleaded Gasoline (PA)

Analyte	Result	MDL	Units
Benzene	7.0	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
Toluene	82.0	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
Ethylbenzene	540.0	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
m,p-Xylene	3200.0	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
$0-$-ylene	2500	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
MTBE	2300	5	$\mathrm{ug} / \mathrm{kg} \mathrm{(ppb)}$
lsopropylbenzene	660	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
Naphthalene	9800	5	$\mathrm{ug} / \mathrm{kg}(\mathrm{ppb})$
Data Analyzed	$6 / 13 / 97$		
Analyst	Kay Baker		

Percent Moisture

\% Moisture	Date Analyzed	Analyst
18.6	$6 / 9 / 97$	Cindy Logan

8270PA (Gasoline)

Analyte	MDL	Concentration	Date Analyzed	Analyst
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	$6 / 4 / 97$	Clayton Services Corp.	PI-6
Registered Date/Time:	$06 / 06 / 1997$ 11:30:21 AM	Herr Foods, Inc.	
		Soil	ILFC \#
ch \#	97094		10446

Unleaded Gasoline (PA)			
Analyte	Result	MDL	Units
Benzene	10.0	5	ug/kg (ppb)
Toluene	10.0	5	ug/kg (ppb)
Ethylbenzene	49.0	5	$\mu \mathrm{g} / \mathrm{kg}$ (ppb)
m,p-Xylene	270.0	5	ug/kg (ppb)
o-Xylene	210	5	ug/kg (ppb)
MTBE	4400	5	ug/kg (ppb)
Isopropylbenzene	21	5	ug/kg (ppb)
Naphthalene	1200	5	ug/kg (ppb)
Data Analyzed	6/13/97		
Analyst	Kay Baker		

Percent Moisture

\% Moisture	Date Analyzed	Analyst
22.4	$6 / 10 / 97$	Cindy Logan

8270PA (Gasoline)

Analyte	MDL	Concentration	Date Analyzed	Analyst
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	6/4/97	Clayton Services Corp.		P1-2
Registered Date/Time:	06/06/1997 11:31:11 AM	Herr Foods, Inc.		
tch \#	97094	Soil	ILFC \#	10448

Percent Moisture

\% Moisture	Date Analyzed	Analyst
18.3	$6 / 10 / 97$	Cindy Logan

EPA Method 8270B

Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	$6 / 4 / 97$	Clayton Services Corp.	0
Registered Date/Time:	$06 / 06 / 1997$	Herr Foods, Inc.	$006-1$
ch $\#$	97094	Soil	ILFC \#

Percent Moisture

\% Moisture	Date Analyzed	Analyst
19.4	$6 / 10 / 97$	Cindy Logan

EPA Method 8270B

Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	$6 / 4 / 97$	Clayton Services Corp.	0
Registered Date/Time:	$06 / 06 / 199711: 31: 38 \mathrm{AM}$	Herr Foods, Inc.	$006-2$
\vdots		Soil	ILFC \#

Percent Moisture

$\%$ Moisture	Date Analyzed	Analyst
20.8	$6 / 10 / 97$	Cindy Logan

EPA Method 8270B

Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	$6 / 4 / 97$	Clayton Services Corp.	$006-3$
Registered Date/Time:	$06 / 06 / 199711: 31: 44$ AM	Herr Foods, Inc.	0
tch \#	97094	Soil	ILFC \#

\% Moisture	Date Analyzed	Analyst
21.1	$6 / 10 / 97$	Cindy Logan

EPA Method 8270B

Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03	$6 / 12 / 97$	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

ILFC Laboratory Report

Sample Date:	$6 / 4 / 97$	Clayton Services Corp.
Registered Date/Time:	$06 / 06 / 1997$ 11:31:20 AM	Herr Foods, Inc.

Percent Moisture

\% Moisture	Date Analyzed	Analyst
22.2	$6 / 10 / 97$	Cindy Logan

EPA Method 8270B

Analyte	MDL	Concentration	Date Analyzed	Analyst
Naphthalene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.08	$6 / 12 / 97$	Kay Baker
Fluorene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.23		
Phenanthrene	$0.03 \mathrm{mg} / \mathrm{kg}$	0.33		
Benzo(a)anthracene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		
Benzo(a)pyrene	$0.03 \mathrm{mg} / \mathrm{kg}$	<0.03		

CLAYTON SERVICES CORPORATION

Environmental Compliance Consulting \& Contracting

1201 Bethlehem Pike, Suite 105, North Walles, PA 19454
(215) $362-6400$
(215) 362-6481 FAX

Project: Herr Foods Inc. Nottingham, PA

- 30 day Closure notification
- Ammended registration
- Notice of Reportable Release/Notice of Contamination

ATTACHMENT 2

DEPARPARENT OP ENVIMENAENYAL RESOURCES
bUREAU OF WATEr QUALITY MAANAGEAENY
DIVISION OF STORAGE TANKS

DATE ARCEIVID: \qquad

UNDERGROUND STORAGE TANK CLOSURE NOTIFICATION FORM

NOTE: Notification of permanent closure must be received by the appropriate regional office of the Department at least 30 days prior to initiation of the closure activities.

VI．Description of Underground Storage Tanks（Complete tor each tank undorgong closure）					
Pank Repistration Number		003	O04	005	
Date of Tank installation	MonthNear	N／A	N / A	N / a	N／4
Estrimated Total Capacriy（Gallons）		4，000	4，000	15，000	12，000
Tank Materiel dof Construction		STEC1．	STEs．1	Stsel	Diess
Substance（s）Stored Throughout Operating Lfe of Tank （Check All That Apply）	B．Petrolaum Unleaded Gssoline Leaded Gasoline Avistion Gasoline Kerosene jet Fuel Diesel Fuel fuel Oil No． 1 Fuel Oil No． 2 FuelOil No． 4 Fuel Oil No． 5 Fuel Oil No 6 New Motor Oil Used Motor Oil Other，Please Specify b．Hazerdous Substance Name of Prancipal CERCLA Substance AND Chemicel Abstract Service（CAS）No． c．Unknown		風 \square	\square \square \square 0 \square \square 0 \square \square 0 \square \square \square 	
Proposed Tank Closure Method （Check Only One）	a．Removal b．Closure－in－Place c．Chenge－In－Service	$\begin{aligned} & \text { 区 } \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & \text { 迢 } \\ & 0 \end{aligned}$		$\begin{aligned} & K_{1} \\ & \square \\ & \hline \end{aligned}$
Tank Registration Number		607			
Date of Tank Installation（Manth／rear）		\sim / A			
Estimated Total Capacity（Galions）		1，000			
Tank Material of Construction		STES			
Substance（s）Stored Throughout Operating Life of Tank （Check All That Apply）	a．Petroleum Unleaded Gasoline Leaded Gasoline Aviation Gasoline Kerosene Jet fuel Diesel fuel fuel Oil No． 1 Fuel Oil No 2 Fuel Oil No． 4 Fuel OilNo． 5 Fuel Oil No． 6 New Motar Oll Used Motor Oil Other．Please Specify b．Hazardous Substance Name of Principal CERCLA Substance AND Chemical Abstract Service（CAS）No c．Unknown			\square \square	\square \square
Proposed Tank Closure Method （Check Only One）	a．Removal b．Closure－in－place c．Change－In－Service	$\begin{aligned} & \text { 苞 } \\ & 0 \end{aligned}$	$\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & \square \\ & 0 \\ & \square \end{aligned}$	$\begin{aligned} & \square \\ & \square \\ & \square \end{aligned}$

REGISTRATION OF STORAGE TANKS

1. PURPOSE OF SUBMITTAL (Check (V) Those That Apply)

- Initial Hegistretion
- Regirtration for Remonal of Uniogistered Tenk(k)
- Regigtration for UnRegistered Tank(s) closed in Place
 - Cherve in mevious info Ye Adeling Tenk(t)
 0 Chengefrem Reguleted wo R Rogutaced furtity) Unrogulated Subatence or Use a Some Tanks (huloceted to a New Fecility - Relocented Tenk(a)

CMAMr: Of OHANERH:
0 sed a Purchesed

- Some Tonks Muth Romotn at Sume Fecility
and the Tanks are to be Regietered)

II. TANK OWNER / BUSINESS INFORMATION (Type or Print Legiby)

A. DEP CLENT ID NO. (STATE USE ONLY)

Federal Tex ID No. (EIN or SSN)
Owner Name Hshk Foads Inc.
Address RouTz $272+$ HERR DRive
City Nottingham state PA Zip 19362 Phone No. (lic) 932 . lasce
County CHESTER Municipality W. Nostingham jype of Owner/Business (Check Onty One)

כ	Vol. Fire Co./EMS Org.	Y Corparate
5	Feder l Government	- Private (Pusiness)
\square	State Government	- Private (Residential)
-	Local Government	

I State Government \square Private (Residential)

- Local Government
B. CHANGE OF OWNERSHIP

This section is to be complered in addition to all sections if some or all tenks have been sodedtransferred or purchesed.)

Effective Date of Cherge
Sold/Transtersed To
(New Owner Name)
(Naw Owner Address)

Purchased/Transfeyred From
(Previous Owner Nome)
(Provious Owener Address)
(Previous facility to wo.)
(Previous Tank No.(N))

1L. FACILTY INFORMATION (Type of Print Leqibly)

DEP Facility ID No． $1 \leq-24418$ Facility Name＿HERE Focosis INe
IV．DESCRIPTION OF STORAGE TANKS Gype or print legibly each regulated storage tank at this facility under your ownership．）
ABOVEGROUND TANKS List all tanks．If amending information，identify the Amended rank（s）with an asterisk（ ${ }^{\circ}$ ）to the left of the tank

$\begin{gathered} \text { Tank } \\ \text { Number } \end{gathered}$	［		$\left\|\begin{array}{c} \text { Remove } \\ \text { DDate } \\ \text { (Mo-Day.ver }) \end{array}\right\|$	$\underset{\substack{\text { capaity } \\ \text {（Colom）}}}{\substack{\text { and }}}$				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { rank Exempt } \\ \text { Referencre } \\ \text { Code } \\ \text { (See madewtions) } \end{array} \end{array}$
$\bigcirc \bigcirc 62 A$	C			－－－ 4.500				
A				－－－－－				
A				－－－－－				
A				－－－－－－				
A				－ハーー－－				
A				－－－m－－－				
A				－－－－－				
A								
A				－－－－－				
A								
A								
Status C	codes：	c． 0	in	T－Temporarily Out of Use；	R －Rem	or Cosed in Place		

B．UNDERGROUND TANKS List all tanks．If amending information，dentify the Amended Tank（s）with an asterisk（ ${ }^{\circ}$ ）to the left of the tank number．

	S	$\begin{gathered} \text { Install } \\ \text { (Moate } \\ \text { (Mo. Dey. } \end{gathered}$	$\left\|\begin{array}{c} \text { Remove } \\ \text { (motere } \\ \text { (motyr-ver } \end{array}\right\|$	$\underset{\text { capacty }}{\substack{\text { capaity } \\ \text {（allom）}}}$				$\left\lvert\, \begin{gathered} \text { Tank Exempt } \\ \text { Reference } \\ \text { Coode } \\ \text { (Soe nstructionss } \end{gathered}\right.$
Con	C			20，0으				
003	R		5last	$-2.4 .000$	F	Nisa motar ail		
004	R		5788197	－－－－ 4.608	A	Gasalios		
005	R		$6 \cdot 4 / 97$	－－15．000	A	Gasuohine		
006	R		6／4／97	－－L2．000	R	Diesel		
¢07	R		5／08／97	－－－ 1.000	G	USES motor oil		
008		6／19／97		－－10，으의	A	GAS		
309		$6 / 19 / 97$		－－－10．000	B	Diesel		
				－－－				
				－ーイーー＇ー－				
Status Codes：C－Currently in Uise；\quad T－Temporarily Out of Use；\quad R－Removed or Closed in Place								
V．OWNER CERTIFICATION（Read and Sign After Completing Sectionst through v．）								
I ceraty under penalty of law that i have personally examined and an familiar with the information submitted in fis and dil attached decuments，and that based on my inquiry of those individuals immediately responsible for obtaining the information，I believe that the submitted information is true，accurate，and complete．This registration is conditioned upon compliarke with provisions ofthe storage Tank and Spill Prevention Act of 1989 ．with any requlations and orders iswed pursuant to this Act，and wow we requirements for obtaining a permit required under this Act居								
pleare be advised that signature by an individual on this document represenis C． 5 Section $\mathbf{3} 904$ relating to unsworn falsification to authoritiet and that Section 107 l ）of this Act grants agents and employtes of the Department of Environmental Protection specific right of entry．								
endothiar fue of tomer HERR FOOD				INC			$\begin{gathered} \text { Date } \\ 6 \end{gathered} 16 / 5$	

INFORMATION FOR ABOVEGROUND AND UNDERGROUND NEW TANK INSTALLATIONS
 (Write the Tank Numbers) and place a ched($\sqrt{ }$) in the appropriate box for each component that was installed.)

UNDERGROUND PIPING CONSTRUCTION AND CORROSION PAOTECTION (2)

AP~YEGROUND PIPING CONSTRUCTION AND CORROSFON PROTECTION (3)

$$
N / A
$$

PUMP (PIPING) SYSTEM (4)

PIPE RELEASE DETECTION METHOD (S)

overfill prevention present (7)

vi. INFORMATION FOR ABOVEGROUND AND UNDERGROUND NEW TANK INSTALLATIONS (cont.)

(Write the Tank Numbers) and place acheck $(\mathbb{V}$) in the appropriate box for each component that was installed.)

Vי' ABOVEGROUND AND UNDERGROUND TANK INFORMATION FOR REMOVAL FROM SERVICE (Write the Tank Numbers) and place ached ($\sqrt{ }$) in the appropriate box for each tank that was removed or closed in place.)

VIII. OWNER CERTIFICATION (Read and Sign After Completing Sections through VII.)

 the Storage Tank and Spill Prevention Act o? 1989, with any regulations and orders issued pursuant to this Act, and with the requirements for obtaining a permit required under this Act

Name and Official Title of Owner
HERR FINDS INC
signatiorof
IX. INSTALLER/REMOVER CERTIFICATION (This section must be completed by the certified installers) who are responsible for the installation or removal from service of the aboveground and underground storage tank systems listed in Sections VI and VII.)

[^10]

NOTIFICATION OF REPORTABLE RELEASE（Ownors and Operatan） NOTIFICATION OF CONTA BANATION（Cevilied matembers and mspectors）

On Augunt 21，1983，the Storme Tank Cloanup Program＇s Corrective Action Procpen（CA联）regulations became effective．
 ownets and opfoters pf starage timbs and stpwage timb faditries．

Subsection 245．305（t）of the requlations reauir ewners or epporturs to motify the approprime regiond office of the Deportment as soon mspacticable，but no letep than 2 hourt， ofter the confirmation of a raportable reledsh．

Substetion $245.308(d)$ requires ommers of appretors to ppovide written notification to the appropriak pegional office and to the lowal municipality，within 15 toys of the motice raguired by Subsection 245.305 （ 3 ）．This form may be und to cernphy with Subsection $245.3 \mathrm{dr}(\mathrm{d})$ ．

On Sepptimber 21，1991，the Storape Tank Program＇s Certification requiations beceme offetrive．There reguliotions ertablish standerds of perfombnce for certifind ingtellers and inspestop ef storage tanks and storagu tank facilitions．

Subusetion $245.132(3)(\$)$ of the regulations nequires coptifind instaliefs and
 confirmod or spspectad contiminstion of scil，surfecter or srandown from
 inspactor．

This form rity be uned to cemply with Subrection 245．1327i）（4）．The Departmant expetts subrmigion of the form within 4 息 hours of otoverving
 fom may be submitted jointly by the owner，oporator，certified installer and certified irfpector．In this intance，the fom must be received by the sporaprinte rearionil cifice within is day of the notice requined by Subsectian 285，30S（b），

INSTRUCTIONS

 contwet ot the facility．

 quantity of product of products rafenged；and C whuther the contwinmion is singoctod or confinmed．
 office notifited；and the date the loctimumicipality（provide nome of municipality）wes sent copy of this form．Indicpte to the bert of your knowdedge the extent of conteminution revulting from the relewe of the repulpted gubstence．

 critifiction humber and compary entiftethigh number．

PA Depmrinent af Environnament Prokection
Enwironnmental Cleanup Program
Storage Fink Sextion
（bad the spproprist and reas brewn，dapending on where the FACLLTY is locstad）

Sandongration 5SS Rothlume FAAS：blessnt flas cmamiss Minntagmery． Panduthentia	 FAK：717－4才－407 Censeiss Urowns，hionrof，Wertwry 	On Ar Arint Pollodrd eprititere．PA 17119 Conserm
Butity Namp		Facility I．D．Rumber $15-34 / 18$
Street Address（p．0．Son not mectprabla）\qquad		
City A NTtiasNAM		29p code 193162

Nentrentra kawint
 Whficmayty in 17701 HAK：7173；

Cownitu
 clavtiold．Codumbit，Lydining

Southunt Rygitan Sow Wertront Drte Prybutioh PA 15232

Cmantios
Alidiblthy，Acructreng Bownt，Cambia herme．
 Weriningon，Whatrourulond

Wond matat thetion wagmprut tow

Cmantis Gutier Clenen Crowtore Ek Eral Forwit katiotionc．
 Wenpeggo．Wharin

II．OWNER INFORMATION（Both OIO and In）

Ne中w

Date

 monnticipality and Nemen of Mundipality Platified:

Date

Muricipalty
 -

V. HIERIM REMEDIAL ACTIONS (O/O OThy)

VI. SUSPLCTED / CONFIRMAED CONTAMINATION INFORMATION (I/I OnIy)

VI. ADOTTIONAL INFORAMATION (BOth OIO and l)

tidude a brief description of the activity that was being conducted when the reportable release was confirmed by the owner ar operator of when that
 price or routing impaction.

On May 28, 1997, Enercon Services Inc. uncovered and removed two underground storage tanks. During the excavation activities, soils exhibiting strong gasoline odors and visual staining were observed. Soils with elevated field readings (FID) were stockpiled on and under plastic for future treatment and/or disposal.

Vil. CERTIFKATION (eth O/O and MI)

 , hesebiby certify, under entity of law as provided in 4B Pa. C.SA.

Signature of Owner cr Operator

 storage tank facility and/fift the frifopmaton provided by fine in thin notification is true, accurate and complete to the bert of ny knowledge and belief.

Company Certifiotion Number

1. Mochas Williams
 , hereby certify, under pentity of law as provided in 18 P4, C.S.A. 56904 (relating to unbwern falsification to authorities) that 1 thin the certified inspector who performed inspection wavities at the above referenced ge tank facility and that che information provided by me in this notification is true, accurate and complete to the best of my knowledge and belief.

Clayton Services Corporation

Tank Cleaning/Disposal Documentation

Project: Herr Foods Inc. Nottingham, PA

- Non-Hazardous Liquid Manifests
- Tank Cleaning Certificate
- Tank Disposal Documentation

Note:
A 21,000-gallon Frac tank was required on-site to containerize surface stormwater and trapped surface water which accumulated in the excavation during the overexcavation of contaminated soils. Approximately 12,000 -gallons of stormwater was containerized and ultimately discharged to the surface after treatment through granular activated carbon. Mr. Keith Dudley, PADEP Southeast Regional Office, granted verbal permission to discharge the water after treatment. Analytical results of the discharged water are available upon request.

15. Speciad Hardiling Instructions and Addationeal Information

19. Discrepancy Indication Space
20. Facility Owner or Operator: Certillcation of recelpt of waste materials covered by thls manifest except as noted in liem 19.

GENERATOR'S COPY

EnerCon Services, Inc.

P.O. Box 174

Bear, DE 19701
(302) 834-8265

Fax\# (302) 834-4699

Date: June 4, 1997

Clayton Services Corporation
1201 Bethlehem Pike, Suite 105
North Wales, PA 19454
Fax \#215-362-6481

Tank Cleaning Certification

This letter will certify that EnerCon Services, Inc. pumped out the contents of a 1,000 gallon waste oil tank, a 4,000 gallon motor oil tank, a 4,000 gallon gasoline tank, a 12,000 gallon gasoline tank and a 15,000 gallon diesel underground storage tank located at Herr's in Nottingham, PA. The tanks were cleaned, wiped, powdered dry and vapor freed. The cleaning was done by a 40 -hour OSHA trained employee with Confined Space Certification. All work was done in accordance with API Publication No. 1604 and in compliance with all state and federal regulations.

Sincerely yours,
EnerCon Services, Inc.

JB:Iw

RD \#2.
ROUTE 372E
PARKESBURG, PA 19365
(610) 857-1200
P. O. BOX 451

ATTN: MIKE:DONOVAN
ENERCON SERVICES
P. O. BOX 174

BEAR, DE 19701
JULY 3, 1997
CERTIFICATE OF DESTRUCTION

SERVICE LOCATION: HERRS FOODS
RTE. 272 \& RTE. I
NOITIINGHAM, PA
SERVICE ITEMS: ONE (1) $15,000 /$ GALLON DIESEL STEEL TANK
ONE (1) $12,000 /$ GALION GASOLINE STEEL TANK
ONE (1) 4,000/GALLON GASOLINE STEEL TANK
ONE (1) 4,000/GALLON MOTOR OIL STEEL TANK
ONE (1) 2,000/GALLON WASTE OIL STEEL TANK

ZYDINSKY CONTRACTORS OPERATIONAL PERSONNEL DID CAUSE AND EFFECT COMPLETE AND/OR IRREPARABLE DESTRUCTION TO THE ABOVE REFERENCED ITEMS SO AS TO RENDER SAID ITEMS PERMANENTLY INOPERABLE AND/OR UNUSABLE FOR ORIGINAL PURPOSE. ITEMS WERE SUBSEQUENILY SHIPPED OFF-SITE AND SUBMITTED FOR DISPOSAL UNDER ZYDINSKY CONTRACTORS GENERIC SCRAP APPROVAL CODE THROUGH WHICH THERMAL REDUCTION AND/OR ELIMINATION PROVIDED THE FINAL DISPOSITION OF SAID ITEMS.

RESPECTFULLY,

CC: FILE

CLAYTON SERVICES CORPORATION

Environmental Compliance Consulting \& Contracting

1201 Bethlehem Pike, Suite 105, North Wales, PA 19454

PHOTODOCUMENTATION

Project: Herr Foods Inc., Nottingham, PA

1) Tank location prior to tank removals. Note excavation of diesel UST (Tank 006) for testing and investigation of leak.
2) Same as \#1
3) Draining of product lines back to respective USTs.
4) Tripod for internal tank cleaning
5) Removed Waste Oil UST (Tank 007)
6) Removed new oil UST (Tank 003)
7) Excavation after removal of Tank 003
8) Removed gasoline UST (Tank 004)
9) Excavation of 15,000 -gal gasoline prior to removal (Tank 005)
10) Removal of 12,000 -gal diesel UST (Tank 006)
11) Excavation of 12,000-gal diesel UST prior to removal (Tank 006)
12) Visible hole in bottom of Tank 006
13) Removed and labeled Tanks 003 \& 004
14) Stockpiles of contaminated soil removed from under Tanks 005 \& 006
15) Same as \#14
16) 21,000-gal Frac tank used to contain stormwater runoff into excavation during overexcavation of contaminated soils.

Clayton Services Corporation

Environmental Compliance Consulting \& Contracting

1201 Bethlehem Pike, SuIte 105, NORTH Wales, PA 19454

July 3, 1997
Ms. Susan Kishbaugh
PADEP - SE Region
Lee Park, Suite 6010
555 North Lane
Conshohocken, PA 19428
Re: Notice of Contamination
Herr Foods Inc.
Facility ID \# 15-24418
key t Meting ham Tue.

Dear Susan,

As per our discussion, attached please find one "Installation Contractor" signed Notice of Contamination (NOC) for the above referenced project.

I anticipate this will complete the notification process of your department, as requested.

Please contact our office with any questions.
Sincerely,

Michael Williams
Clayton Services Corporation
PADEP Co. Cert \# 1322
PADEP Ind. Cert \# 4053

Closure Report Forthcoming.

NOTIFICATION OF REPORTABLE RELEASE (Ownor end Opartars) NOTFICATION OF CONTAMINATION (Cemtived hoseafier and maspecterx)

On Augut 21. Isps, the titorege Pank Closnum Progranis

 farilletit

Susperion $245.309(d)$ nequires omeners of eppruters to grovide writtion notifiertion to the eppropribte negional affice and to the lecal manicipatity, within 45 dey of the mextice

> OAns

 baceme wifective. There regulations ertabiah standards of pertormence for

 inturnctup.

IMSTRUCTIONS

 eontret of the focilyt.

V. INTL

Emoreningtal clourup orogrem
Starag Fank Settion

 Cmandes

Memblumempien
 Memailu. Pa tras Fak: m14 Hestat

 vorange warnen

H. OWNLER ENFORMATIDN (Both O/O and II)

Owne Name

-	
Adrast	
Zity	
	2ip Code

VII. ADDITIONAL IATFORMATIOA ($\mathbf{~}$ (doth O/O and II)

 tree routine impaction.

On May 28, 1997, Enercon Services Inc. uncovered and removed two underground storage tanks. During the excavation activities, soils exhibiting strong gasoline odors and visual staining were observed. Soils with elevated field readings (FID) were stockpiled on and under plastic for future treatment and/or disposal.

I.
 6.
 tome tank facility and/ hot the formation
ta y

Trastilar Certification Number

Pennsylvania Department of Environmental Protection

- Lee Park, Suite 6010

555 North Lane
Conshohocken, PA 19428
November 17, 1997

Southeast Regional Office

610-832-5949
Fax 610-832-6143

Steve Moran

Herr Foods, Inc.
P.O. Box 300

Nottingham, PA 19362

Re: Storage Tank Program
Herr Foods, Inc.
Facility ID No. 15-24418
Route 272 \& Herr Drive
West Nottingham Township
Chester County

Dear Mr. Moran:
The Department has reviewed the closure report submitted by Clayton Services Corporation, dated July 2, 1997, regarding the removal of one steel 15,000-gallon unleaded gasoline, one steel 12,000-gallon diesel, one steel 4,000-gallon new motor oil, one steel 4,000-gallon unleaded gasoline, and one steel 1,000 -gallon used motor oil underground storage tanks at the above referenced facility.

The closure report indicates that contamination was encountered during the tank removal process. The contamination of soil and/or water, including groundwater, as the result of a discharge, spill or release of a regulated substance from a storage tank is a violation of Section 1304 and 1310 of the Storage Tank and Spill Prevention Act.

Although analytical results from soil sample Nos. $\mathrm{Pl}-5$ and $\mathrm{Pl}-6$ exceed the statewide health standard for MTBE, based on our review of the information and conclusions contained in the report, it appears that no further action is required regarding the closure of the tanks listed above. We do not warrant the accuracy or veracity of any closure report. If we subsequently obtain additional information which indicates the existence of contamination caused by the conditions on your premises, we reserve the right to require additional site characterization and/or remediation.

Although the closure report as submitted enables the Department to determine that no further action is needed, please be advised that the case file for this facility will not be complete until the following information is received:

Documentation of proper disposal of the contaminated soil.

CLAYton SERVICES CORPORATION

ENMRONMENTAL COMPLANCE CONSULTING \& CONTRACTING
(02:
1201 Bethlehem Pike, Suite 105 , North Wales, PA 19454
(215) 362-6400
(2 15) 362-6481 FAX
October 1, 1997
Mr. Steve Moran
Herr Foods Inc.
PO Box 300
Nottingham, PA 19362
Re: "Narrative Report"
Underground Storage Tank Project
USTIF Claim Number: 97-175(F)
PADEP Facility ID \# 15-24418
Dear Steve,
At the request of ICF Kaiser, Clayton Services Corporation is providing the following summary of activities and remedial actions which took place during your underground storage tank removal/replacement project. This summary is in addition to the Tank Closure Report dated 7/2/97, which was prepared by Clayton and submitted to the PADEP and ICF Kaiser.

Overview

Herr Foods, Inc. contracted with Enercon Services (Enercon) of Bear, DE for the removal and replacement of the underground storage tanks located at their Nottingham, PA maintenance garage facility. A total of five (5) underground storage tanks (USTs) were removed and replaced with two (2) new double walled USTs. Clayton Services Corporation (Clayton) was subcontracted by Enercon to perform all of the required PADEP tank closure soil sampling and reporting. The project was conducted between May 28, 1997 and concluded in early August 1997. The following underground storage tanks (USTs) were removed and replaced, as noted:

Removal: (1) 1,000-gallon Waste Oil (Tank 007)
(1) 4,000-gallon New Motor Oil (Tank 003)
(1) 4,000-gallon Unleaded Gasoline (Tank 004)
(1) 15,000-gallon Unleaded Gasoline (UST 005) "leaking"
(1) 12,000-gallon Diesel (Tank 006) "leaking"

Install: (1) 10,000 -gallon Diesel
(1) 10,000-gallon Gasoline

Page 2
October 1, 1997
Mr. Steve Moran
Herr Foods Inc.

Release Incident

In or around February of 1997, Herr Foods Inc. discovered an accumulation of water within their 12,000 -gallon diesel UST. Upon further investigation and tank testing, it was determined that the diesel UST was indeed leaking. Herr Foods Inc. immediately removed all the product from the tank and started proceedings to contract for the removal of all five USTs and the installation of a new two tank double walled system.

On May 28, 1997, Enercon Services cleaned and removed the three smaller USTs. During the excavation of backfill material necessary to remove USTs 003 and 004, excessive petroleum vapors were evident in the excavated backfill soil and soils with elevated field readings were stockpiled on and under plastic. Soils were screened by Michael Williams of Clayton with a Foxboro OVA 128
Flameionization Detector (FID). Although neither Tank 003 nor 004 contained any visible holes, backfill material which was also common to other on-site USTs exhibited excessive petroleum odors. The Pennsylvania Department of Environmental Protection (PADEP) was notified on May 28, 1997 of the suspected release and a Notice of Contamination form was subsequently submitted, as required.

Due to the tight confines of the site and the logistics of the large excavation required for the removal of USTs 005 and 006 , tank removal operations were continued on June 4, 1997. On June 4, 1997, Enercon removed the two remaining USTs. Several holes were discovered in Tank 006 and only "weep type" holes were discovered in Tank 005. After a discussion with the Owner regarding the release claims process, the Underground Storage Tank Indemnification Fund (USTIF) was contacted on June 6, 1997.

Extent of Contamination

Impacted soils were field screened and stockpiled between June 4 and June 6, 1997. Because the site is underlain by a very tight silty schist material, it appears the contamination was limited to the common backfill material surrounding the four larger removed USTs. The removed 1,000 -gallon waste oil UST (Tank 007) was remote from the other four USTs and did not exhibit any soil odors nor elevated field FID readings. All laboratory analytical results indicated soils below any pertinent PADEP cleanup levels for the waste oil excavation.

Soils around Tanks 005 and 006 and their associated pump islands were excavated until diminished field readings were obtained. It was discovered that contamination had reached the backfill material surrounding Tanks 003 and 004

Page 3

October 1, 1997
Mr. Steve Moran
Herr Foods Inc.
and had also impacted the soils beneath the removed pump islands. Contamination appeared to be a result of the release of product from Tanks 005 and 006 which accumulated in the more permeable backfill material used around the existing USTs. Due to the tight non-permeable nature of the surrounding virgin soils, trapped surface water was accumulated within the large excavation and appeared to contribute to the migration of the released diesel and gasoline compounds to adjoining backfill material. Any accumulated surface water within the excavation was removed, containerized, sampled, and discharged after PADEP approval. Treatment and sampling of the trapped surface water was necessary prior to final discharge due to the documented release. No groundwater was apparently encountered during this project and all horizontal and vertical contaminant migration appeared to diminish at the backfill/virgin soil interface. Post excavation soil samples revealed only several areas which were slightly above the PADEP Action Levels for Methyl Tertiary Butyl Ether (MTBE) and Naphthalene. No other compounds of concern were elevated above the PADEP action levels.

Remedial Options and Choices

The remedial options for the proper treatment of the contaminated soil was limited by the installation of replacement USTs. Soils expected to be utilized in backfilling and restoration of the site were impacted and could not be reused. Also, since the new tanks had to be installed within the impacted area, future treatment would surely be hampered by short circuiting and interference of treatment methodologies. Since the impacted media appeared to be limited to the backfill material of the removed USTs, soil removal was chosen as the most effective and safest option to eliminate the contaminant source.

The risks of leaving impacted soils in place was intensified by the presence of trapped surface water within the excavation. The "bathtub effect" of less permeable tank excavations often leads to surface water infiltration, filtering, and enhanced migration of contaminants. In addition, the immediate area is served by private wells and the risks associated with leaving source contaminant material in-place are greater. All soils which were accessible and which would not impact the structural integrity of the adjacent building were removed and stockpiled.

Since the site is a producer of public food products and any newly installed tanks would limit remedial effectiveness, the choice was made to remove the impacted soils and dispose at an approved disposal facility. The impacted soils appear to have been removed and the amount of stockpiled soil is estimated at 1,100 to 1,300 tons. The soil is currently stockpiled at the site awaiting proper disposal.

Estimated Cost of Remediation

Costs incurred to date and which are anticipated are as follows:

1) Loading contaminated soil for staging	\$ 2,340.00
- \$1,170/day x 2 days	
2) Staging \& Stockpiling of Contaminated Soil	\$ 4,500.00
- labor, hauling, plastic $-750 \mathrm{cu} . \mathrm{yd}$.	
3) Select Fill over base bid 587.75 tons compacted	\$ 9,991.75
4) Pea Gravel over base bid (110.25 tons)	\$ 2,701.13
5) Frac Tank, pump water, carbon filter (lot)	\$ 5,896.00
6) Lab Testing of Stockpiled Soil and Frac Tank Water	\$ 3,100.00
7) Environmental Consultant Oversight and Reporting	\$ 3,500.00
8) Soil Loading, Transport, and Disposal $-1,200 \text { tons @ } \$ 72 / \text { ton }$	\$86,400.00
Anticipated Total	\$118,428,88

Note: This total is for current remedial measures. Although it appears the PADEP will not require any further action at this site, additional costs may be encountered if the PADEP requires any additional subsurface investigation.

Conclusions

The majority of the impacted soils surrounding the USTs appears to have been removed during overexcavation and stockpiling activities. Post tank removal laboratory results are contained within the Tank Closure Report dated 7/2/97. Michael Williams has had several discussions with Susan Kishbaugh and Kathy Nagle of the PADEP regarding the remedial measures and closure status of this site. After reviewing the post removal soil sample analytical results and the nature of site contamination, the PADEP did not anticipate requiring any further remedial measures. Final review and approval of the remedial measures as outlined in the Tank Closure Report is pending from the PADEP.

I have attached the soil, frac tank water discharge, and the stockpile laboratory results for your inclusion of requested claims material. Please contact our office with any questions regarding this project or your claims process.

Michael Williams
Project Manager
Clayton Services Corporation

Analytical Results

07/18/97 04:39pm

	Regarding:
MICHAEL WILLIAMS	MICHAEL HILLIAMS
CLAYTON SERVICES COPPORATION	CLAYTON SERVICES CORPORATION
3003 HARVAPD DRIVE	3003 HARVARD DRIVE
NORTH WNLES. PA 19454	MORTH YALES. PA 19454

GAYTO SERVICES COPPORATION
NORTH YALES. PA 19454

1

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the PQL
QC INC's laboratory certification numbers are: PADER 09-131: NJDEP 77166: NC 488: NY.CT.DE and MD UPON REQUEST.
Definitions: ND-not detected: NEG-negative: POS-positive: COL-colonies; PQL-practical quanitation level: L/A-laboratory accident:
TNTC-too numerous to count
A result marked with "ORY" indicates that the result was calculated and reported on a dry weight basis.

Allon O. SchopDach, President

1205 INDUSTRIAL HIGHWAY • P.O. BOX 514 • SOUTHAMPTON, PA 18966-0514 • (215) 355-3900
ANALYTICAI DATA REPORT PACKAGE
FOR
CLAYTON SERVICES CORPORATION

Field Sample ID	Laboratory Sample ID	Date of Collection
DISCHARGE-1 H20	L238723-1	$07 / 03 / 97$

1

PADEP No. 09-131
NJDEP NO. 77166

MIChaEL WILLIAMS
CLAYION SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Regarding:
MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Sample Number	L238723-1	
Sample Description	DISCHARGE-1 H20	
Samp. Date/Time/Temp	07/03/97 11:00am	NA ${ }^{\circ} \mathrm{F}$
Sampled by	Customer Sampled	

Parameter	Method	Result	POL	Test Date	
DICHLORODIFIUCROME THANE	EPA Method 8021 A	ND ug/t	$0.500^{\circ} \mathrm{ug} \mathrm{l}^{\prime}$	07/16/97	
CHLOROMETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
VINYL CHLORIDE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
BROMOME THANE.	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
ChLOROETHANE	EPA Method 8021A.	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
TRICHLOROFLUORDME THANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,1-DICHLOROETHENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
methylene chloride	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
TRANS-1,2-DICHLOROETHENE	EPA Method B021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,1-DICHLOROETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
2,2-DICHLOROPROPANE	EPA Method 8021A	ND ug/l.	$0.500 \mathrm{ug} / 1$	07/16/97	
CIS-1,2-DICHLOROETHENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
CHLOROFORM	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
BROMOCHLOROMETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
1,1,1-trichloroethane	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
1,1-DICHLOROPROPENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
CARBON TETRACHLORIDE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
1,2-DICHLOROETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
TRICHLOROETHENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,2-DICHLOROPROPANE	EPA Method 8021A	ND ug/!	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
BROMODICHLOROMETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
DIBROMOMETHANE	EPA Method 8021A	ND ug/t	$0.500 \mathrm{ug} / 1$	07/16/97	
CIS-1,3-DICHLOROPROPENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
TRANS-1,3-DICHLOROPROPENE	EPA Method 8021A	ND ug/!	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,1,2-T.lichloroethane	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,3-DICHLOROPROPANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
TETRACHIOROETHENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
DIBROMOCHLOROMETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,2-DIBROMOETHANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{t}$	07/16/97	
1,1,1,2-tetrachloroethane	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
BROMOFORM	EPA Method 8021a	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,1,2,2-tEtrachloroethane	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / 1$	07/16/97	
1,2,3-TRICHLOROPROPANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
1,2-DIBROMO-3-CHLOROPROPANE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
BENZENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	
TOLUENE	EPA Method 8021A	ND ug/l	$0.500 \mathrm{ug} / \mathrm{l}$	07/16/97	

A resul: of "ND" indicates the concentration of the analyte tested was either not detected or below the PQL.
OC inc's laboratory certification numbers are: PADER 09-131; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; POL=practical quanitation level; $L / A=l a b o r a t o r y ~ a c c i d e n t ; ~$ INTC=too numerous to count.

A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

CINC. • 1205 INDUSTRIAL BLVD. • P.O. BOX $514 \cdot$ SOUTHAMPTON, PA 18966-0514 • (215) 355-3900

MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Regarding:
MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the PQL.
OC Inc's laboratory certification numbers are: PADER 09-131; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
 TNTC=too numerous to count.

A result marked with "DRY" indicates that the result was catculated and reported on a dry weight basis.

VOLATILE ORGANICS ANALYSIS DATA SHEET 8021A

CAS NO. COMPOUND | PQL |
| :---: |
| $(u g / L)$ |
| RESULT |
| $(u g / L)$ |

VOLATILE ORGANICS ANALYSIS DATA SHEET 8021A

VOLATILE ORGANICS ANALYSIS DATA SHEET 8021A

Lab Name/Code : QC Inc.	166	CONTRACT : Clayton L?	723-1
Leb Sample ID : Method	Blank	Sample No: ___ Method Bl	nk
Matrix	Hater	Date Received	
Sample vt/vol	-5ml.	Date Analyzed	07/16/97
Level (lov/med)	Low	Dilution Factor	1.0
Lab File (Primary-Hall)	- CG16002	Lat File (Confirm-Hall)	
Lab File (Primary-PID)	- DG16002	Lab File (Confirm-PID)	
Column	: $105 \mathrm{M} \times$. 0.53 mm		

CAS NO. COMPQUND

PQL	RESULT
(ug/L)	(ug/L)

75-71-8----Dichlo	0.5	1	0.5	1	U
74-87-3----Chloromethane	0.5	1	0.5	1	1
75-01-4---Vinyl Chloride	0.5	1	0.5	1	1
74-83-9----Bromomethane	0.5	1	0.5	1	U
75-00-3---Chloroethane	a. 5	1	0.5	1	U
75-69-4----Trichlorofluoromethane	0.5	1	0.5	1	U
75-35-4----1,1-Dichloroethene	0.5	1	0.5	1	1
75-09-2---Methylene Chloride	0.5	1	0.5	1	\cup
156-60-5---trans-1, 2-Dichloroethene	0.5	1	0.5	1	U
75-34-3----1, 1-Dichlaraethane	0. 5	1	0.5	1	$\underline{\square}$
590-20-7---2, 2-Dichloropropane	0. 5	1	0.5	1	4
156-59-4---cis-1, 2-Dichloroethene	0. 5	1	0.5	1	U
67-66-3----Chloraform	0.5	1	0.5	1	1
74-97-5--- Bromochlaromethane	0.5	1	0.5	1	U
71-55-6---1.1, 1-Trichloroethane	0.5	1	0.5	1	$\underline{\square}$
563-58-6--1, 1-Dichloropropene	0.5	1	0.5	1	U
56-23-5---Carbon Tetrachloride	0.5	1	0. 5	1	1
107-06-2---1.2-Dichloroethane	0.5	1	0.5	1	\pm
79-01-6---Trichloroethene	0. 5	1	0.5	1	U
78-87-5---1, 2-Dichloropropane	0. 5	1	0.5	1	U
75-27-4----Bromodichloromethane	0.5	1	0.5	1	U
74-95-3----Dibromomethane.	Q. 5	1	0. 5	1	$\underline{1}$
10061-01-5-cis-1, 3-Dichloropropene	Q. 5	1	0.5	1	U
10061-02-6-trans-1, 3-Dichloropropene	0.5	1	0. 5	1	U
79-00-5----1, 1, 2-Trichloraethane	0.5	1	0.5	1	U
142-28-9---1,3-Dichloropropane	0.5	1	0.5	1	U
127-18-4---Tetrachloroethene	0.5	1	0.5	1	$\underline{1}$
124-48-1--Dibrowochloromethane	0. 5	1	0.5	1	U
106-93-4--1, 2-Di hromoethane	0.5	1	0.5	1	$\underline{1}$
630-20-6---1, 1, 1, 2-Tetrachloroethane	0.5	1	0.5	1	U
75-25-2----Bromoform	0.5	1	0.5	1	U
79-34-5---1, 1, 2, 2-Tetrachloraethane___l	0.5	1	0.5	1	\cup

VOLATILE ORGANICS ANALYSIS DATA SHEET 8021A

Lab Name/Code : QC Inc. $/ 77166$
Lab Sample ID : Method Blank
CONTRACT : Clayton L238723-1

Sample No: Method Blank

Matrix
Sample wt/vol
Level (low/med)
Lab File (Primary-Hall)
Lab File (Primary-PID) = DG16002
: Water Date Received
Date Analyzed
Dilution Factor
Lab File (Confirm-Hall)
Lab File (Confirm-PID)

$=105 \mathrm{~F} \times 0.53 \mathrm{~mm}$ VOCOL

CAS NO. COMPOUND
PGL RESULT
(ug/L) (ug/L)

volatile organics analysis data sheet 602

GAS CHROMATOGRAPHY VOLATILE SURRGGATE RECOVERY DATA SHEET

Lab Name/Code: GC Inc./77166

Level: \qquad Low

Dates of Analysis: From 07/15/97
To $07 / 15 / 97$

Contract: Clayton L238723-1 Case Number:

VOCOL/
GC Column: $105 \mathrm{M} \times 0.53 \mathrm{~mm}$
Instrument ID: HP5890-3310A

\# Column to be used to flag recovery values * Values outside of Method DC Limits

List Surrogates Below:
S1: 1, 4-Dichlorobutane (Hal1)
52: Bromochlorobenzene (Hal1)
53:
Bromochlorobenzene (PID)

DC Limite
$\begin{array}{r}60-130 \\ \hline 60-130 \\ \hline 60-130 \\ \hline\end{array}$

GAS CHROMATOGRAPHY VOLATILE SURRGGATE RECOVERY DATA SHEET

Lab Name/Code: DC Inc. $/ 7716 G$

\# Column to be used to flag recovery values

* Values outside of Method ©C Limits

List Surrogates Below:

Si: 1,4-Dichlorobutane (Hall)
S2: Bromochlorobenzene (Hal1)
S3: Bromochlorobenzene (PID)

QC Limits
$\frac{60-130}{60-130}$

GAS CHROMATOGRAPHY VOLATILE SURROGATE RECOVERY DATA SHEET

* Column to be used to flag recovery values
* Values outside of Method QC Limits

List Surrogates Below:	OC Limits
$\quad \mathrm{S} 1:$ G2, a-Trifluorotoluene	
Other:	

000011

VOLATILE LABORATORY MATRIX SPIKE SUMMARY

VOLATILE LABORATORY' FORTIFIED BLANK SUMMARY'

RPD: 3 out of 60 outside limits
Spike Recovery: 5 out of 120 outside limits
Results normalized to a base factor of 1 from a $1: S$ dilution.

VOLATILE LABORATORY CHECK STANDARD

Recovery: 0 out of 11 outside limits.

Concentrations are ugh. $8=$ Result Incaleatable. $Z=$ Limits not yot astablished. \#=Column used to flag recoveries.

W'ATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY 602

RPD: 0 out of 1 outside limits
Spike Recovery: 0 out of 2 outside limits

Concentrations are ugf. \& Resesult incalculable. $z=$ Limits not yet established. \#=Column used to flag recovarias.
$!$

1205 INDUSTRIAL HIGHWAY • PO. BOX 514 • SOUTHAMPTON, PA 18966-0514 • (215) 355-3900
ANALYTICAL DATA REPORT PACKAGE
FOR
CLAYTON SERVICES CORPORATION

Field Sample ID	Laboratory Sample ID	Date of Collection
HERR FOODS INC SP-COMP-1 SOIL	\cdots	
SP-COMP-2 SOIL	L238722-1	$07 / 03 / 97$

PADEP No. 09-131
NJDEP NO. 77166

MICHAEL HILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Regarding:
MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Account No: BOO111, CLAYTON SERVICES CORPORATION	P.O. NO:
Project NO: BOO111, CLAYYON SERVICES CORPORATION	PWSID NO:

A result of "ND" indicates the concentration of the analyte tested was either not detected or betow the POL.
$O C$ Inc's laboratory certification numbers are: PADER 09-131; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
 TNTC=too numerous to count.

A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

Allen D. Srinnmaran, Domining.
QC INC. • 1205 INDUSTRIAL BLVD. • P.O. BOX $514 \cdot$ SOUTHAMPTON, PA 18966-0514 • (215) 355-3900

MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Regarding:
MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

A result of "ND" indicates the concentration of the analyte tested was either not detected or belon the PQL.
OC Inc's laboratory certification numbers are: PADER 09-131; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
 TNTC= 500 numerous to count.

A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

Alis:i D. Sahentorin, meruition:

MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Regarding:

CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

Parameter	Method	Result	PQL	Test Date		
SILVER-TCLP	SW846 Method 6010	ND mg/l	$0.500 \mathrm{mg} / \mathrm{l}$	07/19197		
ARSENIC-TCLP	SW846 Method 6010	ND mg/l	$0.500 \mathrm{mg} / \mathrm{l}$	07/11/97		*
BARIUM-TCLP	SW846 Method 6010	ND mg/l	10.0 ms/l	07/11/97		
CADMIUM-TCLP	SW846 Method 6010	ND mg/	$0.100 \mathrm{mg} / \mathrm{l}$	07/11/97		
CHROMIUM-TCLP	SW846 Method 6010	ND mg/l	$0.500 \mathrm{mg} / 1$	07/11/97		
LEAD-TCLP	SW846 Method 6010	ND mg/l	$0.100 \mathrm{mg} / \mathrm{l}$	07/11/97		
SELENIUM-TCLP	SW846 Method 6010	ND mg/l	$0.400 \mathrm{mg} / \mathrm{l}$	07/11/97		
MERCURY-TCLP	SW846 Method 7470	ND mg/l	$0.0200 \mathrm{mg} / \mathrm{l}$	07/14/97	.	
DIESEL RANGE ORGANICS	API Method Rev 2	$65.1 \mathrm{mg} / \mathrm{kg} \mathrm{DRY}$	$6.56 \mathrm{mg} / \mathrm{kg}$	07/11/97		
GASOLINE RANGE ORGANICS	API Method Rev 5	107. mg/kg DRY	$6.56 \mathrm{mg} / \mathrm{kg}$	07/10/97		
AROCLOR-1016	EPA Method 8080	ND mg/kg DRY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
AROCLOR-1221	EPA Method 8080	ND mg/kg DRY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
AROCLOR-1232	EPA Method 8080	ND mg/kg ORY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
AROCLOR-1242	EPA Method 8080	ND mg/kg DRY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
AROCLOR-1248	EPA Method 8080	ND mg/kg DRY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
AROCLOR-1254	EPA Method 8080	ND mg/kg DRY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
AROCLOR-1260	EPA Method 8080	ND mg/kg DRY	$0.0393 \mathrm{mg} / \mathrm{kg}$	07/14/97		
CHLOROMETHANE	EPA Method 8260	ND ug/kg DRY	$13.1 \mathrm{ug} / \mathrm{kg}$	07/09/97		
VINYL CHLORIDE	EPA Method 8260	ND ug/kg DRY	$6.56 \mathrm{ug} / \mathrm{kg}$	07/09/97		
BROMOMETHANE	EPA Method 8260	ND ug/kg DRY	13.1 ug/kg	07/09/97		
CHLOROETHANE	EPA Method 8260	ND ug/kg DRY	13.1 ug/kg	07/09/97		
1,1-Dichloroethene	EPA Method 8260	ND ug/kg DRY	2.62 ug/kg	07/09/97		
ACETONE	EPA Method 8260	ND ug/kg DRY	$6.56 \mathrm{ug} / \mathrm{kg}$	07/09/97		
CARBON DJSULFIDE	EPA Method 8260	ND ug/kg DRY	13.1 ug/kg	07/09/97		
METHYLENE CHLORIDE	EPA Method 8260	ND ug/kg DRY	$2.62 \mathrm{ug} / \mathrm{kg}$	07/09/97		
TRANS-1,2-DICHLOROETHENE	EPA Method 8260	ND ug/kg DRY	$2.62 \mathrm{ug} / \mathrm{kg}$	07/09/97		
ACROLEIN	EPA Method 8260	ND ug/kg DRY	$13.1 \mathrm{ug} / \mathrm{kg}$	07/09/97		
ACRYLONITRILE	EPA Method 8260	ND ug/kg DRY	$6.56 \mathrm{ug} / \mathrm{kg}$	07/09/97		
1,1-0ICHLOROETHANE	EPA Method 8260	ND ug/kg DRY	$6.56 \mathrm{ug} / \mathrm{kg}$	07/09/97		
VINYL ACETATE	EPA Method 8260	ND ug/kg DRY	$13.1 \mathrm{ug} / \mathrm{kg}$	07/09/97		
CIS-1,2-dichloroethene	EPA Method 8260	ND ug/kg DRY	$2.62 \mathrm{ug} / \mathrm{kg}$	07/09/97		
2-butanone	EPA Method 8260	ND $u g / \mathrm{kg}$ DRY	13.1 ug/kg	07/09/97		
CHLOROFORM	EPA Method 8260	ND ug/kg DRY	$1.31 \mathrm{ug} / \mathrm{kg}$	07/09/97		
1,1,1-TRICHLOROETHANE	EPA Method 8260	ND ug/kg DRY	$1.31 \mathrm{ug} / \mathrm{kg}$	07/09/97		
CARBON TETRACHLORIDE	EPA Method 8260	ND ug/kg DRY	$2.62 \mathrm{ug} / \mathrm{kg}$	07/09/97		
BENZENE	EPA Method 8260	ND ug/kg DRY	$1.31 \mathrm{ug} / \mathrm{kg}$	07/09/97		

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the Pal. OC Inc's laboratory certification numbers are: PADER 09-131; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; PQL=practical quanitation level; L/A=laboratory accident; TNTC $=$ too numerous to count.

A result marked with "DRY" indicates that the result was catculated and reported on a dry weight basis.

Analytical Results

Regarding:
MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

A result of " ND" indicates the concentration of the analyse tested was either not detected or below the POL.
QC Inc's laboratory certification numbers are: PADER 09-131; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
Definitions: $N=$ not detected; NEG=negative; POS=positive; COL=colonies; PQL=practical quantitation level; L/A=laboratory accident; INTC= too numerous to count.

A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

Allen D. Schaphen, monitions

MIChAEL WILLIAMS
CLAYTON SERVICES CORPORATION 3003 HARVARD DRIVE NORTH WALES, PA 19454

Regarding:
MICHAEL WILLIAMS
CLAYTON SERVICES CORPORATION
3003 HARVARD DRIVE
NORTH WALES, PA 19454

1

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the POL.
OC Inc's taboratory certification numbers are: PADER $09-131$; NJDEP 77166, NC 488, NY, CT, DE, and MD upon request.
 TNTC $=$ too numerous to count.

A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

Lab Name: QC INC.

Matrix: (soil/water)	SOIL	
Sample wt/vol:	5.00	ML
Level: (low/med)	LOW	
\% Moisture: not dec.	0	

Contract: \qquad Lab Sample ID: SOIL BLK 7/08

Lab File ID: L4581.DO0000G
Date Received: \qquad
Date Analyzed: \qquad
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)

Soil Extract Volume:
10: \qquad (mm)
— (uL)

Concentration Units:

CAS No.	Compound	PQL	(ug/L or ug/Kg) ug/Kg	-
74-87-3	Chloromethane	10.0		U
75-01-4	Vinyl Chloride	5.00		U
74-83-9	Bromomethane	10.0		U
75-00-3	Chloroethane	10.0		U
107-13-1	Acrylonitrile	5.00		U
107-02.8	Acrolein	10.0		U
75-15-0	Carbon Disulfide	10.0		U
75-35-4	1,1-Dichloroethene	2.00		U
67-64-1	Acetone	5.00		U
75-09-2	Methylene Chloride	2.00		U
156-60-5	trans-1,2-Dichloroethene	2.00		\cup
540-59-0	cis-1,2-Dichloroethene	2.00		U
75-34-4	1,1-Dichloroethane	5.00		U
108-05-4	Vinyl Acetate	10.0		\cup
78-93-3	2-Butanone	10.0		\cup
67-66-3	Chloroform	1.00		U
75-55-6	1,1,1-Trichloroethane	1.00		\cup
56-23-5	Carbon Tetrachloride	2.00		U
71-43-2	Benzene	1.00		U
107-06-2	1.2-Dichloroethane	2.00		U
79.01-6	Trichloroethene	1.00		U
78-87-5	1,2-Dichloropropane	1.00		U
75-27-4	Bromodichloromethane	1.00		U
110-75-8	2-Chloroethyl Vinyl Ether	10.0		U
10061-01-5	cis-1,3-Dichloropropene	5.00		\cup
108-88-3	Toluene	5.00		U
108-10-1	4-Methyl-2-Pentanone	10.0		U
10061-02-6	trans-1,3-Dichloropropene	5.00		U
79-00-5	1,1,2-Trichloroethane	2.00		\cup
127-18-4	Tetrachloroethene	1.00		U

Page 1 of 2

VBLK01 VBLK01
Lab Name: QC INC.

Matrix: (soil/water)	SOIL	(g / mL)	ML
Sample wt/vol:	5.00		
Level: (low/med)	LOW		
\% Moisture: not dec.	0		
GC Column: RTX-624			0.18

Soil Extract Volume: \qquad (uL)

CAS No.	Compound	PQL	Concentration Units: (ug/L or ug/Kg) ug/Kg	0
591-78-6	2-Hexanone	10.0		U
124-48-1	Dibromochloromethane	1.00		U
108-90-7	Chlorobenzene	2.00		U
100-41-4	Ethylbenzene	5.00		U
108-38-3	m\&p Xylenes	2.00		U
95-47-6	o-Xylene	1.00		U
100-42-5	Styrene	5.00		U
75-25-2	Bromoform	1.00		U
79-34-5	1,1,2,2-Tetrachloroethane	1.00		U
541-73-1	1,3-Dichlorobenzene	5.00		U
106-46-7	1,4-Dichlorobenzene	5.00		\cup
95-50-1	1,2-Dichlorobenzene	5.00		U
			.	
	.		.	

U - Indicates Compound is not Detected
B - Indicates Compound is Present in the Blank
J - Indicates Compound is Detected Below the PQL
E-Indicates that the Result is Estimated because it is Above Calibration Range
D- Indicates the Result is from Dilution

- Page 2 of 2

FORM I VOA

```
Data File : C:\HPCHEM\1\DATA\INSTL\I4581.D
Acq On : Data Taken: 7/08/97 @ 14:25
Sample : SOIL BLK 7/08
Misc : 5ML SOIL
Quant Time: Jul 8 15:03 1997
Method : C:\HPCHEM\I\METHODS\L8702P.M
Title : Method 8260 VOA Calibration
Last Update : Wed Jul 02 19:25:06 1997
Response via : Multiple Level Calibration
```

Internal Standards	R.T. QIon		Response	Conc Units Dev(Min)		
1) Pentafluorobenzene	9.30	168	168953	50.00	ug/L	0.00
35) 1,4-Difluorobenzene	10.44	114	285049	50.00	ug/L	0.00
53) Chlorobenzene-d5	15.12	82	145807	50.00	ug / L	-0.01
60) I,4-Dichlorobenzene-d4	19.31	152	64718	50.00	ug/L	0.00
System Monitoring Compounds				\%Recovery		
29) Dibromofluoromethane	9.21	111	90810	45.86	ug/L	91.72\%
43) Toluene-d8	12.74	98	257598	50.26	ug/L	100.51\%
61) Bromofluorobenzene	17.25	95	81814	46.43	ug / L	92.87\%
Target Compounds				Qvalue		

$!$

Data File : C:\HPCHEM\I\DATA\INSTL\L4581.D
Acq On : Data Taken: 7/08/97 @ 14:25
Sample : SOIL BLK 7/08
Misc : 5ML SOIL
Quant Time: Jul 8 15:03 1997
Method : C:\HPCHEM\I\METHODS $\backslash L 8702 P . M$
Title : Method 8260 VOA Calibration
Last Update : Wed Jul 02 19:25:06 1997
Response via : Multiple Level Calibration

Lab Name: QC INC.
Contract: \qquad $0000 \% 0$

Lab Sample ID: SOIL BLK 7/08
Lab File ID: L4581.D
Date Received: \qquad Date Analyzed: 7/8/97

Dilution Factor: \qquad
Soil Aliquot Volume: \qquad (uL)

Concentration Units:
Number TICs found: 0

0	(ug/L or ug/Kg)	ug/Kg		
CAS Number	Compound Name	RT	Conc.	0
1.	NONE FOUND			
2.				
3.				
4.				
5.				
6.	.			
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

FORM I VOA-TIC

Lab Name: QC INC.

Matrix: (soil/water)	SOIL	
Sample wt/vol:	5.00	ML
Level: (low/med)	LOW	
\% Moisture: not dec.	0	

GC Column: RTX-624
Soil Extract Volume: \qquad (uL)

Contract: \qquad
VBLK02

Lab Sample ID: SOIL BLK $7 / 09$
Lab File ID: L4603.D 006011
Date Received: \qquad
Date Analyzed: 7/9/97
Dilution Factor: 1.0
Soil Aliquot Volume: \qquad (uL)
Concentration Units:

Page 1 of 2

VOLATILE ORGANICS ANALYSIS DATA SHEET
VBLKO2
Lab Name: OC INC.

Matrix: (soil/water)		SOIL		Lab Sample ID:	OIL BLK 7109
Sample wt/vol:		$5.00 \quad(\mathrm{~g} / \mathrm{mL}) \xrightarrow{M L}$		Lab File ID	4603.D 0
Level:	(low/med)	LOW		Date Received:	
\% Mois	re: not dec.	0		Date Analyzed:	719/97
GC Col	mn: RTX-624	ID: $\quad 0.18$	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volume:		
		Compound	PQL	Concentration Units: (ug/L or ug/Kg) \qquad ug/Kg	0
	591.78-6	2-Hexanone	10.0		U
	124-48-1	Dibromochloromethane	1.00		U
	108-90-7	Chlorobenzene	2.00		U
	100-41-4	Ethylbenzene	5.00		U
	108-38-3	m\&p Xylenes	2.00		U
	95-47-6	o-Xylene	1.00		U
	100-42-5	Styrene	5.00		U
	75-25-2	.. Bromoform	1.00		U
	79-34-5	1,1,2,2-Tetrachloroethane	1.00		U
	541-73-1	1,3-Dichlorobenzene	5.00		\cup
	106-46-7	1,4-Dichlorobenzene	5.00		U
	95-50-1	1,2-Dichlorobenzene	5.00		U
1					

GC Column: RTX-624 ID: $\underbrace{0.18}_{(\mathrm{mm})}$
Soil Extract Volume:
(uL)
Contract: \qquad

[^11]Page 2 of 2

Data File : C:\HPCHEM\I\DATA\INSTL\L4603.D
Acq On : Data Taken: 7/09/97 @ 13:38
Sample : SOIL BLK 7/09
Misc : 5ML SOIL
Quant Time: Jul 9 15:14 1997
Method : C:\HPCHEM\I\METHODS\L8702P.M
Title : Method 8260 VOA Calibration
Last Update : Wed Jul 02 19:25:06 1997
Response via : Multiple Level Calibration

Internal Standards	R.T. QIon		Response	Conc Units Dev (Min)		
1) Pentafluorobenzene	9.32	168	154601	50.00	ug/L	0.01
35) 1,4-Difluorobenzene	10.45	114	266823	50.00	ug/L	0.00
53) Chlorobenzene-d5	15.19	82	134605	50.00	ug/L	0.00
60) 1,4-Dichlorobenzene-d4	19.31	152	59309	50.00	ug/L	-0.01
System Monitoring Compounds						covery
29) Dibromofluoromethane.	9.22	111	86508	47.75	ug / L	95.49\%
43) Toluene-d8	12.74	98	235964	49.18	ug/L	98.36\%
61) Bromofluorobenzene	17.26	95	73574	45.57 .	ug/L	91.13\%

Target Compounds

Data File : C:\HPCHEM\I\DATA\INSTL\L4603.D
Acq On : Data Taken: 7/09/97 @ 13:38
Sample : SOIL BLK 7/09
Misc : 5ML SOIL
Quant Time: Jul 9 15:14 1997
Method : C: \HPCHEM $\backslash 1 \backslash$ METHODS $\backslash L 8702$ P.M
Title : Method 8260 VOA Calibration
Last Update : Wed Jul 02 19:25:06 1997
Response via : Multiple Level Calibration
vial: 0000014
Operator: DATTU
Inst : Multiplr: 1.00

1E
VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Sample ID: SOIL BLK 7/09

Lab File ID: L4603.D
Date Received: \qquad
Date Analyzed: 7/9/97
Dilution Factor: \qquad
Soil Extract Volume: (uL)
Concentration Units:

Number TICs found:	0	(ug/L or ug/Kg)		g / Kg	
	CAS Number	Compound Name	RT	Conc.	Q
	1.	NONE FOUND			
. .	2.	-			
	3.				
	4.				
	5.				
	6.				
	7.				
	8.				
	9.				
	10.				
	11.				
	12.				
	13.				
	14.				
	15.				
	16.				
	17.				
	18.				
	19.				
	20.				
1	21.				
	22.				
	23.				
	24.				
	25.	.			
	26.				
	27.				
	28.				
	29.				
	30.				

FORM I VOA-TIC

Lab Name: QCINC.
Contract: \qquad
Level: (low/med) LOW

	SAMPLE NO.	LAB SAMPLE ID.	SMC1 DFM \#	SMC2 TOL \#	$\begin{array}{cc} \hline \text { SMC3 } \\ \text { BFB } \end{array}$	OTHER	TOT OUT
01	VBLK01	SOIL BLK 7/08	92	101	93		
02	S-2MS	L236625-2MS	91	99	91		
03	S-2MSD	L236625-2MSD	93	100	91		
04	VBLKO2	SOIL BLK 7/09	96	98	91		
05	SP-COMP-1 SOIL	L238722-1	94	99	93		.
06	SP-COMP-2 SOIL	L238722-2	108	92	102		
07							
08							
09							
10							
11							
12							
13							
14							
15							
16		,			,		
17					.		
18	-						
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							

SMC1 DFM = Dibromofluoromethane
SMC2 TOL $=$ Toluene-d8
SMC3 BFB = Bromofluorobenzene

QC LIMITS
(80-146)
(81-119)
(76-122)
\# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

Page 1 of 1
FORM II VOA-2

Lab Name: QCINC.
Matrix Spike - Sample No.:
S-2

Contract: \qquad
Level: (low/med) LOW

COMPOUND	$\begin{gathered} \text { SPIKE } \\ \text { ADDED } \\ \text { (ug/Kg) } \\ \hline \end{gathered}$	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	$\begin{array}{rr\|} \hline \text { MS } & \\ \% & \\ \text { REC } & \# \\ \hline \end{array}$	QC. LIMITS REC.
1,1-Dichloroethene	56	0	54	96	(59-172)
Benzene	56	0	50	89	(59-131)
Trichloroethene	56	0	61	-108	(65-131)
Toluene	56	0	59	105	(59-139)
Chlorobenzene	56	0	66	117	(60-133)

COMPOUND	$\begin{aligned} & \text { SPIKE } \\ & \text { ADDED } \\ & \text { (ug/Kg) } \end{aligned}$	MSD CONCENTRATION (ug/Kg)	$\begin{array}{r} \text { MSD } \\ \% \\ \text { REC } \end{array}$	$\begin{gathered} \% \\ \text { RPD } \end{gathered}$	\#	QC LIMITS	
1,1-Dichloroethene	56	54	96	1		22	(59-172)
Benzene	56	48	85	4		20	(59-131)
Trichloroethene	56	57	102	6		18	(65-131)
Toluene	56	55	98	7		21	(59-139)
Chlorobenzene	56	62	110	6		21	(60-133)

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 5 outside limits
Spike Recovery: 0 out of 10 outside limits

Comments: \qquad

FORM III VOA-2

1D

PCB ORGANICS ANALYSIS DATA SHEET SAMPLE NO.

1D
PCB ORGANICS ANALYSIS DATA SHEET SAMPLE NO.

Contract | CLAYTON |
| :--- |
| SERVICES | METHOD BLANK

Lab Name: _OC Inc.
Contract: \qquad
EIHOD BLANK

Lab Code: 77166 Case No.: \qquad SAS NO.: \qquad SDG NO.: \qquad Matrix: (soil/water) SOIL Sample wt/vol: $30.00 \mathrm{~g}(\mathrm{~g} / \mathrm{ml}) 10 \mathrm{ml}$

Lab Sample ID: METHOD BLANK Level: (low/med) LOW Lab File ID : \qquad
Date Received: \qquad \% Moisture: not dec.___ dec. \qquad Date Extracted: 07/11/97
SONC Date Analyzed: \qquad
Extraction: (SepF/Cont/Sonc)
Date Analyzed:_ 07/16/97
GC Column ID: \qquad Dilution Factor: \qquad GC Column ID (2): \qquad Lab file ID (2): \qquad
CONCENTRATION UNITS: (ug/L or $\mathrm{mg} / \mathrm{kg}$) $\mathrm{mg} / \mathrm{kg}$

```
CAS NO. COMPOUND PQL RESULTS Q
```

12674-11-2---Aroclor-1016
$11104-28-2--$ Aroclor-1221
$11141-16-5--$ Aroclor- 1232
$53469-22-9--$ Aroclor 1242
$12672-29-6--$ Aroclor -1248
$11097-69-1--$ Aroclor -1254

$11096-82-5--$ Aroclor -1260 \quad| 0.030 | 0.030 | U |
| :---: | :---: | :---: |
| 0.030 | 0.030 | U |

2 E
 SOIL SURROGATE RECOVERY Primary

FORM II PEST-2
$1 / 87$

COMPOUND	MSD CONC. IN EXRACT ($\mathrm{mg} / \mathrm{kg}$)	$\begin{gathered} \text { MSD \% } \\ \text { REC \# } \end{gathered}$	$\begin{aligned} & \text { MS \% } \\ & \text { REC \# } \end{aligned}$	RPD\%	RPD	$\begin{gathered} \text { OC LIMITS } \\ \% \\ \perp \quad \text { REC. } \\ \hline \end{gathered}$
Arochlor 1260	1.54	92.	85.	8.	50	57-168

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside OC limits

RPD :	0	out of	1	outside limits
1	Spike Recovery :	0	out of	2

Comments: \qquad

FORM III PEST-2

Lab Name: \qquad Contract: \quad CLAYTON METHOD BLANK

Lab Code: $\quad 77166$ Case No.: \qquad SAS NO. : \qquad SDG NO. : \qquad Matrix: (soil/water) SOIL

Lab Sample ID: METHOD BLANK

Sample wt/vol: $30.00 \mathrm{~g}(\mathrm{~g} / \mathrm{ml}) \quad 4 \mathrm{ml}$
Lab File ID : \qquad
Level: (low/med) Low
Date Received: \qquad
\% Moisture: not dec. \qquad dec. \qquad Date Extracted: 07/10/97
Date Analyzed: \qquad
Dilution Factor: \qquad

CONCENTRATION UNITS: (ug/L or $\mathrm{mg} / \mathrm{kg}) \ldots \mathrm{mg} / \mathrm{kg}$

| CAS NO. COMPOUND | PQL | RESULTS | Q |
| :---: | :---: | :---: | :---: | :---: |
| Diesel Range Organics_ | 5.00 | 5.00 | U |

2 E
 SOIL SURROGATE RECOVERY Primary

Lab Name: \qquad Contract: \qquad CLAYTON SERVICES

Lab Code: 77166 Case No: \qquad SAS NO: \qquad SDG NO: \qquad

ADVISORY
QC LIMITS
S1 (OTP) $=0$-Terphenyl (1ml/20ppm)
(50-150)
S2 (DBC) = Dibutylchlorendate (1ml/40ppm)
(50-150)
\# Column used to flag recovery values with an asterisk

* Values outside of QC limits

D Cannot calculate due to dilution
M Matrix interference

\section*{1D
 DIESEL RANGE ORGANICS ANALYSIS DATA SHEET
 SAMPLE NO.
 Contract: | CLAYTON |
| :--- |
| SERVICES |\quad METHOD BLANK
 \qquad
 Contract:
 \qquad
 \qquad}

Lab Name:
Lab Code: 77166 Case No.: \qquad SAS No.: \qquad SDG No.: \qquad Matrix: (soil/water) SOIL Lab Sample ID: METHOD BLANK
\qquad Sample wt/vol: $30.00 \mathrm{~g}(\mathrm{~g} / \mathrm{ml}) 4 \mathrm{ml}$ Lab File ID : G10H012

Level: (low/med) Low \% Moisture: not dec.__ dec.___

GC Column ID: \qquad RTX-5
\qquad
Date Received: \qquad Date Extracted: 07/10/97 Date Analyzed: 07/11/97 Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or $\mathrm{mg} / \mathrm{kg}$) $\mathrm{mg} / \mathrm{kg}$

CAS NO.
 COMPOUND
 PQL RESULTS Q

5.00 5.00 U

SOIL SURROGATE RECOVERY Primary

Lab Name: \qquad Contract: CLAYTON SERVICES

Lab Code: \qquad 77166

Case No: \qquad SAS NO: \qquad SDG No: \qquad

ADVISORY
QC LIMITS
S1 (OTP) = o-Terphenyl (1ml/20ppm)
(50-150)
$S 2(\mathrm{DBC})=$ Dibutylchlorendate ($1 \mathrm{ml} / 40 \mathrm{ppm}$)
(50-150)
\# Column used to flag recovery values with an asterisk

* Values outside of QC limits

D Cannot calculate due to dilution
M Matrix interference

3E
SOIL DRO MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: \qquad Contract: \qquad CLAYTON SERVICES

Lab Code: 77166 Case No.: SAS NO.: \qquad SDG No.: \qquad
Matrix Spike-Sample No.: LAB SAND Level:(low/med)

COMPOUND	$\begin{aligned} & \text { AMOUNT } \\ & \text { ADDED } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	SAMPLE CONC. IN EXTRACT ($\mathrm{mg} / \mathrm{kg}$)	$\begin{aligned} & \text { MS CONC } \\ & \text { IN EXTRACT } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	MS\% REC \#	$\frac{\mathrm{QC}}{\mathrm{LIMITS}}$
Diesel Range	98	00.0	127	130	50-150

\# Column to be use to flag recovery and RPD values with an asterisk

* Values outside QC limits

RPD: $\quad 00$ out of 01 outside limits Spike Recovery: 00 out of $\quad 02$ outside limits COMMENTS: \qquad
1

1D
 GASOLINE RANGE ORGANICS ANALYSIS DATA SHEET SAMPLE NO.
 Lab Name: OC Inc.
 Contract:
 \qquad
 METHOD BLANK

Lab Code: 77166 Case No.: \qquad SAS NO.: \qquad SDG No.: \qquad
Matrix: (soil/water) SOIL_ Lab Sample ID: \qquad Sample wt/vol: $10.00 \mathrm{~g}(\mathrm{~g} / \mathrm{ml}) 10 \mathrm{ml}$ Lab File ID : \qquad (100ul/5ml) Level: (low/med) Low GC Column ID: Rtx-502.2 \qquad
Date Received: \qquad

Dilution Factor: \qquad 1.0 \qquad
\%Moisture: not dec. \qquad dec. \qquad Date Analyzed: $07 / 11 / 97$ CONCENTRATION UNITS: (ug/L or $\mathrm{mg} / \mathrm{kg}$) $\mathrm{mg} / \mathrm{kg}$

CAS NO. COMPOUND	PQI,			RESULTS
Gasoline Range Organics	5.00	5.00	U	

SOIL SURROGATE RECOVERY Primary

Lab Name: \qquad Contract: \qquad
Lab Code: \qquad Case No: \qquad SAS NO: \qquad SDG NO: \qquad

ADVISORY
QC LIMITS
Si (BFB) = Bromofluorobenzene (50UL/500PPM)
(50-150)
\# Column used to flag recovery values with an asterisk

* Values outside of QC limits

M Matrix Interference

3E
 SOIL GRO MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: \qquad Contract: \qquad
Lab Code: \qquad 77166 Case No.: \qquad SAS No.: \qquad SDG No.: \qquad Matrix Spike-Sample No.: _ LAB SAND__ Level:(low/med) \qquad

COMPOUND	AMOUNT ADDED (mg/kg)	SAMPLE CONC. IN EXTRACT (mg/kg)	$\begin{aligned} & \text { MS CONC } \\ & \text { IN EXTRACT } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	MS REC \#	$\begin{array}{c\|} Q C \\ \text { LIMITS } \end{array}$
Gasoline Range	25.00	0.000	31.9	128	50-150

	MSD CONC.					
COMPOUND	IN EXTRACT	MSD\%	MS\%	$\%$	QC LIMITS	
(mg/kg) Gasoline Range Organics	REC \#	REC \#	RPD \#	RPD	REC.	
32.8	131	128	2.3	20	$50-150$	

\# Column to be use to flag recovery and RPD values with an asterisk

* Values outside QC limits

RPD: $\quad 00$ out of 01 outside limits
Spike Recovery:_00 out of 02_ outside limits COMMENTS: \qquad
1

METALS
ANALYTICAL RESULTS AND QUALITY ASSURANCE DATA

CLIENT: Clayton Services Corporation
SAMPLEI L238722-1,2

[^12]oc laboratories
general chemistry sample and spike duplicate results
Test Report No.: 1238722
client Name : CLAYTON SERVICES CORPORATION

Parameter	Sample Number	Sample Matrix	Units	Sample Result	Dup Result	RPD $\%$	RPD Limit
CYANIDE REACTIVE	L236792-8	Solid	mg/kg	<5	<5	0.0	20
FLASH POINT/IGNITABILITY	L238722-1	Solid	Deg. F	>141	>141	0.0	20
MOISTURE PERCENT	L230745-1	Solid	$\%$	98.27	98.26	0.01	20
PAINT FILTER TEST	L238722-				Neg.	Neg.	0.0
REACTIVE HYDROGEN SULFIDE	L236792-8	Solid	mg/kg	<5	<5	20	
TOTAL SOLIDS PERCENT	$L 230745-1$	Solid	$\%$	1.73	1.74	0.0	20

Duplicate RPD: 0 out of 6 outside limits

Form No. HC2

QC Laboratories
general chemistry blank results

Test Report No.: 1238722
client Name : CLAYTON SERVICES CORPORATION

Parameter	Sample Matrix	Units	Concentration Found	Practical Quantitation Limit
CYANIDE REACTIVE	Liquid	mg / l	ND	5
REACTIVE HYDROGEN SULFIDE	Liquid	mg / l	ND	5

Form No. WC3

ec laboratories

general chemistry spike sample results

Test Report No.: L238722
Client Name : CLAYTON SERVICES CORPORATION

Parameter	Sample Number	Sample Matrix	Units	Sample Result	Spike Conc.	Spiked Result	Spike Rec. $\%$	ac Limits
CYANIDE REACTIVE	L236792-8	Solid	$\mathrm{mg} / \mathrm{kg}$	<5	12.5	12.5	100	$41-112$
REACTIVE HYDROGEN SULFIDE	L236792-8	Solid	$\mathrm{mg} / \mathrm{kg}$	<5	86.4	72	83	$45-110$

Spike Recovery: 0 out of 2 outside limits
The appearance of an LFB denotes that the MS was outside oC Limits

Form No. WC4

APPENDIX B

UST System Inspection and Testing Documentation

FOR DEP USE ONLY

Reviewer

\qquad
Date
Entered by \qquad

FACILITY INFORMATION

ID Number $15-24418$
Name HERR FOODS FNC. Location 20 HERR PRUNE Address NOTIN6HAM, PA 19362 Municipality NOTING HAM Twi
Representative Present During Inspection Name \qquad PAVE During Inspection
MORAN Phone $\frac{610-932-9330}{\square}$
\square Owner \square Operator \backslash Employee \square None

CERTIFIED INSPECTOR

Name Tim EIDRETH
ID No. 548
Phone 6108422418
E-mail TEIORETHGYZOOM INTERNET, NET
Date of First Site Visit (month/day/year)
OWNER (must be a person)
Name ER HERR
OPERATOR (if different than owner)
Name SAME

Financial Responsibility discussed with owner

No \square

- Provided by USTIF. Owner must have deductibles available as provided in Subchapter H of the regulations.
- Required of all UST owners except state agencies.

Amended registration form required for (check all that apply):
Added tanks
\square Closed tanks
\square Change in tank size
Change in substance stored
\square Change of operational status (in or out of service)

Inspection summary.
Indicate the compliance status of each item below using the following codes: $\mathrm{N}=$ Noncompliant
$\mathrm{C}=$ Compliant

	Tank No. 008	Tank No. 009	Tank No.	Tank No.	Tank No.
Tank Construction and Corrosion Protection	C	C			
Piping Construction and Corrosion Protection	C	C			
Spill Prevention	C	C			
Overfill Prevention	C	C			
Registration Certificate Display	C	C			
Tank Release Detection	C	C			
Piping Release Detection	C	C			
Monthly sump checks	N	N			

1, the DEP Certified Inspector (IUM), have inspected the entire above referenced facility including examining manways, sumps, monitoring wells and dispensers. Based on my personal observation of the facility and documentation provided by the owner, I certify under penalty of law as provided in 18 PA C.S.A. Section 4904 (relating to unsworn falsification to authorities thar the information provided by me is true, accurate and complete to the best of my knowledge and belief.

Certified Inspector's Signature

Date

As the representative of the owner or operator, I have reviewed the completed inspection report. I certify under penalty of law as provided in 18 PA C.S.A. Section 4904 (relating to unsworn falsification to authorities), that the information provided by me is true, accurate and complete to the best of my knowledge and belief:

[^13]
UNDERGROUND STORAGE TANK FACILITY
 OPERATIONS INSPECTION

Facility Name HERR FOOOS

Date
$6 / 6 / 14$
Facility ID 15 -24418
I. TANK SYSTEM INFORMATION. For each tank, fill in the required information and codes from the following list. Where multiple codes are allowed and used for a specific tank component, describe the arrangement in the COMMENTS section. (See FOI form instructions
for details.)

	$\begin{gathered} \text { Tank No. } \\ \mathbf{O} 8 \end{gathered}$	Tank No. 004	Tank No.	Tank No.	Tank No.	DEP
1. Tank capacity (name plate gallons)	10000	10,000				
2. Substance currently stored	GAS	Presel				
3. Installation date (mm/yyyy)	6/19/97	$6 / 1979$				
4. This drone tank is manifolded to tank number	¢19	-				
5. Product level, in inches, at time of inspection	45	60				
6. Total secondary containment on this tank system	y	y				(18)
7. Tank construction and corrosion protection	G	G				(1)
8. Main piping construction and corrosion protection	K	K				(2)
9a. Number of tank top sumps \ddagger		1				
9b. Number of tank top sumps tested tight \ddagger	0	O				(21)
9c. Spill containment tested tight	N	\sim				(21)
10a. Number of transition sumps	\bigcirc	8				
10b. Number of transition sumps tested tight	0	0				(21)
11a. Number of connected dispensers	2	2				
11c. Number of dispenser pans tested tight pans	2	2				
12a. Piping flexible joints/connectors construction at	O	0				(22)
12b. Piping flexible joints/connectors construction at dis	x	Y				(PFLX)
13. Pump (product dispensing) system	c	I				(PFLX)
14. Spill protection	¢	Y				(4)
15. Overfill type	5	Y				${ }^{(6)}$
16. Current registration certificate display	Y	4				(7)
17. Stage I vapor recovery	B	${ }^{+}$				(8)
18. Stage Il vapor recovery	A	N				(19)
19. Tank release detection the tank system release detection met	carefully b	, filling	in the follow	ing rows.		
	H	H				(12)
20. Piping small release detection (0.2 gph monthly or 0.1 gph annually)	0	D				(5)
21. Pressure (line 13 is C or D) piping line leak detector (LLD function)	A	A				(5)
22. LLD function includes a positive turbine pump shutoff	N	N				23)

\ddagger at tank penetrations that have pipe that routinely contains or conveys product.
Site drawing / manifold schematic (not master-drone system):

[^14]
UNDERGROUND STORAGE TANK FACILITY OPERATIONS INSPECTION

Facility Name HERR FOODS

Facility ID $15-24418$
II. Release Detection Reference

- Records may be located at the facility or a readily available alternate site.
- The records include all of the information listed below for chosen release detection methods.
- The inspector has actually seen the records.
- A test with an inconclusive result or failure is an indication of a (suspected) product release.

Automatic Tank Gauging: (Tank only - code E)

Instructions:

Check the box to indicate that a criterion has been met. Circle the box to indicate that a criterion has not been met. Circle with "N/A" when a criterion is not applicable (provide comment).

ATG model:
 valid monthly leak test conducted and documented manufacturer's certification of ability to detect 0.2 gph release is available probes and gauge software certified for manifolded tank systems - When not specifically certified, the siphon must be broken to properly test maintenance records, for the last year, including calibration, preventative and repair equipment is operational
Manual Tank Gauging: (Tank only - code C, F, G44 or G58)

tank capacity is 2,000 gallons or less
tank installed before 11/10/2007 performed weekly 1/8th inch accuracy stick readings average 2 stick readings before and after test test length appropriate for each tank

- 36 hours minimum
- 44 hours, 551-1000 gallons, $64{ }^{\prime \prime}$ diameter
- 58 hours, 551-1000 gallons, 48 " diameter variation is within standard (both weekly and monthly)

Precision Tightness Test (TTT): (Tank only - code C)

method used (after 10/11/1994):
date of last test:

result: \qquad complete documentation of tightness test available performed by UTT certified installer (after 9/28/1996) manufacturer's certification of ability to detect 0.1 gph release is available
Interstitial Monitoring: (Tank code \mathbf{H}; describe monitoring equipment in comments)
/ital Monitoring: (Tank code H; describe monitoring equipment in comments)
interstitial area monitored monthly (required for tanks installed after 11/20/2007)
interstitial sensors properly placed (per manufacturer's instructions)
monitoring wells (secondary barrier) or ports are clearly marked and secured

Statistical Inventory Reconciliation: (Tank code \mathbf{D} and/or Piping code J) test vendor:

version: \qquad
manufacturer's certification of ability to detect 0.2 gph release is available data is collected according to the test vendor's instructions analysis completed monthly and valid results supplied to owner/operator within 20 days - valid reports include calculated leak rate, minimum detectible leak rate, leak threshold, probability of detection and probability of false alarm suspected releases properly investigated within 7 days of inconclusive or failed report to confirm or deny the occurrence of a release

[^15]
UNDERGROUND STORAGE TANK FACILITY OPERATIONS INSPECTION

Facility Name HERR FOOOS

Date \qquad
Facility ID \qquad -24418

II. RELEASE DETECTION REFERENCE (continued)

Tank Tank Tank Tank Tank System Systole System System System 008007
\qquad

Instructions:

Abstract

Check the box to indicate that a criterion has been met Circle the box to indicate that a criterion has not been met Circle with "N/A" when a criterion is not applicable (provide comment).

Groundwater or Vapor Monitoring: (Tank code J or K and/or Piping code E or F; describe well locations and monitoring equipment in comments)
wells are located according to site evaluation; attach page with evaluator authentication to the inspection report
wells are properly installed in accordance with site evaluation and regulations
wells are monitored and results recorded monthly in accordance with site evaluation monitoring wells are marked and secured
fill material is sufficiently porous to allow expeditious detection at the monitoring wells substance stored meets regulatory requirements for type of monitoring equipment manufacturer's performance claims are available equipment maintenance records, for the last year, including calibration, preventative and repair
Groundwater monitoring:

monitoring devices can detect $1 / 8$ inch of product or less on water groundwater is within 20 feet of surface grade
wells are sealed from ground surface to the top of the filter pack casing is properly slotted: allows entry of product during all groundwater conditions
the monitoring device is not rendered inoperative by moisture background contamination will not interfere with vapor monitoring vapor monitors will detect increases in concentrations of stored substance
Interstitial Monitoring: (Piping code D and/or L; describe monitoring equipment in comments)

interstitial area monitored monthly (required for all totally-contained pressurized piping systems)
secondary enters sump and allows a release to be detected interstitial sensors properly placed (per manufacturer's instructions) monitoring wells or ports (when used) are clearly marked and secured maintenance records, for the last year, including preventative and repair equipment manufacturer's performance claims are available secondary barrier (pipe) is compatible with and impermeable to the stored substance
(Code L only) continuous monitoring used as line leak detector (gravity or pressurized piping) - capable of detecting 3.0 gph release within 1 hour
(Code L only) system tested for operability within the last year
(Code L only) monthly "sensor status" (or equivalent) records available
Sumps Checked Monthly

monthly sump checks for the last 12 months documented
tank top sumps dry and clean
transition sumps dry and clean
dispenser pans/sumps dry and clean

Exempt Suction System: (SUCTION piping only - code I)

NOTE: No further release detection required on piping meeting all these criteria.

the tank top is lower than the suction pump inlet the below grade piping slopes uniformly back to the tank there is no more than one check valve in the piping the check valve is located close to or inside the suction pump compliance with above specifications can be readily determined; describe in comments

[^16]
UNDERGROUND STORAGE TANK FACILITY

 OPERATIONS,INSPECTION\qquad Date \qquad Facility ID \qquad -244 18

II. RELEASE DETECTION REFERENCE (continued)

instructions: Check the box to indicate that a criterion has been met. Circle the box to indicate that a criterion has not been met.

 Circle with "N/A" when a criterion is not applicable (provide comment).Piping Tightness (Line) Testing: (Piping only-code B or C)

version: EZY CHEK
result: PASS
test certification of ability to detect 0.1 gph release at 1.5 times operating pressure is available
performed by UTT certified installer (after 11/10/2008)
test conducted at proper frequency

- conducted annually for pressurized piping without monthly monitoring
- conducted every 3 years for suction piping not meeting code I requirements
if test device permanently installed, maintenance records, for the last year, including calibration, preventative and repair

Mechanical Line Leak Detector: (PRESSURIZED Piping only - code A)

Electronic Line Leak Detector: (PRESSURIZED Piping only - code K) manufacturer: \qquad model: date of last 3gph test:
result: \qquad
self checking or system tested for operability within the last year certification of ability to detect a release of 3 gph at 10 psig within 1 hour is available maintenance records, in addition to annual test, for last year, including calibration, preventative and repair continuously monitors piping
Is the electronic leak detector performing the "monthly" monitoring function? \square Yes, \square No If yes: date of last 0.2 gph test: \qquad result:

third-party certification of ability to detect 0.2 gph release is available documentation of monthly test available for last year Is the electronic leak detector performing the "annual" monitoring function? \square Yes, \square No If yes: date of last 0.1 gph test: \qquad - result:
third-party certification of ability to detect 0.1 gph release is available

IUM Release Detection Record Review: (All release detection codes)

- An empty tank (less than $1^{\prime \prime}$ of product/sludge) or a tank supplying an emergency generator only is not required to perform release detection. Indicate date emptied or that it is an emergency generator tank in comments.
- Recently installed tank systems must begin performing release detection immediately after receiving product. Indicate date of first product receipt in comments.

$\square$$\square \quad$| tank release detection records for the last 12 months the system contained product are |
| :--- |
| available |

[^17]
UNDERGROUND STORAGE TANK FACILITY OPERATIONS INSPECTION

Facility Name HERR FONOS
Date $6 / 6 / 14$

Facility ID \qquad -24418

III. CORROSION PROTECTION COMPLIANCE CRITERIA

Instructions: Check the box to indicate that a criterion has been met. Circle the box to indicate that a criterion has not been met. Circle with "N/A" when a criterion is not applicable (provide comment).
Lined Tanks: (Tank only - code I)
tank inspected and lined according to national standard date lined:
tank initially inspected 10 years after lining and every 5 years thereafter dates) inspected: \qquad
Galvanic and Impressed Cathodic Protection: (Tank code B, C, O or P and/or Piping)

tank structure to soil potential greater than 0.85 volts, or meets other nationally recognized protection standard; specify: potential on tank current monitoring
(date)
(date) \qquad
pipe/fiex structure to soil potential greater than 0.85 volts, or meets other nationally recognized protection standard: specify: \qquad potential on pipefflex current monitoring (date) \qquad potential on pipe/flex previously monitored (date)
Impressed Current Design and Rectifier Output: (Tank code C or P and/or Piping)
 system designed by a corrosion expert system is turned on and functioning within design limits documentation of last three amp (plus volt and runtime when meters available)
readings; recorded at least once every 60 days:

If Cathodic Protection or supplemental anodes were added to an existing tank system, fill in the following (Information is Required for Compliance):
\qquad Date installed: \qquad
Tank Shell Assessment Method: \qquad

IV. Operator Training

list of trained operators designates a class A operator; includes their training certification list of trained operators designates a class B operator; includes their training certification list of trained operators designates class C operators); date of initial training or last refresher is within the previous 12 months
written instructions and notification procedures are readily available for class C operators at retail facilities; are posted in a location visible to dispenser operators at other facilities

DESCRIBE INFORMAL TRAINING PROVIDED FOR OWNER, CLASS A ANDIOR CLASS B OPERATORS - see instructions.
pave moran - Training by pass testing, com

[^18]UNDERGROUND STORAGE TANK FACILITY
OPERATIONS INSPECTION
Facility Name \qquad HERR Foods

Date \qquad 14

Facility ID \qquad 15 24418
IUM checked for water in tanks) and sump (s) - results below
V. COMMENTS INCLUDING ACTIONS TO BRING INTO COMPLIANCE (Attach additional sheets where necessary)

See instructions

NO wATER in TANKs AT Time of inspection.
WATER IN STE SUMPS AT TIME OF INSPECTION CIEANEO SUMPS PAY of INSPECTION.
\qquad

EZY CHEK SVSTEMS

Systems $\hat{8}$ Training
or the
Petroleum Indusiry
DATA SHEET

Prolnar

Test Location Information

Name	Herr Foods Inc
Address	20 Herr Drive
City	Nottingham PA 19362
Phone	$610-932-9330$
Contact	Dave Moran

菖 \＃1 FTME	DATA	－／＋	GPL	Gasoline RES	娄
9：30	65	0	0.0037	0.0000	0.0000
9：45	65	0	0.0037	0.0000	0.0000
10：00	65	0	0.0037	0.0000	0.0000 崖
10：15	65	0	0.0037	0.0000	$0.0000{ }^{\text {¢ }}$
10：30	65	0	0.0037	0.0000	$0.0000{ }^{\text {d }}$
10：45	65	0	0.0037	0.0000	0.0000
$\stackrel{ }{ }$			PASS		\％

$03 / 30 / 16$

Testing Company Intormation

Name
Address \mid
Citv
Phone

Technican Information

Name	Tim Eldreth
Cert \＃	6523

Applied Pressure ： 500 s

PASS

ETY CHEK SYSTEMS	
Systems \& Training for the Petroleum industry	FINAL REPORT
Test Location Information	
Name	Herr Foods Inc.
Address:	20 Herr Drive
City	Nottingham, PA 19362
Phone	610-932-9330
Contact	Dave Moran

03/30/15
Testing Company Information

Name	Eldreth Environmental Services
Address	654 Colora Road
Citv	Colora, MD 21917
Phone	$610-842-2418$

Technican Information

PRODUCT LINE TEST

	Product Type	Result
$\# 1$	Gasoline	PASS
$\# 2$	Diesel	PASS
$\# 3$	0	0
$\# 4$	0	0
$\# 5$	0	0
$\# \# 6$	0	0

Comments/Recommendations:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EZY CHEK SYSTEMS/Eldreth Env. Services

Svstems \& Training | tor the |
| :--- |
| Detroleum Industry |\quad DATA SHEET

Test Location Information	
Name	Herr Foods Inc.
Address	20 Herr Drive
City	Nottingham, PA 19362
Phone	610-932-9330
Contact	Dave Moran

Testing Company Information

Name	Eldreth Environmental Services
Address	654 Colora Road
City	Colora, MD 21917
Phone	$610-842-2418$

Technican Information

PUMP \#
MAKE
MODEL
SERIAL

Red Jacket	FxIv	311149937
Red Jacket	Fx1dv	307070177

PumP\#	Product Type	Metering Pressure	Functional Element Holding PSI	Resiliency	Rate ML/MIN	Opening Time	Pass/Fail
1	Regular	26 psi	17 psi	80 mil	189 ml	2sec	PASS
2	Diesel	28 psi	16 psi	75 mil	189 ml	3 sec	PASS
3					189 ml		
4					189 ml		
5					189 ml		
7					189 ml		
8					189 ml		

EZY CHEK SYSTEMS

Testing Company Information

Systems \& Training
for the
Petroleum Industry

DATA SHEET

Name	Eldreth Environmental Services
Address	654 Colora Road
Citv	Colora. MD 21917
Phone	$610-842-2418$

Technican Information

Name	Tim Eldreth
Cert \#	6523

Applied Pressure 50 psi

$\begin{aligned} & \text { \#2 } \\ & \text { TIME } \end{aligned}$	DATA	-/+	GPL	Diesel RES	GPH
- 12:30	84	0	0.0037	0.0000	$0.0000{ }^{\text {a }}$
-12:45	84	0	0.0037	0.0000	0.0000
13:00	83	-1	0.0037	-0.0037	-0.0148
1 13:15	83	0	0.0037	0.0000	0.00008
+13:30	83	0	0.0037	0.0000	0.0000
13:45	83	0	0.0037	0.0000	0.0000

\#3					
TIME	DATA	-1+	GPL	RES	GPH
1		0	0.0037	0.0000	0.0000
		0	0.0037	0.0000	0.0000
		0	0.0037	0.0000	0.00001
,		0	0.0037	0.0000	0.0000
,		0	0.0037	0.0000	0.0000
t		0	0.0037	0.0000	0.0000

Test Location Information	
Name	Herr Foods Inc
Address	20 Herr Drive
Citv	Nottingham, PA 19362
Phone	610-932-9330
Contact	Dave Moran

$\begin{gathered} \# 1 \\ \text { TIME } \end{gathered}$	DATA	-1+	GPL	Gasoline RES	GPH
12:30	45	0	0.0037	0.0000	0.00008
12:45	44	-1	0.0037	-0.0037	-0.0148
13:00	44	0	0.0037	0.0000	0.00001
13:15	44	0	0.0037	0.0000	0.0000
13:30	44	0	0.0037	0.0000	0.0000
13:45	44	0	0.0037	0.0000	0.0000

PASS

	ETY CHEK SVSTEMS
Systems \& Training tor the Petroleum industry	FINAL REPORT
Test Location Information	
Name	Herr Foods inc.
Address	20 Herr Drive
City	Nottingham, PA 19362
Phone	610-932-9330
Contact	Dave Moran

Testing Company Information

Name	Eldreth Environmental Services
Address	654 Colora Road
Citv	Colora. MD 21917
Phone	$610-842-2418$

Technican Information

| Name | Tim Eldreth |
| :---: | :---: | :---: |
| Cert\# | 6523 |
| Applied Pressure | 50 psi |

PRODUCT LINE TEST

	Product Type	Result
$\# 1$	Gasoline	PASS
$\# 2$	Diesel	PASS
$\# 3$	0	0
\#4	0	0
$\# 5$	0	0
$\# 6$	0	0

Comments/Recommendations:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EZY CHEK SYSTEMS/Eldreth Env. Services

Svstems \& Training
DATA SHEET for the Petroleum Industry

3/3/2014

Testing Company Information

Name	Eldreth Environmental Services
Address	654 Colora Road
City	Colora, MD 21917
Phone	$610-842-2418$

Technican Information

Test Location Information

Name	Herr Foods Inc.
Address	20 Herr Drive
City	Nottingham, PA 19362
Phone	610-932-9330
Contact	Dave Moran

PUMP\#
MAKE
MODEL
$+$
SERIAL

Fx1v	101116612
Fx1dv	307070177

\bar{z}

2
3

8

PUMP \#	Product Type	Metering Pressure	Functional Element Holding PSI	Resiliency	Test Leak Rate ML/MIN	Opening Time	Pass/Fail
1	Regular	26psi	17psi	75 mil	189ml	2sec	PASS
2	Diesel	30 psi	16psi	75 mil	189ml	2sec	PASS
3					189ml		
4					189ml		
5					189 ml		
6					189 ml		
7					189ml		
8					189ml		

APPENDIX C

Soil Boring and Monitoring Well Logs

MONITORING WELL LOG: SG-1

APPENDIX D

Soil Sample Laboratory Analytical Reports

ANALYTICAL RESULTS
Prepared by:
Prepared for:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Rettew Associates

3020 Columbia Avenue
Lancaster PA 17603-4011
October 27, 2014
Project: Project 101722001
Submittal Date: 10/16/2014
Group Number: 1511613
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	Lancaster Labs (LL) \#
SB-5@18 Ft Soil	7640183
SB-6@ 10 Ft Soil	7640184
SB-7@ 8 Ft Soil	7640185
SB-8@ 7 Ft Soil	7640186
SB-2@ 16 Ft Soil	7640187
SB-3@ 12 Ft Soil	7640188
SB-4@1 11 Ft Soil	7640190
SB-9@10 Ft Soil	7640191
SB-10@5 5t Soil	7640192
SB-1 Soil	7640193
Supply Well Water	7640194

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Rettew Associates Attn: Ed Dziedzic
COPY TO

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

(717) 556-7262

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall oc performance data and associated samples.

CAT	Laboratory Sample Analysis Record							
	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
					Date and Ti			
10237	Benzene, Naphthalene	SW-846 8260B	1	Q142941AA	10/21/2014	19:31	Sarah A Guill	46.9
07579	GC/MS-5g Field	SW-846 5035A	1	201428935895	10/16/2014	09:30	Client Supplied	1
	Preserv.MeOH-NC							
10724	PAH 8270 (microwave)	SW-846 8270C	1	14293 SLF026	10/22/2014	11:52	Joseph M Gambler	1
10814	BNA Soil Microwave PAH	SW-846 3546	1	14293 SLF026	10/21/2014	09:30	David S Schrum	1
00111	Moisture	SM 2540 G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $Q C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall oc performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10237	Benzene, Naphthalene	SW-846 8260B	1	Q142941AA	10/21/2014	19:54	Sarah A Guill	41.88
07579	GC/MS-5g Field	SW-846 5035A	1	201428935895	10/16/2014	13:30	Client Supplied	1
	Preserv.MeOH-NC							
10724	PAH 8270 (microwave)	SW-846 8270C	1	14293 SLF026	10/22/2014	13:11	Joseph M Gambler	1
10814	BNA Soil Microwave PAH	SW-846 3546	1	14293SLF026	10/21/2014	09:30	David S Schrum	1
00111	Moisture	SM 2540 G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall oc performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10237	Benzene, Naphthalene	SW-846 8260B	1	Q142951AA	10/22/2014	17:25	Sarah A Guill	168.92
07579	GC/MS-5g Field	SW-846 5035A	1	201428935895	10/16/2014	13:00	Client Supplied	1
	Preserv.MeOH-NC							
10724	PAH 8270 (microwave)	SW-846 8270C	1	14293 SLF026	10/22/2014	13:37	Joseph M Gambler	1
10814	BNA Soil Microwave PAH	SW-846 3546	1	14293SLF026	10/21/2014	09:30	David S Schrum	1
00111	Moisture	SM 2540 G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall oc performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
No.						Date and Ti			
10237	Benzene, Naphthalene	SW-846	8260B	1	Q142951AA	10/22/2014	17:48	Sarah A Guill	460.41
07579	GC/MS-5g Field	SW-846	5035A	1	201428935895	10/16/2014	11:55	Client Supplied	1
	Preserv.MeOH-NC								
10724	PAH 8270 (microwave)	SW-846	8270C	1	14293 SLF026	10/22/2014	14:03	Joseph M Gambler	1
10814	BNA Soil Microwave PAH	SW-846	3546	1	14293 SLF026	10/21/2014	09:30	David S Schrum	1
00111	Moisture	SM 2540	G-1997	1	14294820005A	10/21/2014	20:12	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	BTE/MTBE/Cumene/Naph/TMBs	SW-846	8260 B	1	Q142941AA	10/21/2014	15:35	Sarah A Guill	44.8
07579	GC/MS-5g Field	SW-846	5035 A	1	201428935895	10/16/2014	11:00	Client Supplied	1
	Preserv.MeOH-NC								
00111	Moisture	SM 2540	G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.

All QC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
No.						Date and Ti			
10237	BTE/MTBE/Cumene/Naph/TMBs	SW-846	8260 B	1	Q142941AA	10/21/2014	15:58	Sarah A Guill	39
07579	GC/MS-5g Field	SW-846	5035A	1	201428935895	10/16/2014	$10: 15$	Client Supplied	1
	Preserv.MeOH-NC								
00111	Moisture	SM 2540	G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	BTE/MTBE/Cumene/Naph/TMBs	SW-846	8260 B	1	Q142941AA	10/21/2014	16:21	Sarah A Guill	42.16
07579	GC/MS-5g Field	SW-846	5035 A	1	201428935895	10/16/2014	10:40	Client Supplied	1
	Preserv.MeOH-NC								
00111	Moisture	SM 2540	G-1997	1	14294820005 A	10/21/2014	$20: 12$	Scott W Freisher	1

Sample Description:	SB-9 @ 10 Ft Soil	LL Sample	\#	SW 7640190
	101722001	LL Group	\#	1511613
		Account	\#	00721

Project Name: Project 101722001

Collected: $10 / 16 / 201414: 05$	by ED	Rettew Associates
Submitted: $10 / 16 / 201418: 05$		3020 Columbia Avenue
Lancaster PA $17603-4011$		

Reported: $10 / 27 / 201412: 36$

92001

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Acrolein	107-02-8	N.D.	25	0.88
10237	Acrylonitrile	107-13-1	N. D.	5	0.88
10237	Benzene	71-43-2	N.D.	0.6	0.88
10237	Bromodichloromethane	75-27-4	N. D.	1	0.88
10237	Bromofortn	75-25-2	N.D.	1	0.88
10237	Bromomethane	74-83-9	N.D.	2	0.88
10237	Carbon Tetrachloride	56-23-5	N.D.	1	0.88
10237	Chlorobenzene	108-90-7	N.D.	1	0.88
10237	Chloroethane	75-00-3	N.D.	2	0.88
10237	Chloroform	67-66-3	N.D.	1	0.88
10237	Chloromethane	74-87-3	N.D.	2	0.88
10237	Dibromochloromethane	124-48-1	N.D.	1	0.88
10237	1,1-Dichloroethane	75-34-3	N.D.	1	0.88
10237	1,2-Dichloroethane	107-06-2	N.D.	1	0.88
10237	1,1-Dichloroethene	75-35-4	N.D.	1	0.88
10237	cis-1,2-Dichloroethene	156-59-2	N.D.	1	0.88
10237	trans-1,2-Dichloroethene	156-60-5	N.D.	1	0.88
10237	1,2-Dichloropropane	78-87-5	N.D.	1	0.88
10237	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	0.88
10237	trans-1,3-Dichloropropene	10061-02-6	N. D.	1	0.88
10237	Ethylbenzene	100-41-4	N.D.	1	0.88
10237	Methylene Chloride	75-09-2	N.D.	2	0.88
10237	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1	0.88
10237	Tetrachloroethene	127-18-4	N.D.	1	0.88
10237	Toluene	108-88-3	N. D.	1	0.88
10237	1,1,1-Trichloroethane	71-55-6	N.D.	1	0.88
10237	1,1,2-Trichloroethane	79-00-5	N. D.	1	0.88
10237	Trichloroethene	79-01-6	N.D.	1	0.88
10237	Trichlorofluoromethane	75-69-4	N.D.	2	0.88
10237	Vinyl Chloride	75-01-4	N.D.	1	0.88
10237	Xylene (Total)	1330-20-7	N. D.	1	0.88

2 -Chloroethyl vinyl ether is an acid labile compound and cannot be reported due to acid preservation of the samples and standards in this method.

GC/MS	Semivolatiles SW-846	8270 C	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10727	Acenaphthene	83-32-9	N.D.	5	1
10727	Acenaphthylene	208-96-8	N. D.	5	1
10727	Anthracene	120-12-7	N. D.	5	1
10727	Benzidine	92-87-5	N. D.	950	1
10727	Benzo (a) anthracene	56-55-3	N. D.	5	1
10727	Benzo (a) pyrene	50-32-8	N. D.	5	1
10727	Benzo (b) fluoranthene	205-99-2	N.D.	5	1
10727	Benzo ($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	191-24-2	N. D.	5	1
10727	Benzo (k) fluoranthene	207-08-9	N. D.	5	1
10727	4-Bromophenyl-phenylether	101-55-3	N. D.	23	1
10727	Butylbenzylphthalate	85-68-7	N. D.	91	1
10727	Di-n-butylphthalate	84-74-2	N. D.	91	1
10727	4-Chloro-3-methylphenol	59-50-7	N. D.	23	1
10727	bis (2-Chloroethoxy) methane	111-91-1	N.D.	23	1
10727	bis (2-Chloroethyl)ether	111-44-4	N. D.	23	1

Sample Description:	SB-9 @ 10 Ft Soil	LI Sample	\#	SW 7640190
	101722001	LL Group	\#	1511613
		Account	\#	00721

Project Name: Project 101722001

Collected: $10 / 16 / 201414: 05$	by ED	Rettew Associates
Submitted: $10 / 16 / 201418: 05$		3020 Columbia Avenue
Lancaster PA $17603-4011$		

Reported: $10 / 27 / 201412: 36$

92001

Lancaster Laboratories
 Environmental

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	PPL/TCL Volatiles in Soil	SW-846	8260B	1	X142941AA	10/21/2014	16:40	Chelsea B Stong	0.88
02392	GC/MS - Field Preserved NaHSO4	SW-846	5035A	1	201428935895	10/16/2014	14:05	Client Supplied	1
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	2	201428935895	10/16/2014	14:05	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201428935895	10/16/2014	14:05	Client Supplied	1
10727	PPL/TCL SVOCs in Soil	SW-846	8270C	1	14290 SLB026	10/20/2014	15:53	Joseph M Gambler	1
10809	BNA Soil Microwave	SW-846	3546	1	14290 SLB026	10/17/2014	07:30	Olivia Arosemena	1
06944	Antimony	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06935	Arsenic	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06947	Beryllium	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

| Sample Description: SB-9 @ 10 Ft Soil | |
| :--- | :--- | :--- |
| | 101722001 |

Reported: $10 / 27 / 201412: 36$

92001

cat	Laboratory Sample Analysis Record								
	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
No.						Date and Ti			
06949	Cadmium	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06951	Chromium	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06953	Copper	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06955	Lead	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06961	Nickel	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06936	Selenium	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06966	Silver	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06925	Thallium	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
06972	Zinc	SW-846	6010B	1	142905708001	10/21/2014	23:49	Elaine F Stoltzfus	1
00159	Mercury	SW-846	7471A	1	142905711001	10/20/2014	11:20	Damary Valentin	1
05708	SW SW846 ICP/ICP MS Digest	SW-846	3050B	1	142905708001	10/20/2014	08:45	Christopher M Klumpp	1
05711	SW SW846 Hg Digest	SW-846 modifie	$7471 \mathrm{~A}$	1	142905711001	10/20/2014	08:36	Christopher M Klumpp	1
00111	Moisture	SM 2540	G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

Lancaster Laboratories
 Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Project 101722001			
Collected: $10 / 16 / 201414: 40 \quad$ by ED	Rettew Associates		
Submitted: $10 / 16 / 2014$	$18: 05$	\quad	Lancaster PA $17603-4011$
:---			

Reported: $10 / 27 / 201412: 36$

10001

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Acrolein	107-02-8	N. D.	28	1.02
10237	Acrylonitrile	107-13-1	N. D.	6	1.02
10237	Benzene	71-43-2	0.8 J	0.7	1.02
10237	Bromodichloromethane	75-27-4	N. D.	1	1.02
10237	Bromoform	75-25-2	N.D.	1	1.02
10237	Bromomethane	74-83-9	N. D.	3	1.02
10237	Carbon Tetrachloride	56-23-5	N. D.	1	1.02
10237	Chlorobenzene	108-90-7	N. D.	1	1.02
10237	Chloroethane	75-00-3	N. D.	3	1.02
10237	Chloroform	67-66-3	N. D.	1	1.02
10237	Chloromethane	74-87-3	N. D.	3	1.02
10237	Dibromochloromethane	124-48-1	N. D.	1	1.02
10237	1,1-Dichloroethane	75-34-3	N. D.	1	1.02
10237	1,2-Dichloroethane	107-06-2	N. D.	1	1.02
10237	1,1-Dichloroethene	75-35-4	N. D.	1	1.02
10237	cis-1,2-Dichloroethene	156-59-2	N. D.	1	1.02
10237	trans-1,2-Dichloroethene	156-60-5	N. D.	1	1.02
10237	1,2-Dichloropropane	78-87-5	N. D.	1	1.02
10237	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1.02
10237	trans-1,3-Dichloropropene	10061-02-6	N. D.	1	1.02
10237	Ethylbenzene	100-41-4	N. D.	1	1.02
10237	Methylene Chloride	75-09-2	N. D.	3	1.02
10237	1,1,2,2-Tetrachloroethane	79-34-5	N. D.	1	1.02
10237	Tetrachloroethene	127-18-4	N. D.	1	1.02
10237	Toluene	108-88-3	N. D.	1	1.02
10237	1,1,1-Trichloroethane	71-55-6	N. D.	1	1.02
10237	1,1,2-Trichloroethane	79-00-5	N. D.	1	1.02
10237	Trichloroethene	79-01-6	N. D.	1	1.02
10237	Trichlorofluoromethane	75-69-4	N. D.	3	1.02
10237	Vinyl Chloride	75-01-4	N. D.	1	1.02
10237	Xylene (Total)	1330-20-7	N. D.	1	1.02

2 -Chloroethyl vinyl ether is an acid labile compound and cannot be reported due to acid preservation of the samples and standards in this method.

The recovery for the sample internal standard is outside the OC acceptance limits. The following corrective action was taken: The sample was re-analyzed and the OC is again outside of the acceptance limits, indicating a matrix effect. The data is reported from the initial trial.

GC/MS	Semivolatiles	SW-846	8270 C	$\mathrm{ug} / \mathrm{kg}$		$\mathrm{ug} / \mathrm{kg}$	
10727	Acenaphthene		83-32-9	N. D.		45	10
10727	Acenaphthylene		208-96-8	N. D.		45	10
10727	Anthracene		120-12-7	N. D.		45	10
10727	Benzidine		92-87-5	N.D.		9,400	10
10727	Benzo (a) anthracene		56-55-3	N. D.		45	10
10727	Benzo (a) pyrene		50-32-8	46	J	45	10
10727	Benzo (b) fluoranthene		205-99-2	54	J	45	10
10727	Benzo ($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene		191-24-2	N.D.		45	10
10727	Benzo (k) fluoranthene		207-08-9	N. D.		45	10

Lancaster Laboratories
 Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Project 101722001			
Collected: $10 / 16 / 201414: 40 \quad$ by ED	Rettew Associates		
Submitted: $10 / 16 / 2014$	$18: 05$	\quad	Lancaster PA $17603-4011$
:---			

Reported: $10 / 27 / 201412: 36$

10001

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	PPL/TCL Volatiles in Soil	SW-846	8260 B	1	X142941AA	10/21/2014	17:04	Chelsea B Stong	1.02
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	1	201428935895	10/16/2014	14:40	Client Supplied	1
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	2	201428935895	10/16/2014	14:40	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201428935895	10/16/2014	14:40	Client Supplied	1
10727	PPL/TCL sVocs in Soil	SW-846	8270 C	1	14290 SLB026	10/20/2014	16:16	Joseph M Gambler	10

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

$\begin{aligned} \text { Sample Description: } & \text { SB-10 @ } 5 \text { Ft Soil } \\ & 101722001 \end{aligned}$	LT
Project Name: Project 101722001	
Collected: 10/16/2014 14:40 by ED	Rettew Associates
Submitted: 10/16/2014 18:05	3020 Columbia Avenue Lancaster PA 17603-4011

Reported: $10 / 27 / 201412: 36$

10001

Project Name: Project 101722001

Collected: $10 / 16 / 201415: 55$	by ED	Rettew Associates
Submitted: $10 / 16 / 201418: 05$		3020 Columbia Avenue
Lancaster PA $17603-4011$		

Reported: $10 / 27 / 201412: 36$

12001

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Acrolein	107-02-8	N.D.	23	1.08
10237	Acrylonitrile	107-13-1	N. D.	5	1.08
10237	Benzene	71-43-2	N.D.	0.6	1.08
10237	Bromodichloromethane	75-27-4	N. D.	1	1.08
10237	Bromoform	75-25-2	N. D.	1	1.08
10237	Bromomethane	74-83-9	N. D.	2	1.08
10237	Carbon Tetrachloride	56-23-5	N. D.	1	1.08
10237	Chlorobenzene	108-90-7	N.D.	1	1.08
10237	Chloroethane	75-00-3	N. D.	2	1.08
10237	Chloroform	67-66-3	N. D.	1	1.08
10237	Chloromethane	74-87-3	N. D.	2	1.08
10237	Dibromochloromethane	124-48-1	N. D.	1	1.08
10237	1,1-Dichloroethane	75-34-3	N. D.	1	1.08
10237	1,2-Dichloroethane	107-06-2	N. D.	1	1.08
10237	1,1-Dichloroethene	75-35-4	N. D.	1	1.08
10237	cis-1,2-Dichloroethene	156-59-2	N. D.	1	1.08
10237	trans-1,2-Dichloroethene	156-60-5	N.D.	1	1.08
10237	1,2-Dichloropropane	78-87-5	N.D.	1	1.08
10237	cis-1,3-Dichloropropene	10061-01-5	N.D.	1	1.08
10237	trans-1,3-Dichloropropene	10061-02-6	N. D.	1	1.08
10237	Ethylbenzene	100-41-4	N. D.	1	1.08
10237	Methylene Chloride	75-09-2	N. D.	2	1.08
10237	1,1,2,2-Tetrachloroethane	79-34-5	N. D.	1	1.08
10237	Tetrachloroethene	127-18-4	N. D.	1	1.08
10237	Toluene	108-88-3	N. D.	1	1.08
10237	1,1,1-Trichloroethane	71-55-6	N. D.	1	1.08
10237	1,1,2-Trichloroethane	79-00-5	N. D.	1	1.08
10237	Trichloroethene	79-01-6	N. D.	1	1.08
10237	Trichlorofluoromethane	75-69-4	N. D.	2	1.08
10237	Vinyl Chloride	75-01-4	N.D.	1	1.08
10237	Xylene (Total)	1330-20-7	N. D.	1	1.08

2 -Chloroethyl vinyl ether is an acid labile compound and cannot be reported due to acid preservation of the samples and standards in this method.

GC/MS	Semivolatiles SW-846	8270 C	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10727	Acenaphthene	83-32-9	N.D.	4	1
10727	Acenaphthylene	208-96-8	N. D.	4	1
10727	Anthracene	120-12-7	N. D.	4	1
10727	Benzidine	92-87-5	N.D.	750	1
10727	Benzo (a) anthracene	56-55-3	N. D.	4	1
10727	Benzo (a) pyrene	50-32-8	N. D.	4	1
10727	Benzo (b) fluoranthene	205-99-2	N.D.	4	1
10727	Benzo ($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	191-24-2	N. D.	4	1
10727	Benzo (k) fluoranthene	207-08-9	N. D.	4	1
10727	4-Bromophenyl-phenylether	101-55-3	N. D.	18	1
10727	Butylbenzylphthalate	85-68-7	N. D.	72	1
10727	Di-n-butylphthalate	84-74-2	N. D.	72	1
10727	4-Chloro-3-methylphenol	59-50-7	N. D.	18	1
10727	bis (2-Chloroethoxy) methane	111-91-1	N.D.	18	1
10727	bis (2-Chloroethyl)ether	111-44-4	N. D.	18	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	PPL/TCL Volatiles in Soil	SW-846	8260B	1	X142941AA	10/21/2014	17:27	Chelsea B Stong	1.08
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	1	201428935895	10/16/2014	15:55	Client Supplied	1
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	2	201428935895	10/16/2014	15:55	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201428935895	10/16/2014	15:55	Client Supplied	1
10727	PPL/TCL sVocs in Soil	SW-846	8270C	1	14294 SLC026	10/22/2014	10:33	Joseph M Gambler	1
10809	BNA Soil Microwave	SW-846	3546	2	14294 SLC026	10/21/2014	18:40	Sally L Appleyard	1
06944	Antimony	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06935	Arsenic	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06947	Beryllium	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: $\begin{array}{r}\text { SB-1 Soil } \\ 101722001\end{array}$	LL
Project Name: Project 101722001	
Collected: 10/16/2014 15:55 by ED	Rettew Associates
	3020 Columbia Avenue
Submitted: 10/16/2014 18:05	Lancaster PA 17603-4011

Reported: $10 / 27 / 201412: 36$

12001

cat	Laboratory Sample Analysis Record								
	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
No.						Date and Ti			
06949	Cadmium	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06951	Chromium	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06953	Copper	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06955	Lead	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06961	Nickel	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06936	Selenium	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06966	Silver	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06925	Thallium	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
06972	Zinc	SW-846	6010B	1	142905708001	10/21/2014	23:57	Elaine F Stoltzfus	1
00159	Mercury	SW-846	7471A	1	142905711001	10/20/2014	11:24	Damary Valentin	1
05708	SW SW846 ICP/ICP MS Digest	SW-846	3050B	1	142905708001	10/20/2014	08:45	Christopher M Klumpp	1
05711	SW SW846 Hg Digest	SW-846 modifie	$7471 \mathrm{~A}$	1	142905711001	10/20/2014	08:36	Christopher M Klumpp	1
00111	Moisture	SM 2540	G-1997	1	14294820005 A	10/21/2014	20:12	Scott W Freisher	1

Project Name: Project 101722001

Collected: $10 / 16 / 201411: 30$	by ED	Rettew Associates
Submitted: $10 / 16 / 201418: 05$		3020 Columbia Avenue
Lancaster PA $17603-4011$		

Reported: $10 / 27 / 201412: 36$

$2001 W$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10335	Acrolein	107-02-8	N. D.	40	1
10335	Acrylonitrile	107-13-1	N. D.	4	1
10335	Benzene	71-43-2	N. D.	0.5	1
10335	Bromodichloromethane	75-27-4	N. D.	0.5	1
10335	Bromoform	75-25-2	N. D.	0.5	1
10335	Bromomethane	74-83-9	N. D.	0.5	1
10335	Carbon Tetrachloride	56-23-5	N. D.	0.5	1
10335	Chlorobenzene	108-90-7	N. D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N. D.	2	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recover	if acid was used to		
10335	Chloroform	67-66-3	N. D.	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	Dibromochloromethane	124-48-1	N. D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335	cis-1,2-Dichloroethene	156-59-2	N. D.	0.5	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N. D.	0.5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N. D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N. D.	0.5	1
10335	Ethylbenzene	100-41-4	N. D.	0.5	1
10335	Methylene Chloride	75-09-2	N. D.	2	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N. D.	0.5	1
10335	Tetrachloroethene	127-18-4	N. D.	0.5	1
10335	Toluene	108-88-3	N. D.	0.5	1
10335	1,1,1-Trichloroethane	71-55-6	N. D.	0.5	1
10335	1,1,2-Trichloroethane	79-00-5	N. D.	0.5	1
10335	Trichloroethene	79-01-6	N. D.	0.5	1
10335	Trichlorofluoromethane	75-69-4	N. D.	0.5	1
10335	Vinyl Chloride	75-01-4	N. D.	0.5	1
10335	Xylene (Total)	1330-20-7	N. D.	0.5	1
GC/MS	Semivolatiles SW-846	8270 C	$\mathrm{ug} / 1$	$\mathrm{ug} / 1$	
04678	Acenaphthene	83-32-9	N.D.	0.1	1
04678	Acenaphthylene	208-96-8	N. D.	0.1	1
04678	Anthracene	120-12-7	N. D.	0.1	1
04678	Benzidine	92-87-5	N. D.	21	1
04678	Benzo (a) anthracene	56-55-3	N. D.	0.1	1
04678	Benzo (a) pyrene	50-32-8	N. D.	0.1	1
04678	Benzo (b) fluoranthene	205-99-2	N. D.	0.1	1
04678	Benzo (g,h,i) perylene	191-24-2	N. D.	0.1	1
04678	Benzo (k) fluoranthene	207-08-9	N. D.	0.1	1
04678	4-Bromophenyl-phenylether	101-55-3	N. D.	0.5	1
04678	Butylbenzylphthalate	85-68-7	N. D.	2	1
04678	Di-n-butylphthalate	84-74-2	N. D.	2	1
04678	4-Chloro-3-methylphenol	59-50-7	N. D.	0.5	1
04678	bis (2-Chloroethoxy) methane	111-91-1	N. D.	0.5	1
04678	bis (2-Chloroethyl)ether	111-44-4	N. D.	0.5	1

Lancaster Laboratories
 Environmental

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Project 101722001

Collected: $10 / 16 / 201411: 30$	by ED	Rettew Associates
Submitted: $10 / 16 / 201418: 05$		3020 Columbia Avenue
Lancaster PA $17603-4011$		

Reported: $10 / 27 / 201412: 36$

$2001 W$

Lancaster Laboratories
 Environmental

Project Name: Project 101722001			
Collected: $10 / 16 / 201411: 30 \quad$ by ED	Rettew Associates		
Submitted: $10 / 16 / 201418: 05$		\quad	Lancaster PA $17603-4011$
:---	:---		

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metals		SW-846	6010 B	mg/l	$\mathrm{mg} / 1$	
07044	Antimony		7440-36-0	N.D.	0.0051	1
07035	Arsenic		7440-38-2	N. D.	0.0072	1
07047	Beryllium		7440-41-7	N. D.	0.00067	1
07049	Cadmium		7440-43-9	N. D.	0.00033	1
07051	Chromium		7440-47-3	N. D.	0.0013	1
07053	Copper		7440-50-8	0.0053 J	0.0028	1
07055	Lead		7439-92-1	N. D.	0.0047	1
07061	Nickel		7440-02-0	N. D.	0.0016	1
07036	Selenium		7782-49-2	N.D.	0.0048	1
07066	Silver		7440-22-4	N. D.	0.0018	1
07022	Thallium		7440-28-0	N. D.	0.0051	1
07072	Zinc		7440-66-6	0.0244	0.0020	1
		SW-846	7470A	$\mathrm{mg} / 1$	$\mathrm{mg} / 1$	
00259	Mercury		7439-97-6	N. D.	0.000060	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Laboratory Sample Analysis Record								
	Analysis Name	Method		Trial\#	Batch\#	Analysis Date and T		Analyst	Dilution Factor
10335	PPL/TCL Volatiles in Water	SW-846	8260B	1	Y142941AA	10/21/2014	15:42	Angela D Sneeringer	1
01163	GC/MS VOA Water Prep	SW-846	5030B	1	Y142941AA	10/21/2014	15:42	Angela D Sneeringer	1
04678	TCL SW846 Semivolatiles/Waters	SW-846	8270C	1	14294 WAG026	10/24/2014	01:32	William H Saadeh	1
00813	BNA Water Extraction	SW-846	3510C	1	14294 WAG026	10/21/2014	22:10	Karen L Beyer	1
07044	Antimony	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07035	Arsenic	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07047	Beryllium	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07049	Cadmium	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07051	Chromium	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07053	Copper	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07055	Lead	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07061	Nickel	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07036	Selenium	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07066	Silver	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
07022	Thallium	SW-846	6010B	1	142901848005	10/24/2014	05:23	Tara L Snyder	1
07072	Zinc	SW-846	6010B	1	142901848005	10/22/2014	19:00	Katlin N Cataldi	1
00259	Mercury	SW-846	7470A	1	142905713006	10/21/2014	11:48	Danary Valentin	1
01848	WW SW846 ICP Digest (tot	SW-846	3005A	1	142901848005	10/20/2014	11:20	Micaela L Dishong	1

Sample Description:	Trip Blank Water	LL Sample	\#	WW 7640194
	101722001	LL Group	\#	1511613
		Account	\#	00721

Project Name: Project 101722001

Collected: $10 / 16 / 2014$	Rettew Associates
Submitted: $10 / 16 / 201418: 05$	3020 Columbia Avenue
	Lancaster PA $17603-4011$

Reported: $10 / 27 / 201412: 36$

2001 T

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10335	Acrolein	107-02-8	N. D.	40	1
10335	Acrylonitrile	107-13-1	N. D.	4	1
10335	Benzene	71-43-2	N. D.	0.5	1
10335	Bromodichloromethane	75-27-4	N. D.	0.5	1
10335	Bromoform	75-25-2	N. D.	0.5	1
10335	Bromomethane	74-83-9	N. D.	0.5	1
10335	Carbon Tetrachloride	56-23-5	N. D.	0.5	1
10335	Chlorobenzene	108-90-7	N. D.	0.5	1
10335	Chloroethane	75-00-3	N. D.	0.5	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N. D.	2	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recover	if acid was used to		
10335	Chloroform	67-66-3	N. D.	0.5	1
10335	Chloromethane	74-87-3	N. D.	0.5	1
10335	Dibromochloromethane	124-48-1	N. D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N. D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N. D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N. D.	0.5	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1
10335	trans-1,2-Dichloroethene	156-60-5	N. D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N. D.	0.5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N. D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N. D.	0.5	1
10335	Ethylbenzene	100-41-4	N. D.	0.5	1
10335	Methylene Chloride	75-09-2	N. D.	2	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N. D.	0.5	1
10335	Tetrachloroethene	127-18-4	N. D.	0.5	1
10335	Toluene	108-88-3	N. D.	0.5	1
10335	1,1,1-Trichloroethane	71-55-6	N. D.	0.5	1
10335	1,1,2-Trichloroethane	79-00-5	N. D.	0.5	1
10335	Trichloroethene	79-01-6	N. D.	0.5	1
10335	Trichlorofluoromethane	75-69-4	N. D.	0.5	1
10335	Vinyl Chloride	75-01-4	N. D.	0.5	1
10335	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/15.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Time			Factor
10335	PPL/TCL Volatiles in	SW-846	8260 B	1	Y142941AA	10/21/2014	15:21	Angela D	1
	Water							Sneeringer	
01163	GC/MS VOA Water Prep	SW-846	5030 B	1	Y142941AA	10/21/2014	15:21	Angela D	1
								Sneeringer	

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1511613
Reported: 10/27/14 at 12:36 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name

Batch number: Q142941AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Batch number: Q142951AA
Benzene
Naphthalene
Batch number: X142941AA
Acrolein
Acrylonitrile
Benzene
Bromodichloromethane
Bromoform

Blank	Blank	Report	LCS	LCSD	LCS/LCSD	RPD	RPD
Result	MDL	Units	용RC	\% $\%$ REC	Limits		Max
Sample number (S) : 7640183-7640184,7640187-7640189							
N. D.	25.	ug/kg	91	87	80-120	4	30
N. D.	50.	ug/kg	89	87	80-120	2	30
N. D.	50.	ug/kg	87	85	76-120	2	30
N. D.	25.	$\mathrm{ug} / \mathrm{kg}$	92	89	76-122	4	30
N. D.	50.	ug/kg	82	80	64-120	3	30
N. D.	50.	ug/kg	92	88	80-120	4	30
N. D.	50.	ug/kg	91	87	79-120	4	30
N. D.	50.	ug/kg	91	85	78-120	6	30
Sample number(s) : 7640185-7640186							
N. D.	25.	ug/kg	82	82	80-120	1	30
N. D.	50.	ug/kg	74	75	64-120	1	30
Sample number (s) : 7640190-7640192							
N. D.	20.	ug/kg	128*	116	58-122	9	30
N. D.	4.	$\mathrm{ug} / \mathrm{kg}$	101	99	58-123	2	30
N. D.	0.5	ug/kg	105	100	80-120	5	30
N. D.	1.	ug/kg	96	93	75-120	3	30
N. D.	1.	ug/kg	90	87	70-126	4	30
N. D.	2.	ug/kg	85	78	32-162	9	30
N. D.	1.	ug/kg	103	96	69-130	7	30
N. D.	1.	ug/kg	97	92	80-120	6	30
N. D.	2.	ug/kg	92	85	17-171	8	30
N. D.	1.	ug/kg	105	100	80-125	5	30
N. D.	2.	ug/kg	95	88	56-120	8	30
N. D.	1.	ug/kg	93	89	77-120	4	30
N. D.	1.	ug/kg	104	101	80-122	3	30
N. D.	1.	ug/kg	104	101	77-130	3	30
N. D.	1.	ug/kg	103	98	73-129	5	30
N. D.	1.	ug/kg	99	96	80-120	3	30
N. D.	1.	ug/kg	103	98	80-129	4	30
N. D.	1.	ug/kg	104	99	80-120	5	30
N. D.	1.	ug/kg	95	92	74-120	3	30
N. D.	1.	ug/kg	99	95	76-120	3	30
N. D.	1.	ug/kg	98	92	80-120	7	30
N. D.	2.	ug/kg	105	101	80-124	4	30
N. D.	1.	ug/kg	99	93	71-123	6	30
N. D.	1.	ug/kg	96	89	78-120	7	30
N. D.	1.	ug/kg	99	94	80-120	5	30
N. D.	1.	ug/kg	95	89	63-135	7	30
N. D.	1.	ug/kg	97	92	80-120	5	30
N. D.	1.	$\mathrm{ug} / \mathrm{kg}$	102	97	80-125	4	30
N. D.	2.	ug/kg	93	86	58-133	8	30

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Reported: 10/27/14 at 12:36 PM

Reported:	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	告REC		Limits	RPD	Max
Vinyl Chloride	N. D.	1.	ug/kg	93	86	59-120	8	30
Xylene (Total)	N. D.	1.	ug/kg	93	88	80-120	5	30
Batch number: Y142941AA	Sample number (s) : 7640193-7640194							
Acrolein	N. D.	40.	ug/l	82	81	59-120	1	30
Acrylonitrile	N. D.	4.	ug/l	83	83	62-120	0	30
Benzene	N. D.	0.5	ug/l	106	108	78-120	2	30
Bromodichloromethane	N. D.	0.5	ug/l	97	98	73-120	1	30
Bromoform	N. D.	0.5	ug/l	90	88	61-120	2	30
Bromomethane	N. D.	0.5	ug/1	59	62	53-130	6	30
Carbon Tetrachloride	N. D.	0.5	ug/l	103	104	74-130	1	30
Chlorobenzene	N. D.	0.5	ug/l	100	102	80-120	1	30
Chloroethane	N. D.	0.5	ug/l	59	62	56-120	5	30
2-Chloroethyl Vinyl Ether	N. D.	2.	ug/l	82	83	62-128	2	30
Chloroform	N. D.	0.5	ug/l	103	105	80-122	2	30
Chloromethane	N. D.	0.5	ug/l	91	94	63-120	3	30
Dibromochloromethane	N. D.	0.5	ug/l	99	100	72-120	1	30
1,1-Dichloroethane	N. D.	0.5	ug/l	103	113	80-120	9	30
1,2-Dichloroethane	N. D.	0.5	ug/l	103	105	65-135	2	30
1,1-Dichloroethene	N. D.	0.5	ug/1	103	100	76-124	3	30
cis-1,2-Dichloroethene	N. D.	0.5	ug/l	105	108	80-120	3	30
trans-1,2-Dichloroethene	N. D.	0.5	ug/l	104	106	80-120	2	30
1,2-Dichloropropane	N. D.	0.5	ug/l	105	108	80-120	3	30
cis-1,3-Dichloropropene	N. D.	0.5	ug/l	99	101	80-120	2	30
trans-1,3-Dichloropropene	N. D.	0.5	ug/l	99	101	76-120	2	30
Ethylbenzene	N. D.	0.5	ug/l	98	101	79-120	2	30
Methylene Chloride	N. D.	2.	ug/l	103	103	80-120	0	30
1,1,2,2-Tetrachloroethane	N. D.	0.5	ug/l	89	91	70-120	3	30
Tetrachloroethene	N. D.	0.5	ug/l	103	104	80-120	1	30
Toluene	N. D.	0.5	ug/l	103	106	80-120	3	30
1,1,1-Trichloroethane	N. D.	0.5	ug/l	82	85	66-126	4	30
1,1,2-Trichloroethane	N. D.	0.5	ug/l	97	99	80-120	2	30
Trichloroethene	N. D.	0.5	ug/l	103	105	80-120	2	30
Trichlorofluoromethane	N. D.	0.5	ug/l	81	77	58-135	4	30
Vinyl Chloride	N. D.	0.5	ug/l	87	87	63-120	0	30
Xylene (Total)	N. D.	0.5	ug/l	99	101	80-120	2	30
Batch number: 14290SLB026	Sample number $(\mathrm{S}): 7640190-7640191$							
Acenaphthene	N. D.	3.	ug/kg	97		83-111		
Acenaphthylene	N. D.	3.	ug/kg	109		83-127		
Anthracene	N. D.	3.	ug/kg	100		82-118		
Benzidine	N. D.	700.	ug/kg	47		21-78		
Benzo (a) anthracene	N. D.	3.	ug/kg	98		76-119		
Benzo (a) pyrene	N. D.	3.	$\mathrm{ug} / \mathrm{kg}$	101		84-122		
Benzo (b) fluoranthene	N. D.	3.	ug/kg	101		78-129		
Benzo (g , h , i) perylene	N. D.	3.	$\mathrm{ug} / \mathrm{kg}$	98		77-121		
Benzo (k) fluoranthene	N. D.	3.	ug/kg	106		79-120		
4 -Bromophenyl-phenylether	N. D.	17.	ug/kg	98		84-120		
Butylbenzylphthalate	N. D.	67.	$\mathrm{ug} / \mathrm{kg}$	95		80-118		
Di-n-butylphthalate	N. D.	67.	$\mathrm{ug} / \mathrm{kg}$	97		84-120		
4-Chloro-3-methylphenol	N. D.	17.	ug/kg	99		79-127		
bis (2-Chloroet hoxy) methane	N. D.	17.	$\mathrm{ug} / \mathrm{kg}$	102		65-123		
bis (2-Chloroethyl) ether	N. D.	17.	ug/kg	94		77-115		
bis (2-Chloroisopropyl)ether	N. D.	17.	ug/kg	96		73-114		
2 -Chloronaphthalene	N. D.	7.	ug/kg	87		63-146		
2 -Chlorophenol	N. D.	17.	ug/kg	94		80-122		

Batch number: Y142941AA
Acrylonitrile
Benzene
Bromodichloromethane
romoform
Bromomethane
保
Chloroethane
2-Chloroethyl Vinyl Ether hloroform

Dibromochloromethane
1,1-Dichloroethane
,2-Dichloroethane
1,1-Dichloroethene
cis-1,2-Dichloroethene
rans-1,2-Dichloroethene
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene thylbenzene
ethylene Chloride
1,1,2,2-Tetrachloroethane
rachloroethene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
richloroethene

Xylene (Total)
Batch number: 14290SLB026
Acenaphthene
acenaphthylene
Anthracene
Benzo (a) anthracene
enzo (a) pyrene
Benzo (b) fluoranthene
(h , i, perylene
4-Bromophenyl-phenylether
Butylbenzylphthalate
4-Chloro-3-methylphenol
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
2-Chloronaphthalene
2-Chlorophenol

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Reported: 10/27/14 at 12:36 PM

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD	
Analysis Name	Result	MDL	Units	\% REC	\% q 价	Limits	RPD
4 -Chlorophenyl-phenylether	N. D.	17.	ug/kg	98		83-115	
Chrysene	N. D.	3.	$\mathrm{ug} / \mathrm{kg}$	100		77-116	
Dibenz (a, h) ant hracene	N. D.	3.	ug/kg	96		81-123	
1,2-Dichlorobenzene	N. D.	17.	ug/kg	94		79-112	
1,3-Dichlorobenzene	N. D.	17.	ug/kg	91		79-113	
1,4-Dichlorobenzene	N. D.	17.	ug/kg	90		79-112	
3,3'-Dichlorobenzidine	N. D.	100.	ug/kg	62		10-125	
2,4-Dichlorophenol	N. D.	17.	ug/kg	101		81-123	
Diethylphthalate	N. D.	67.	ug/kg	96		81-118	
2,4-Dimethylphenol	N. D.	17.	ug/kg	95		83-120	
Dimethylphthalate	N. D.	67.	ug/kg	96		82-113	
4,6-Dinitro-2-methylphenol	N. D.	170.	ug/kg	93		67-131	
2,4-Dinitrophenol	N. D.	300.	ug/kg	91		42-131	
2,4-Dinitrotoluene	N. D.	67.	ug/kg	98		81-122	
2,6-Dinitrotoluene	N. D.	17.	ug/kg	100		83-120	
1,2-Diphenylhydrazine	N. D.	17.	ug/kg	99		78-122	
bis (2-Ethylhexyl) phthalate	N. D.	67.	ug/kg	96		81-121	
Fluoranthene	N. D.	3.	ug/kg	98		75-118	
Fluorene	N. D.	3.	ug/kg	103		86-118	
Hexachlorobenzene	N. D.	3.	ug/kg	89		80-121	
Hexachlorobutadiene	N. D.	17.	ug/kg	93		78-121	
Hexachlorocyclopentadiene	N. D.	170.	ug/kg	117		60-157	
Hexachloroethane	N. D.	33.	ug/kg	89		78-114	
Indeno (1,2,3-cd) pyrene	N. D.	3.	ug/kg	93		76-122	
Isophorone	N. D.	17.	ug/kg	109		83-119	
Naphthalene	N. D.	3.	ug/kg	98		83-112	
Nitrobenzene	N. D.	17.	ug/kg	99		80-115	
2-Nitrophenol	N. D.	17.	ug/kg	98		83-120	
4-Nitrophenol	N. D.	170.	ug/kg	75		64-121	
N -Nitroso-di-n-propylamine	N. D.	17.	ug/kg	90		70-119	
N-Nitrosodimethylamine	N. D.	67.	ug/kg	99		72-110	
N-Nitrosodiphenylamine	N. D.	17.	ug/kg	96		83-118	
Di-n-octylphthalate	N. D.	67.	ug/kg	107		82-134	
Pentachlorophenol	N. D.	33.	ug/kg	85		46-133	
Phenanthrene	N. D.	3.	ug/kg	97		80-114	
Phenol	N. D.	17.	ug/kg	101		75-117	
Pyrene	N. D.	3.	ug/kg	101		81-114	
1,2,4-Trichlorobenzene	N. D.	17.	ug/kg	98		83-113	
2,4,6-Trichlorophenol	N. D.	17.	ug/kg	99		81-123	
Batch number: 14293SLF026	Sample	(s) :	183-764				
Anthracene	N. D.	3.	ug/kg	99		82-118	
Benzo (a) anthracene	N. D.	3.	ug/kg	97		76-119	
Benzo (a) pyrene	N. D.	3.	ug/kg	100		84-122	
Benzo (b) fluoranthene	N. D.	3.	ug/kg	103		78-129	
Benzo (g, h, i) perylene	N. D.	3.	ug/kg	98		77-121	
Chrysene	N. D.	3.	ug/kg	102		77-116	
Fluorene	N. D.	3.	ug/kg	97		86-118	
Phenanthrene	N. D.	3.	ug/kg	95		80-114	
Pyrene	N. D.	3.	ug/kg	94		81-114	
Batch number: 14294SLC026	Sample	(s) :	192				
Acenaphthene	N. D.	3.	ug/kg	98		83-111	
Acenaphthylene	N. D.	3.	ug/kg	114		83-127	
Anthracene	N. D.	3.	ug/kg	102		82-118	
Benzidine	N. D.	700.	ug/kg	45		21-78	

Quality Control Summary

Client Name: Rettew Associates
Reported: 10/27/14 at 12:36 PM

发	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	\%REC	\%REC	Limits	$\underline{R P D}$	Max
Benzo (a) anthracene	N. D.	3.	ug/kg	104		76-119		
Benzo (a) pyrene	N. D.	3.	ug/kg	105		84-122		
Benzo (b) fluoranthene	N. D.	3.	ug/kg	111		78-129		
Benzo (g, h, i) perylene	N. D.	3.	ug/kg	103		77-121		
Benzo (k) fluoranthene	N. D.	3.	ug/kg	105		79-120		
4-Bromophenyl-phenylether	N. D.	17.	ug/kg	102		84-120		
Butylbenzylphthalate	N. D.	67	ug/kg	105		80-118		
Di-n-butylphthalate	N. D.	67.	ug/kg	101		84-120		
4-Chloro-3-methylphenol	N. D.	17.	ug/kg	104		79-127		
bis (2-Chloroethoxy) methane	N. D.	17.	ug/kg	101		65-123		
bis (2-Chloroethyl)ether	N. D.	17	ug/kg	93		77-115		
bis (2-Chloroisopropyl)ether	N. D.	17	ug/kg	94		73-114		
2 -Chloronaphthalene	N. D.	7.	ug/kg	93		63-146		
2-Chlorophenol	N. D.	17.	ug/kg	96		80-122		
4 -Chlorophenyl-phenylether	N. D.	17.	ug/kg	102		83-115		
Chrysene	N. D.	3.	ug/kg	108		77-116		
Dibenz (a, h) anthracene	N. D.	3.	ug/kg	105		81-123		
1,2-Dichlorobenzene	N. D.	17.	ug/kg	94		79-112		
1,3-Dichlorobenzene	N. D.	17.	ug/kg	90		79-113		
1,4-Dichlorobenzene	N. D.	17.	ug/kg	92		79-112		
3,3'-Dichlorobenzidine	N. D.	100.	ug/kg	64		10-125		
2,4-Dichlorophenol	N. D.	17.	ug/kg	106		81-123		
Diethylphthalate	N. D.	67.	ug/kg	102		81-118		
2,4-Dimethylphenol	N. D.	17.	ug/kg	100		83-120		
Dimethylphthalate	N. D.	67	ug/kg	99		82-113		
4,6-Dinitro-2-methylphenol	N. D.	170.	ug/kg	99		67-131		
2,4-Dinitrophenol	N. D.	300.	ug/kg	82		42-131		
2,4-Dinitrotoluene	N. D.	67.	ug/kg	102		81-122		
2,6-Dinitrotoluene	N. D.	17.	ug/kg	107		83-120		
1,2-Diphenylhydrazine	N. D.	17.	ug/kg	103		78-122		
bis (2-Ethylhexyl) phthalate	N. D.	67.	$\mathrm{ug} / \mathrm{kg}$	105		81-121		
Fluorant hene	N. D.	3.	ug/kg	99		75-118		
Fluorene	N. D.	3.	ug/kg	103		86-118		
Hexachlorobenzene	N. D.	3.	ug/kg	96		80-121		
Hexachlorobutadiene	N. D.	17.	ug/kg	103		78-121		
Hexachlorocyclopentadiene	N. D.	170.	ug/kg	134		60-157		
Hexachloroethane	N. D.	33.	ug/kg	93		78-114		
Indeno (1,2,3-cd) pyrene	N. D.	3.	ug/kg	102		76-122		
Isophorone	N. D.	17.	ug/kg	110		83-119		
Naphthalene	N. D.	3.	ug/kg	101		83-112		
Nitrobenzene	N. D.	17.	ug/kg	105		80-115		
2-Nitrophenol	N. D.	17	ug/kg	102		83-120		
4-Nitrophenol	N. D.	170.	ug/kg	96		64-121		
N-Nitroso-di-n-propylamine	N. D.	17.	ug/kg	89		70-119		
N -Nitrosodimethylamine	N. D.	67.	ug/kg	90		72-110		
N -Nitrosodiphenylamine	N. D.	17.	ug/kg	101		83-118		
Di-n-octylphthalate	N. D.	67.	ug/kg	114		82-134		
Pentachlorophenol	N. D.	33.	ug/kg	92		46-133		
Phenanthrene	N. D.	3.	ug/kg	98		80-114		
Phenol	N. D.	17.	ug/kg	93		75-117		
Pyrene	N. D.	3.	ug/kg	99		81-114		
1,2,4-Trichlorobenzene	N. D.	17.	ug/kg	105		83-113		
2,4,6-Trichlorophenol	N. D.	17.	ug/kg	101		81-123		
Batch number: $14294 W A G 026$	Sample	$r(s):$	193					
Acenaphthene	N. D.	0.1	ug/l	104	103	80-112	1	30

Batch number: 14294WAG026
*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Reported: 10/27/14 at 12:36 PM

Reported:	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	告REC	\% REC	Limits	RPD	Max
Acenaphthylene	N. D.	0.1	ug/l	111	109	84-125	2	30
Anthracene	N. D.	0.1	ug/l	109	106	82-116	3	30
Benzidine	N. D.	20.	ug/l	63	59	20-94	6	30
Benzo (a) anthracene	N. D.	0.1	ug/l	113	111	81-126	1	30
Benzo (a) pyrene	N. D.	0.1	ug/l	115	113	82-116	2	30
Benzo (b) fluoranthene	N. D.	0.1	ug/l	110	108	82-121	1	30
Benzo ($9, h, i$) perylene	N. D.	0.1	ug/l	104	101	76-128	3	30
Benzo (k) fluoranthene	N. D.	0.1	ug/l	114	112	81-122	2	30
4 -Bromophenyl-phenylether	N. D.	0.5	ug/l	101	98	82-118	3	30
Butylbenzylphthalate	N. D.	2.	ug/l	110	110	73-122	0	30
Di-n-butylphthalate	N. D.	2.	ug/l	102	100	80-119	2	30
4-Chloro-3-methylphenol	N. D.	0.5	ug/1	108	108	78-118	0	30
bis (2-Chloroethoxy) methane	N. D.	0.5	ug/l	105	103	77-115	2	30
bis (2-Chloroethyl) ether	N. D.	0.5	ug/l	105	103	78-112	2	30
bis(2-Chloroisopropyl)ether	N. D.	0.5	ug/l	128	127	54-128	1	30
2-Chloronaphthalene	N. D.	0.4	ug/l	102	100	66-125	1	30
2 -Chlorophenol	N. D.	0.5	ug/l	104	103	76-111	1	30
4 -Chlorophenyl-phenylether	N. D.	0.5	ug/1	100	98	78-119	2	30
Chrysene	N. D.	0.1	ug/l	117	117	81-120	0	30
Dibenz (a, h) anthracene	N. D.	0.1	ug/1	105	103	80-130	2	30
1,2-Dichlorobenzene	N. D.	0.5	ug/l	99	98	62-116	2	30
1,3-Dichlorobenzene	N. D.	0.5	ug/l	94	93	57-115	1	30
1,4-Dichlorobenzene	N. D.	0.5	ug/l	95	95	60-115	0	30
3,3'-Dichlorobenzidine	N. D.	2.	ug/l	78	74	39-111	5	30
2,4-Dichlorophenol	N. D.	0.5	ug/l	104	104	84-119	0	30
Diethylphthalate	N. D.	2.	ug/l	93	91	70-118	2	30
2,4-Dimethylphenol	N. D.	0.5	ug/l	104	102	75-110	1	30
Dimethylphthalate	N. D.	2.	ug/l	79	77	43-128	2	30
4,6-Dinitro-2-methylphenol	N. D.	5.	ug/l	90	92	63-131	3	30
2,4-Dinitrophenol	N. D.	10.	ug/l	54	60	39-130	11	30
2,4-Dinitrotoluene	N. D.	1.	ug/l	111	110	84-126	1	30
2,6-Dinitrotoluene	N. D.	0.5	ug/l	111	111	81-124	0	30
1,2-Diphenylhydrazine	N. D.	0.5	ug/l	107	105	74-124	2	30
bis (2-Ethylhexyl) phthalate	N. D.	2.	ug/l	115	115	78-124	0	30
Fluoranthene	N. D.	0.1	ug/l	108	106	82-121	2	30
Fluorene	N. D.	0.1	ug/l	104	104	80-117	0	30
Hexachlorobenzene	N. D.	0.1	ug/l	94	92	80-119	2	30
Hexachlorobutadiene	N. D.	0.5	ug/l	83	82	55-124	1	30
Hexachlorocyclopentadiene	N. D.	5.	ug/l	77	85	18-130	10	30
Hexachloroethane	N. D.	1.	ug/l	84	84	55-109	1	30
Indeno (1,2,3-cd) pyrene	N. D.	0.1	ug/l	100	98	80-126	2	30
Isophorone	N. D.	0.5	ug/l	116	116	81-124	1	30
Naphthalene	N. D.	0.1	ug/l	100	99	75-108	1	30
Nitrobenzene	N. D.	0.5	ug/l	115	115	77-119	1	30
2-Nitrophenol	N. D.	0.5	ug/l	112	111	82-121	1	30
4-Nitrophenol	N. D.	10.	ug/l	53	52	20-89	2	30
N-Nitroso-di-n-propylamine	N. D.	0.5	ug/l	108	106	71-117	2	30
N -Nit rosodimethylamine	N. D.	2.	ug/l	85	84	38-98	2	30
N -Nit rosodiphenylamine	N. D.	0.5	ug/l	100	98	80-115	2	30
Di-n-octylphthalate	N. D.	2.	ug/l	113	112	78-129	1	30
Pentachlorophenol	N. D.	1.	ug/l	76	75	60-130	1	30
Phenanthrene	N. D.	0.1	ug/l	105	103	81-114	2	30
Phenol	N. D.	0.5	ug/l	63	62	25-80	2	30
Pyrene	N. D.	0.1	ug/l	106	105	81-112	1	30
1,2,4-Trichlorobenzene	N. D.	0.5	ug/l	100	99	68-116	1	30
2,4,6-Trichlorophenol	N. D.	0.5	ug/l	103	103	84-119	0	30

[^19]
Quality Control Summary

Client Name: Rettew Associates								
Reported: 10/27/14 at 12:36 PM								
	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	告REC	\% ${ }^{\text {REC }}$	Limits	RPD	Max
Batch number: 142901848005	Sample number (s) : 7640193							
Antimony	N. D.	0.0051	$\mathrm{mg} / 1$	101		88-111		
Arsenic	N. D.	0.0072	mg / l	105		90-116		
Beryllium	N. D.	0.00067	$\mathrm{mg} / 1$	102		90-111		
Cadmium	N. D.	0.00033	$\mathrm{mg} / 1$	100		90-112		
Chromium	N. D.	0.0013	$\mathrm{mg} / 1$	99		90-110		
Copper	N. D.	0.0028	$\mathrm{mg} / 1$	102		90-112		
Lead	N. D.	0.0047	$\mathrm{mg} / 1$	98		88-116		
Nickel	N. D.	0.0016	$\mathrm{mg} / 1$	103		90-117		
Selenium	N. D.	0.0048	$\mathrm{mg} / 1$	99		89-113		
Silver	N. D.	0.0018	$\mathrm{mg} / 1$	96		80-120		
Thallium	N. D.	0.0051	$\mathrm{mg} / 1$	106		85-120		
Zinc	0.0041 J	0.0020	$\mathrm{mg} / 1$	101		90-110		
Batch number: 142905708001	Sample number (s) : 7640190-7640192							
Antimony	N. D.	0.330	$\mathrm{mg} / \mathrm{kg}$	108		80-120		
Arsenic	N. D.	0.640	$\mathrm{mg} / \mathrm{kg}$	107		80-120		
Beryllium	N. D.	0.0670	$\mathrm{mg} / \mathrm{kg}$	102		80-120		
Cadmium	0.0370 J	0.0330	$\mathrm{mg} / \mathrm{kg}$	105		80-120		
Chromium	N. D.	0.110	$\mathrm{mg} / \mathrm{kg}$	102		80-120		
Copper	N. D.	0.330	$\mathrm{mg} / \mathrm{kg}$	105		80-120		
Lead	N. D.	0.500	$\mathrm{mg} / \mathrm{kg}$	107		80-120		
Nickel	N. D.	0.150	$\mathrm{mg} / \mathrm{kg}$	107		80-120		
Selenium	0.448 J	0.440	$\mathrm{mg} / \mathrm{kg}$	109		80-120		
Silver	N. D.	0.190	$\mathrm{mg} / \mathrm{kg}$	89		80-120		
Thallium	N. D.	0.800	$\mathrm{mg} / \mathrm{kg}$	111		80-120		
Zinc	1.35 J	0.260	$\mathrm{mg} / \mathrm{kg}$	108		80-120		
Batch number: 142905711001	Sample number (s) : 7640190,7640192							
Mercury	0.0622 J	0.0100	$\mathrm{mg} / \mathrm{kg}$	98		80-120		
Batch number: 142905713006	Sample number (s) : 7640193							
Mercury	N. D.	$\begin{aligned} & 0.00006 \\ & 0 \end{aligned}$	$\mathrm{mg} / 1$	82		80-120		
Batch number: 142935711002	Sample number (S) : 7640191							
Mercury	N. D.	0.0100	$\mathrm{mg} / \mathrm{kg}$	92		80-120		
Batch number: 14294820005A	Sample number(s) : 7640183-7640192							
Moisture				100		99-101		

Sample Matrix Quality Control
Unspiked (UNSPK) $=$ the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	$\begin{aligned} & \text { MS } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { MSD } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { MS/MSD } \\ & \text { Limits } \end{aligned}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { MAX } \end{aligned}$	BKG Conc	DUP Conc	$\begin{aligned} & \text { DUP } \\ & \text { RPD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dup } \mathrm{RPD} \\ & \text { Max } \end{aligned}$
Batch number: 14290SLB026	Sample number (S) : 7640190-7640191 UNSPK: P637266								
Acenaphthene	74	71	55-132	3	30				
Acenaphthylene	109	110	53-143	1	30				
Anthracene	98	95	42-147	3	30				

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1511613
Reported: 10/27/14 at 12:36 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	\%REC	\%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Benzidine	49	50	21-64	3	30				
Benzo (a) anthracene	97	86	32-150	10	30				
Benzo (a) pyrene	100	98	36-151	2	30				
Benzo (b) fluoranthene	97	85	29-150	12	30				
Benzo ($9, h, i$) perylene	99	92	41-147	8	30				
Benzo (k) fluoranthene	107	104	35-146	3	30				
4 -Bromophenyl-phenylether	95	95	58-142	0	30				
Butylbenzylphthalate	93	95	50-137	1	30				
Di-n-butylphthalate	95	95	57-130	0	30				
4-Chloro-3-methylphenol	99	100	39-150	1	30				
bis (2-Chloroet hoxy) methane	101	101	54-128	0	30				
bis (2-Chloroethyl) ether	100	92	69-114	9	30				
bis (2-Chloroisopropyl)ether	101	93	62-120	9	30				
2-Chloronaphthalene	84	88	40-156	4	30				
2 -Chlorophenol	100	91	35-152	10	30				
4 -Chlorophenyl-phenylether	97	97	56-130	0	30				
Chrysene	97	88	28-146	9	30				
Dibenz (a, h) ant hracene	93	91	54-142	2	30				
1,2-Dichlorobenzene	$\begin{aligned} & -927 \\ & (2) \end{aligned}$	$\begin{aligned} & -1012 \\ & (2) \end{aligned}$	45-133	64*	30				
1,3-Dichlorobenzene	99	87	45-129	12	30				
1,4-Dichlorobenzene	89	77	44-132	13	30				
3,3'-Dichlorobenzidine	54	53	10-143	2	30				
2,4-Dichlorophenol	105	102	39-153	3	30				
Diethylphthalate	94	96	54-127	3	30				
2,4-Dimethylphenol	93	92	38-140	1	30				
Dimethylphthalate	93	97	45-135	4	30				
4,6-Dinitro-2-methylphenol	83	76	10-148	9	30				
2,4-Dinitrophenol	72	58	20-143	22	30				
2,4-Dinitrotoluene	96	98	39-144	2	30				
2,6-Dinitrotoluene	99	103	54-134	4	30				
1,2-Diphenylhydrazine	97	97	67-128	0	30				
bis (2-Ethylhexyl) phthalate	95	94	52-138	1	30				
Fluoranthene	74	45	41-135	26	30				
Fluorene	81	76	55-128	5	30				
Hexachlorobenzene	89	88	46-132	1	30				
Hexachlorobutadiene	95	93	65-125	2	30				
Hexachlorocyclopentadiene	75	92	10-153	20	30				
Hexachloroethane	94	84	24-138	11	30				
Indeno (1,2,3-cd) pyrene	93	85	44-147	9	30				
Isophorone	110	107	68-119	3	30				
Naphthalene	27*	20*	44-142	7	30				
Nitrobenzene	100	96	41-141	4	30				
2-Nitrophenol	96	96	45-146	0	30				
4 -Nitrophenol	71	73	25-142	2	30				
N-Nitroso-di-n-propylamine	93	87	58-126	8	30				
N -Nit rosodimethylamine	102	84	61-110	19	30				
N -Nitrosodiphenylamine	97	97	59-135	1	30				
Di-n-octylphthalate	107	104	54-151	3	30				
Pentachlorophenol	82	80	23-145	3	30				
Phenanthrene	32*	4*	42-141	25	30				
Phenol	108	99	61-130	9	30				

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1511613
Reported: 10/27/14 at 12:36 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1511613
Reported: 10/27/14 at 12:36 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG		DUP		DUP	Dup	RPD
Analysis Name	\%REC	\%REC	Limits	RPD	MAX	Conc		Conc		RPD	Max	
Fluorene	94	104	55-128	9	30							
Hexachlorobenzene	91	96	46-132	5	30							
Hexachlorobutadiene	94	100	65-125	6	30							
Hexachlorocyclopentadiene	117	132	10-153	12	30							
Hexachloroethane	91	99	24-138	8	30							
Indeno(1,2,3-cd) pyrene	97	99	44-147	2	30							
Isophorone	103	107	68-119	4	30							
Naphthalene	94	98	44-142	4	30							
Nitrobenzene	95	101	41-141	6	30							
2-Nitrophenol	94	100	45-146	6	30							
4-Nitrophenol	89	97	25-142	8	30							
N -Nitroso-di-n-propylamine	85	94	58-126	10	30							
N -Nitrosodimethylamine	89	95	61-110	7	30							
N-Nitrosodiphenylamine	89	100	59-135	12	30							
Di-m-octylphthalate	106	112	54-151	6	30							
Pentachlorophenol	38	49	23-145	26	30							
Phenanthrene	93	101	42-141	8	30							
Phenol	89	95	61-130	7	30							
Pyrene	94	98	37-140	5	30							
1,2,4-Trichlorobenzene	96	101	50-139	5	30							
2,4,6-Trichlorophenol	80	93	60-136	15	30							
Batch number: 142901848005	Sample	number (s	764019	UNS P	P63	2 BKG:	P63	712				
Antimony	104	103	81-122	0	20	N. D.		N. D.		0 (1)	20	
Arsenic	105	106	81-123	1	20	N. D.		N. D.		0 (1)	20	
Beryllium	104	103	87-114	1	20	N. D.		N.D.		0 (1)	20	
Cadmium	102	102	75-122	0	20	N. D.		N.D.		0 (1)	20	
Chromium	102	100	76-120	1	20	N. D.		N. D.		0 (1)	20	
Copper	104	103	86-122	1	20	N. D.		N. D.		0 (1)	20	
Lead	101	99	75-125	2	20	N. D.		N.D.		0 (1)	20	
Nickel	104	104	79-123	0	20	N. D.		N. D.		0 (1)	20	
Selenium	99	96	75-125	3	20	0.0054	J	N. D.		200* (1)	20	
Silver	98	97	75-125	0	20	N. D.		N. D.		0 (1)	20	
Thallium	106	106	75-125	0	20	N. D.		N. D.		0 (1)	20	
Zinc	107	100	80-125	6	20	0.0062	J	0.0046	J	31* (1)	20	
Batch number: 142905708001	Sample	number (s	764019	7640	2 UNS	: P6403		KG: P64	0361			
Antimony	68*	84	75-125	15	20	9.91		5.55		56* (1)	20	
Arsenic	99	103	75-125	1	20	8.70		7.10		20 (1)	20	
Beryllium	104	105	83-119	1	20	0.312	J	0.264	J	16 (1)	20	
Cadmium	129*	95	75-120	32*	20	N. D.		0.241	J	200* (1)	20	
Chromium	58*	102	75-125	16	20	34.9		47.4		30*	20	
Copper	934 (2)	-9 (2)	75-125	93*	20	136		80.8		51*	20	
Lead	$\begin{aligned} & -2386 \\ & (2) \end{aligned}$	$\begin{aligned} & -4241 \\ & (2) \end{aligned}$	75-125	14	20	2,410		1,620		39*	20	
Nickel	96	109	75-125	8	20	22.3		16.3		31*	20	
Selenium	78	50*	75-125	46*	20	N. D.		N. D.		0 (1)	20	
Silver	95	91	75-125	6	20	0.194	J	0.216	J	11 (1)	20	
Thallium	90	91	78-125	1	20	2.11	J	1.45	J	37* (1)	20	
Zinc	233*	61*	75-125	41*	20	137		115		18	20	

Batch number: 142905711001
Sample number(s): 7640190,7640192 UNSPK: P641098 BKG: P641098

[^20]
Quality Control Summary

Client Name: Rettew Associates Group Number: 1511613
Reported: 10/27/14 at 12:36 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTE/MTBE/Cumene/Naph/TMBs
Batch number: Q142941AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7640183	66	73	72	70
7640184	73	82	82	82
7640187	56	61	63	69
7640188	61	68	69	86
7640189	74	82	83	88
Blank	85	97	93	92
LCS	92	95	97	89
LCSD	87	92	92	$50-131$

Analysis Batch nume: Benzene, Baphthalene Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	
7640185	72	79	85
7640186	60	70	69
Blank	79	86	84
LCS	83	87	87
LCSD	84	88	87
Limits:	$50-141$	$54-135$	$52-141$

Analysis Name: PPL/TCL Volatiles in Soil

Batch number: X142941AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7640190	100	99	100	98
7640191	103	104	109	84
7640192	104	106	99	98
Blank	102	101	100	98
LCS	100	97	102	104

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates Group Number: 1511613 Reported: 10/27/14 at 12:36 PM

Surrogate Quality Control

LCSD	100	97	101	103
Limits:	$50-141$	$54-135$	$52-141$	$50-131$
Analysis	Name: PPL/TCL Volatiles in Water			
Batch number: Y142941AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7640193	99	100	99	91
7640194	98	100	99	91
Blank	98	99	99	91
LCS	97	101	102	97
LCSD	96	101	101	106
Limits:	$80-116$	$77-113$	$80-113$	$78-113$

Analysis Name: PPL/TCL SVOCs in Soil Batch number: 14290 SLB026						
	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
7640190	88	90	82	87	88	101
7640191	88	87	67	85	86	94
Blank	90	96	89	94	96	108
LCS	93	95	88	94	93	106
MS	97	100	81	93	91	104
MSD	88	91	78	91	93	104
Limits:	44-129	40-141	36-142	54-123	63-124	61-142

Analysis Name: PAH 8270 (microwave)
Batch number: 14293SLF026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
7640183	89	88	99
7640184	90	92	101
7640185	90	92	99
7640186	84	88	93
Blank	91	93	105
LCS	91	90	100
MS	88	87	96
MSD	89	89	68
Limits:	$54-123$	$63-124$	

Analysis Name: PPL/TCL SVOCs in Soil
Batch number: 14294SLC026

	Phenol-d6	2-Fluorophenol	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14
7640192	92	97	92	96	99	110
Blank	91	98	95	96	99	109
LCS	89	94	94	97	95	105
MS	87	88	71	90	87	101
MSD	93	96	81	93	94	106
Limits:	44-129	40-141	36-142	54-123	63-124	61-142

Analysis Name: TCL SW846 Semivolatiles/Waters Batch number: 14294WAG026

	2-Fluorophenol	Phenol-d6	2,4,6-Tribromophenol	Nitrobenzene-d5	2-Fluorobiphenyl	
7640193	68	47	82	104	96	81
Blank	61	41	69	90	96	9
LCS	79	54	87	107	10	96
LCSD	79	54	86	108	$67-116$	

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Rettew Associates Reported: 10/27/14 at 12:36 PM

Group Number: 1511613
Surrogate Quality Control
*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

x!дРе

 \square \square \square

 \square \square \square
 əioejuns
 punols

s.senieluog 10 莎 leyon
$: s 2410$
$\mathrm{S} \mathrm{\exists CdN}$
depeM Mqeiod
\qquad

2
2
2
2 $\left\lvert\, \begin{gathered}-1 \\ y^{-\infty} \mid\end{gathered}\right.$

| $\cdots-\infty$ | $-\infty$ |
| :--- | :--- | :--- |
| \cdots | |
| - | |
| m | n |

0

Sample Identification

Type I (Valida*ion/non-CLP) 23 4
Envronmenta Anarisis Requesuchain of custody

Preservation Codes	
$\mathrm{H}=\mathrm{HCl}$	$\mathrm{T}=\mathrm{Thiosulfate}$
$\mathrm{N}=\mathrm{HNO}_{3}$	$\mathrm{~B}=\mathrm{NaOH}$
$\mathrm{S}=\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{O}=\mathrm{O}$ ther
Cum	

边號					
${ }^{\text {H }}$					
	$30 \mathrm{k}+1 \mathrm{dy}$	\cdots			

\qquad

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers			Inorganic Qualifiers
A	TIC is a possible aldol-condensation product	B	Value is <CRDL, but \geq IDL
B	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and confirmation columns $>25 \%$	W	Post digestion spike out of control limits Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA <0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

[^21]ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

February 17,2015
Project: Project 101722001
Submittal Date: 02/05/2015
Group Number: 1536371
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	Lancaster Labs (LL) \#
SB-12@ 5 Ft Grab Soil	7762626
SB-11@14Ft Grab Soil	7762627
SB-21@8Ft Grab Soil	7762628
SB-21@10 Ft Grab Soil	7762629
SB-13@10 Ft Grab Soil	7762630
SB-14@11 Ft Grab Soil	7762631
SB-15@11 Ft Grab Soil	7762632
SB-12@8Ft Grab Soil	7762633
SB-12@12 Ft Grab Soil	7762634
SB-12@18 Ft Grab Soil	7762635
SB-18@10 Ft Grab Soil	7762636
SB-18@13 Ft Grab Soil	7762637
SB-18@15 Ft Grab Soil	7762638
SB-19@10 Ft Grab Soil	7762639
SB-16 @ 12 Ft Grab Soil	7762640
SB-20@8 Ft Grab Soil	7762641
SB-20@11 Ft Grab Soil	7762642
SB-20@15 Ft Grab Soil	7762643
SB-17@ 7 Ft Grab Soil	7762644
SB-17@11 Ft Grab Soil	7762645
SB-17@15 Ft Grab Soil	7762646

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

Lancaster Laboratories Environmental

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 - Fax: 717-656-2681 • www.LancasterLabs.com

ELECTRONIC Rettew Associates COPY TO

Attn: Ed Dziedzic

Respectfully Submitted,

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	12:52	Sarah A Guill	46.38
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/04/2015	14:00	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006 A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall $Q C$ performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10237	VOCs- Solid by 8260 B	SW-846 8260B	1	Q150391AA	02/08/2015	13:15	Sarah A Guill	48.45
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	10:00	Client Supplied	1
02079	TOC Solids/sludges Combustion	SM 5310 B modified-2000	1	15046049531 A	02/15/2015	$23: 23$	James S Mathiot	1
00111	Moisture	SM 2540 G-1997	1	15042820006 A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	13:38	Sarah A Guill	51.02
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846 5035A	1	201503636746	02/05/2015	10:50	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	14:01	Sarah A Guill	45.79
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	10:55	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006 A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
10237	Vocs- Solid by 8260 B	SW-846 8260B	1	Q150391AA	02/08/2015	14:24	Sarah A Guill	48.26
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	11:20	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q150391AA	02/08/2015	14:47	Sarah A Guill	44.4
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201503636746	02/05/2015	11:35	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15042820006 A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	15:10	Sarah A Guill	40.19
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	11:55	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

CAT	Laboratory Sample Analysis Record							
	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
No.					Date and Ti			
10237	Vocs- Solid by 8260 B	SW-846 8260B	1	Q150391AA	02/08/2015	15:33	Sarah A Guill	92.08
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	15:57	Sarah A Guill	920.81
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	12:15	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor
No.						Date and Ti			
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q150391AA	02/08/2015	16:20	Sarah A Guill	42.3
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q150411AA	02/10/2015	18:22	Sarah A Guill	423.01
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846	5035A	1	201503636746	02/05/2015	12:20	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15042820006A	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record										
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution	
No.				Date and Ti			Factor			
10237	Vocs- Solid by 8260B	SW-846	8260B		1	Q150391AA	02/08/2015	17:06	Sarah A Guill	43.4
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201503636746	02/05/2015	13:20	Client Supplied	1	
00111	Moisture	SM 2540	G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1	

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall $Q C$ performance data and associated samples.

Laboratory Sample Analysis Record										
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution	
No.				Date and Ti			Factor			
10237	Vocs- Solid by 8260B	SW-846	8260B		1	Q150391AA	02/08/2015	17:29	Sarah A Guill	44.4
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201503636746	02/05/2015	13:25	Client Supplied	1	
00111	Moisture	SM 2540	G-1997	1	15042820006 B	02/11/2015	20:49	Scott W Freisher	1	

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial\#	Batch\#	Analysis Date and Ti		Analyst	Dilution Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	17:53	Sarah A Guill	50
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	13:30	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
10237	Vocs- Solid by 8260 B	SW-846 8260B	1	Q150391AA	02/08/2015	18:16	Sarah A Guill	40.06
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	14:00	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial\#	Batch\#	Analysis Date and T		Analyst	Dilution Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150391AA	02/08/2015	18:39	Sarah A Guill	40.26
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846 5035A	1	201503636746	02/05/2015	14:45	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150411AA	02/10/2015	18:45	Sarah A Guill	43.48
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846 5035A	1	201503636746	02/05/2015	15:20	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q150411AA	02/10/2015	19:08	Sarah A Guill	46.47
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846 5035A	1	201503636746	02/05/2015	15:25	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumary for overall oC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10237	Vocs- Solid by 8260 B	SW-846 8260B	1	Q150411AA	02/10/2015	19:31	Sarah A Guill	46.13
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	15:30	Client Supplied	1
00111	Moisture	SM $2540 \quad \mathrm{G}-1997$	1	15042820006 B	02/11/2015	$20: 49$	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
10237	Vocs- Solid by 8260 B	SW-846 8260B	1	Q150421AA	02/11/2015	12:03	Anita M Dale	44.72
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201503636746	02/05/2015	12:50	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15042820006B	02/11/2015	20:49	Scott W Freisher	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

CAT	Laboratory Sample Analysis Record									
	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor	
No.				Date and Ti						
10237	Vocs- Solid by 8260 B	SW-846	8260B		1	Q150421AA	02/11/2015	12:25	Anita M Dale	88.97
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q150421AA	02/11/2015	12:48	Anita M Dale	889.68	
10237	Vocs- Solid by 8260 B	SW-846	8260B	1	Q150431AA	02/12/2015	12:30	Anita M Dale	8896.8	
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846	5035A	1	201503636746	02/05/2015	12:55	Client Supplied	1	
00111	Moisture	SM 2540	G-1997	1	15042820006 B	02/11/2015	20:49	Scott W Freisher	1	

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q150431AA	02/12/2015	10:25	Anita M Dale	42.81
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846	5035A	1	201503636746	02/05/2015	13:00	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15043820001A	02/12/2015	18:47	Scott W Freisher	1

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1536371
Reported: 02/17/15 at 10:18 AM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name

Batch number: Q150391AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)
Batch number: Q150411AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)
Batch number: Q150421AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene

Blank	Blank	Report	LCS	LCSD	LCS/LCSD	RPD	RPD
Result	MDL	Units	\%REC	\%REC	Limits		Max
Sample number (s) : 7762626-7762640							
N. D.	25.	ug/kg	89	90	80-120	1	30
N. D.	50.	ug/kg	85	85	80-120	0	30
N. D.	50.	ug/kg	81	81	76-120	0	30
N. D.	25.	ug/kg	94	94	76-122	0	30
N. D.	50.	ug/kg	65	68	64-120	5	30
N. D.	50.	ug/kg	90	87	80-120	4	30
N. D.	50.	ug/kg	88	86	79-120	3	30
N. D.	50.	ug/kg	84	84	78-120	0	30
N. D.	50.	ug/kg	88	85	80-120	3	30
Sample number(s) : 7762634,7762641-7762643							
N. D.	25.	ug/kg	87	89	80-120	2	30
N. D.	50.	ug/kg	83	84	80-120	2	30
N. D.	50.	ug/kg	78	82	76-120	5	30
N. D.	25.	ug/kg	92	95	76-122	3	30
N. D.	50.	ug/kg	62*	66	64-120	7	30
N. D.	50.	ug/kg	84	87	80-120	2	30
N. D.	50.	ug/kg	81	84	79-120	4	30
N. D.	50.	ug/kg	81	81	78-120	1	30
N. D.	50.	ug/kg	82	85	80-120	3	30
Sample number (s) : 7762644-7762645							
N. D.	25.	ug/kg	95	99	80-120	4	30
N. D.	50.	ug/kg	91	93	80-120	2	30
N. D.	50.	ug/kg	89	90	76-120	1	30
N. D.	25.	ug/kg	102	104	76-122	2	30
N. D.	50.	ug/kg	82	77	64-120	7	30
N. D.	50.	ug/kg	91	94	80-120	3	30
N. D.	50.	ug/kg	95	93	79-120	1	30
N. D.	50.	ug/kg	95	92	78-120	3	30
N. D.	50.	ug/kg	90	93	80-120	3	30
Sample number (s) : 7762645-7762646							
N. D.	25.	ug/kg	95	103	80-120	8	30
N. D.	50.	ug/kg	93	103	80-120	11	30
N. D.	50.	$\mathrm{ug} / \mathrm{kg}$	91	100	76-120	10	30
N. D.	25.	ug/kg	100	109	76-122	8	30
N. D.	50.	ug/kg	78	88	64-120	13	30
N. D.	50.	ug/kg	93	105	80-120	12	30
N. D.	50.	ug/kg	90	106	79-120	16	30
N. D.	50.	ug/kg	89	106	78-120	17	30
N. D.	50.	ug/kg	92	103	80-120	11	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates				Group Number: 1536371				
Reported: 02/17/15 at 10:18 AM								
	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Analysis Name	Result	MDL	Units	\% ${ }^{\text {d }}$ (\%REC	Limits	RPD	Max
Batch number: 15046049531A	Sample number $(\mathrm{s}): 7762627$ -							
TOC Solids/Sludges Combustion	N. D.	0.0100	$\begin{aligned} & \text { \% by } \\ & \text { wt. } \end{aligned}$	123		47-143		
Batch number: 15042820006A	Sample number (s) : 7762626-7762635							
Moisture				100		99-101		
Batch number: 15042820006 B	Sample number (S) : 7762636-7762645							
Moisture				100		99-101		
Batch number: 15043820001A	Sample number(s) : 7762646							
Moisture				100		99-101		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS \% REC	$\begin{aligned} & \text { MSD } \\ & \text { \%REC } \end{aligned}$	MS /MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup Max	RPD
Batch number: Q150411AA	Sample number (S) : $7762634,7762641-7762643$ UNSPK: P763227									
Benzene	97	102	55-143	2	30					
Ethylbenzene	133	85	44-141	10	30					
Isopropylbenzene	60	38	38-144	10	30					
Methyl Tertiary Butyl Ether	98	110	55-129	6	30					
Naphthalene	-33 (2)	-69 (2)	10-138	3	30					
Toluene	82	86	50-146	2	30					
1,2,4-Trimethylbenzene	-70 (2)	-9 (2)	37-149	2	30					
1,3,5-Trimethylbenzene	-54 (2)	$\begin{gathered} -201 \\ (2) \end{gathered}$	38-150	12	30					
Xylene (Total)	184 (2)	113 (2)	44-136	9	30					
Batch number: Q150421AA	Sample number (S) : 7762644-7762645 UNSPK: P764250									
Benzene	82	82	55-143	6	30					
Ethylbenzene	80	81	44-141	5	30					
Isopropylbenzene	79	79	38-144	7	30					
Methyl Tertiary Butyl Ether	87	85	55-129	9	30					
Naphthalene	63	61	10-138	9	30					
Toluene	78	80	50-146	4	30					
1,2,4-Trimethylbenzene	81	81	37-149	7	30					
1,3,5-Trimethylbenzene	80	80	38-150	6	30					
Xylene (Total)	80	80	44-136	6	30					
Batch number: 15046049531 A	Sample number $(\mathrm{s}): 7762627$ UNSPK: 7762627 BKG : 7762627									
TOC Solids/sludges Combustion	124		22-155			N. D.	N. D.	0 (1)	13	
Batch number: 15042820006 A Moisture		Sample number $(s): 7762626-7762635$ BKG: 7762632								
Batch number: 15042820006B Moisture	Sample number $(S): 7762636-7762645$ BKG: 7762638									
Batch number: 15043820001 A	Sample number $(S): 7762646$ BKG: P762282									
*- Outside of specification										
(1) The result for one or both determinations was less than five times the LOQ.										

Quality Control Summary

Client Name: Rettew Associates Group Number: 1536371 Reported: 02/17/15 at 10:18 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	\% $\%$ REC	\%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Moisture						7.7	9.4	20*	

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- Solid by 8260B
Batch number: Q150391AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7762626	64	63	65	66
7762627	77	76	73	72
7762628	71	69	72	75
7762629	77	77	74	75
7762630	79	79	77	67
7762631	68	68	65	66
7762632	69	71	66	80
7762633	70	75	78	60
7762634	60	60	61	81
7762635	85	83	83	68
7762636	67	69	67	83
7762637	60	62	60	67
7762638	89	92	86	60
7762639	68	70	66	88
7762640	60	95	58	80
Blank	95	85	84	83
LCS	86	89	84	$50-131$
LCSD	89	$54-135$	56	

Analysis Batch name: Vocs- Solid by number: Q150411AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8		
	70	65	4-Bromofluorobenzene	
7762641	69	67	65	69
7762642	68	81	77	78
7762643	84	105	100	94
Blank	103	87	86	83
LCS	89	91	89	86
LCSD	93	61	66	74
MS	64	68	68	76
MSD	69	$54-135$	$52-141$	$50-131$

Analysis Name: VOCs- Solid by 8260 B
Batch number: Q150421AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7762644	81	80	74	72
7762645	65	69	67	66

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates Group Number: 1536371
Reported: 02/17/15 at 10:18 AM

Surrogate Quality Control

Blank	117	115	110	102
LCS	98	96	95	91
LCSD	99	98	95	78
MS	86	81	80	79
MSD	84	81	80	$50-131$

Analysis Batch nume: VOCs- Solid by 8260 B Bumber: Q150431AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	
7762646	80	79	80
Blank	95	93	95
LCS	97	96	98
LCSD	106	103	106
Limits:	$50-141$	$54-135$	$52-141$

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.
 (B) Data Package Options (circle if required)
ansoduos

Sample Identification			Collected	
			Date	Time
	$5 R-1205 F$		$2,4 / 62$	14.00
	$5 B-U P / A P C$		$2 / 513$	10:0)
	$5 B-1614$		12.5118	10:00
	$5 B-2 / e r Q+$		2/5/15	1350
	$53-21 e 10 \mathrm{OL}$		Le/e/15	1085
	$5 \sqrt{3-13}$ elo ght		2/5/is	$1 / 20$
	$5 \sqrt{3}-14$ ell 16		2/5/15	1135
	53-15 \& 116		2/5/15	115
	$50-12$ ef 6		$2.5 / 10$	$12 / 5$
	$53-12 e+2 L^{2}$		$28 / 4$	1220
(7) Turnaround THme (TAT) Requested (please circle)RushSush TAT is subject to Taboratory approval and surcharge.)				
Date results are needed: E-mail address: $E D 2 Z E D Z Z C R E T T E \sim \cdot C O N$				
(B) Data Package Options (circle if required)				
Type I (Validation/non-CLP)		Type VI (Raw Data Only)		
Type III (Reduced non-CLP)		TX TRRP-13		
	Type IV (CLP SOW)	MA MCP	CT RCP	

		2352000										
		spo coowomm cowd	- 2	入	L	x	-	-	\bigcirc	λ	χ	\pm
		staulepuos to \#1ełol	\cdots	N	N	\cdots			\cdots	N	1	N
		:1ецдо										
$\frac{x}{5}$	$\begin{aligned} & \square \\ & \square \end{aligned}$											

Type I (Validation/non-CLP) Type VI (Raw Data Oniy)
Sample ldentification

onlsoduro
\square

Client: Rettew Associates, Inc.

Delivery and Receipt Information

| Delivery Method: | Client Drop Off | | Arrival Timestamp: | 02/05/2015 18:19 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of Packages: | 1 | | Number of Projects: | 1 |
| State/Province of Origin: | PA | | | |

Arrival Condition Summary

Shipping Container Sealed:	No	Sample IDs on COC match Containers:	No
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	2
Samples Intact:	Yes	Trip Blank Type:	HCl
Missing Samples:	No	Air Quality Samples Present:	No
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Jordan Woods (6698) at 18:46 on 02/05/2015

Samples Chilled Details

Thermometer Types: $\quad D T=$ Digital (Temp. Bottle) $\quad I R=$ Infrared (Surface Temp) \quad All Temperatures in ${ }^{\circ} \mathrm{C}$.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
$\mu \mathrm{g}$	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	$\begin{array}{r} \mu \mathrm{L} \\ \mathrm{pg} / \mathrm{L} \end{array}$	microliter(s) picogram/liter
$<$	less than		
>	greater than		
ppm	parts per million - One pp aqueous liquids, ppm is u very close to a kilogram.	milligram p valent to m ne ppm is	kilogram ($\mathrm{mg} / \mathrm{kg}$) or one gram per mil rams per liter (mg / l), because one liter ivalent to one microliter per liter of g
ppb	parts per billion		
Dry weight basis	Results printed under this concentration to approxim as-received basis.	justed for in a similar	sture content. This increases the an mple without moisture. All other res

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWLL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

HERR FOODS, INC.

PROJECT \#:	101722001	SAMPLED:	-
SAMPLES:	1	LOCATION:	-
JAY KAY TESTING, INC.			
REPORT:	$02 / 13 / 15$	REMARKS:	-

BORING	SAMPLE	DEPTH (ft.)	MC \%	WET DENSITY (PCF)	DRY DENSITY (PCF)	Pass \#200
SB-11	Tube	14.0-15.0	17.4	130.9	111.6	43.5

HERR FOODS, INC.

Boring:	SB-11	Project No.:	101722001	JAY KAY TESTING, INC.
Sample:	Tube	Sampled:	-	5233 Lehman Road, Suite 110
Depth:	14.0-15.0'	Location:	-	Spring Grove, PA 17362 Phone: (410) 259-5101

GRAIN SIZE ANALYSIS

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201509: 20$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

| $24-10$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall $Q C$ performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
10237	VoCs- Solid by 8260B	SW-846	8260B	1	Q151701AA	06/19/2015	10:47	Anita M Dale	45.05
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	09:20	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 A	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201509: 30$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	21	36.76
10237	Ethylbenzene	100-41-4	N. D.	42	36.76
10237	Isopropylbenzene	98-82-8	N. D.	42	36.76
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	21	36.76
10237	Naphthalene	91-20-3	N. D.	42	36.76
10237	Toluene	108-88-3	N.D.	42	36.76
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	42	36.76
10237	1,3,5-Trimethylbenzene	108-67-8	N.D.	42	36.76
10237	Xylene (Total)	1330-20-7	N. D.	42	36.76
Wet Ch	hemistry SM 2540	G-1997	$\%$	$\%$	
00111	Moisture	п.a.	13.1	0.50	1

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an
as-received basis.

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151701AA	06/19/2015	11:10	Anita M Dale	36.76
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	09:30	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 A	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201509: 40$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

25-09

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	$\begin{aligned} & \text { Dry } \\ & \text { Result } \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	31	45.05
10237	Ethylbenzene	100-41-4	N. D.	62	45.05
10237	Isopropylbenzene	98-82-8	N. D.	62	45.05
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	31	45.05
10237	Naphthalene	91-20-3	N. D.	62	45.05
10237	Toluene	108-88-3	N. D.	62	45.05
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	62	45.05
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	62	45.05
10237	Xylene (Total)	1330-20-7	N. D.	62	45.05
Wet Chemistry SM 2540 G-1997			\%	\%	
00111	Moisture Moisture represents the loss 103 - 105 degrees Celsius. The as-received basis.	n.a. in weight of th e moisture resu	27.6 ample a reported	0.50	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151701AA	06/19/2015	11:34	Anita M Dale	45.05
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	09:40	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 A	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201509: 50$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

25-15

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	29	47.62
10237	Ethylbenzene	100-41-4	N. D.	57	47.62
10237	Isopropylbenzene	98-82-8	N.D.	57	47.62
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	29	47.62
10237	Naphthalene	91-20-3	N.D.	57	47.62
10237	Toluene	108-88-3	N. D.	57	47.62
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	57	47.62
10237	1,3,5-Trimethylbenzene	108-67-8	N.D.	57	47.62
10237	Xylene (Total)	1330-20-7	N. D.	57	47.62
Wet Chemistry SM 2540		G-1997	\%	$\%$	
00111	Moisture	п.a.	16.6	0.50	1
	Moisture represents the loss 103 - 105 degrees Celsius. Th as-received basis.	in weight of the e moisture resu	ample a reported		

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151701AA	06/19/2015	11:57	Anita M Dale	47.62
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	09:50	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 A	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201510: 10$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N. D.	31	50.71
10237	Ethylbenzene	100-41-4	N.D.	62	50.71
10237	Isopropylbenzene	98-82-8	N. D.	62	50.71
10237	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	31	50.71
10237	Naphthalene	91-20-3	N. D.	62	50.71
10237	Toluene	108-88-3	N. D.	62	50.71
10237	1,2,4-Trimethylbenzene	95-63-6	N.D.	62	50.71
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	62	50.71
10237	Xylene (Total)	1330-20-7	N. D.	62	50.71
Wet Ch	emistry SM 2540	G-1997	\%	$\%$	
00111	Moisture	п.a.	18.7	0.50	1

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an
as-received basis.

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis Date and T		Analyst	Dilution Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q151701AA	06/19/2015	12:20	Anita M Dale	50.71
06171	GC/MS-5g Field Preserv. MeOH	SW-846 5035A	1	201516337951	06/12/2015	10:10	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15174820001A	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201510: 20$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

CAT No.	Analysis Name	CAS Number	$\begin{aligned} & \text { Dry } \\ & \text { Result } \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	28	49.12
10237	Ethylbenzene	100-41-4	N. D.	57	49.12
10237	Isopropylbenzene	98-82-8	N. D.	57	49.12
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	28	49.12
10237	Naphthalene	91-20-3	N. D.	57	49.12
10237	Toluene	108-88-3	N. D.	57	49.12
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	57	49.12
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	57	49.12
10237	Xylene (Total)	1330-20-7	N. D.	57	49.12
Wet Chemistry SM 2540		G-1997	\%	$\%$	1
00111	Moisture	п.a.	13.7	0.50	
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.				

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record										
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution	
No.				Date and Ti			Factor			
10237	Vocs- Solid by 8260B	SW-846	8260B		1	Q151701AA	06/19/2015	13:28	Anita M Dale	49.12
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	10:20	Client Supplied	1	
00111	Moisture	SM 2540	G-1997	1	15174820001 A	06/23/2015	13:29	Lisa J Cooke	1	

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201510: 40$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result		$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$		$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	53	J	28	43.33
10237	Ethylbenzene	100-41-4	N. D.		56	43.33
10237	Isopropylbenzene	98-82-8	N. D.		56	43.33
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.		28	43.33
10237	Naphthalene	91-20-3	N. D.		56	43.33
10237	Toluene	108-88-3	N. D.		56	43.33
10237	1,2,4-Trimethylbenzene	95-63-6	510		56	43.33
10237	1,3,5-Trimethylbenzene	108-67-8	200	J	56	43.33
10237	Xylene (Total)	1330-20-7	440		56	43.33
Wet Chemistry SM 2540		G-1997	\%		$\%$	1
00111	Moisture	п.a.	22.0		0.50	
	Moisture represents the loss 103 - 105 degrees Celsius. The as-received basis.	in weight of the e moisture resu	ample a reporte	r		

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151701AA	06/19/2015	13:51	Anita M Dale	43.33
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	10:40	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 B	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201510: 50$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N. D.	27	46.73
10237	Ethylbenzene	100-41-4	N. D.	55	46.73
10237	Isopropylbenzene	98-82-8	N. D.	55	46.73
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	27	46.73
10237	Naphthalene	91-20-3	N. D.	55	46.73
10237	Toluene	108-88-3	N. D.	55	46.73
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	55	46.73
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	55	46.73
10237	Xylene (Total)	1330-20-7	N. D.	55	46.73
Wet Chemistry SM 2540		G-1997	\%	\%	1
00111	Moisture	п.a.	14.6	0.50	
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.				

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151701AA	06/19/2015	$14: 14$	Anita M Dale	46.73
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	10:50	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 B	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201511: 40$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

CAT No.	Analysis Name	CAS Number	$\begin{aligned} & \text { Dry } \\ & \text { Result } \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	29	49.02
10237	Ethylbenzene	100-41-4	N. D.	58	49.02
10237	Isopropylbenzene	98-82-8	N. D.	58	49.02
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	29	49.02
10237	Naphthalene	91-20-3	N. D.	58	49.02
10237	Toluene	108-88-3	N. D.	58	49.02
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	58	49.02
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	58	49.02
10237	Xylene (Total)	1330-20-7	N. D.	58	49.02
Wet Chemistry SM 2540		G-1997	\%	$\%$	1
00111	Moisture	п.a.	15.2	0.50	
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.				

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151703AA	06/20/2015	00:03	Kevin A Sposito	49.02
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	11:40	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 B	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201511: 50$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	$\begin{gathered} \text { Dry } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	25	43.18
10237	Ethylbenzene	100-41-4	N. D.	51	43.18
10237	Isopropylbenzene	98-82-8	N. D.	51	43.18
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	25	43.18
10237	Naphthalene	91-20-3	N. D.	51	43.18
10237	Toluene	108-88-3	N. D.	51	43.18
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	51	43.18
10237	1,3,5-Trimethylbenzene	108-67-8	N.D.	51	43.18
10237	Xylene (Total)	1330-20-7	N. D.	51	43.18
Wet Chemistry SM 2540		G-1997	\%	\%	
00111	Moisture	п.a.	14.9	0.50	1
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.				

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151703AA	06/20/2015	00:26	Kevin A Sposito	43.18
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	11:50	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 B	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201512: 10$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an
as-received basis.

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and T			Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q151703AA	06/20/2015	02:43	Kevin A Sposito	44.48
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q151703AA	06/20/2015	03:06	Kevin A Sposito	444.84
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846 5035A	1	201516337951	06/12/2015	12:10	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15174820001 B	06/23/2015	$13: 29$	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201512: 20$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	```Dry Method Detection Limit```	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N. D.	24	41.6
10237	Ethylbenzene	100-41-4	N. D.	49	41.6
10237	Isopropylbenzene	98-82-8	N. D.	49	41.6
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	24	41.6
10237	Naphthalene	91-20-3	N. D.	49	41.6
10237	Toluene	108-88-3	N.D.	49	41.6
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	49	41.6
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	49	41.6
10237	Xylene (Total)	1330-20-7	N. D.	49	41.6
Wet Chemistry SM 2540		G-1997	\%	\%	
00111	Moisture	п.a.	14.4	0.50	1
	Moisture represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported is on an as-received basis.				

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151703AA	06/20/2015	00:48	Kevin A Sposito	41.6
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	12:20	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 B	06/23/2015	13:29	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201512: 40$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$	3020 Columbia Avenue	
		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

27-09

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N. D.	29	48.45
10237	Ethylbenzene	100-41-4	2,000	58	48.45
10237	Isopropylbenzene	98-82-8	730	58	48.45
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	29	48.45
10237	Naphthalene	91-20-3	1,300	58	48.45
10237	Toluene	108-88-3	N. D.	58	48.45
10237	1,2,4-Trimethylbenzene	95-63-6	20,000	580	484.5
10237	1,3,5-Trimethylbenzene	108-67-8	6,700	58	48.45
10237	Xylene (Total)	1330-20-7	6,400	58	48.45
Wet Chemistry SM 2540 G-1997			\%	$\%$	
00111	Moisture Moisture represents the loss 103 - 105 degrees Celsius. Th as-received basis.	n.a. in weight of th e moisture resu	16.1 ample a reported	0.50	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and T			Factor
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q151703AA	06/20/2015	03:29	Kevin A Sposito	48.45
10237	Vocs- Solid by 8260B	SW-846 8260B	1	Q151703AA	06/20/2015	03:51	Kevin A Sposito	484.5
06171	$\begin{aligned} & \text { GC/MS-5g Field Preserv. } \\ & \text { MeOH } \end{aligned}$	SW-846 5035A	1	201516337951	06/12/2015	12:40	Client Supplied	1
00111	Moisture	SM 2540 G-1997	1	15174820001 B	06/23/2015	$13: 29$	Lisa J Cooke	1

Project Name: Herr Foods Inc.

Collected: $06 / 12 / 201512: 50$	by SH	Rettew Associates
Submitted: $06 / 12 / 201514: 45$		Lancaster PA $17603-4011$

Reported: $06 / 27 / 201519: 31$

27-20

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	Vocs- Solid by 8260B	SW-846	8260B	1	Q151703AA	06/20/2015	01:11	Kevin A Sposito	47.08
06171	GC/MS-5g Field Preserv. MeOH	SW-846	5035A	1	201516337951	06/12/2015	12:50	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	15174820001 B	06/23/2015	13:29	Lisa J Cooke	1

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1568784
Reported: 06/27/2015 19:31

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name

Batch number: Q151701AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)

Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Result	MDL	Units	\%REC		Limits	RPD	Max
Sample number(S) : 7926802-7926803,7926805-7926813							
N. D.	25.	ug/kg	100	107	80-120	7	30
N. D.	50.	ug/kg	96	103	80-120	8	30
N. D.	50.	ug/kg	92	98	76-120	7	30
N. D.	25.	ug/kg	99	106	72-120	7	30
N. D.	50.	ug/kg	86	93	64-120	8	30
N. D.	50.	$\mathrm{ug} / \mathrm{kg}$	101	107	80-120	6	30
N. D.	50.	ug/kg	94	101	79-120	7	30
N. D.	50.	ug/kg	94	99	78-120	5	30
N. D.	50.	ug/kg	95	102	80-120	7	30
Sample number(s) : 7926804,7926814-7926819							
N. D.	25.	$\mathrm{ug} / \mathrm{kg}$	100	99	80-120	1	30
N. D.	50.	$\mathrm{ug} / \mathrm{kg}$	95	95	80-120	0	30
N. D.	50.	ug/kg	91	92	76-120	1	30
N. D.	25.	$\mathrm{ug} / \mathrm{kg}$	98	99	72-120	1	30
N. D.	50.	ug/kg	88	83	64-120	7	30
N. D.	50.	ug/kg	100	99	80-120	1	30
N. D.	50.	ug/kg	93	89	79-120	4	30
N. D.	50.	ug/kg	94	89	78-120	6	30
N. D.	50.	ug/kg	94	93	80-120	1	30
Sample number(S) : 7926802-7926811							
			100		99-101		
Sample number(s) : 7926812-7926819							
			100		99-101		

Batch number: Q151703AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)
Batch number: 15174820001A Moisture

Batch number: 15174820001B
Moisture

B
R

Sample Matrix Quality Control
Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1568784
Reported: 06/27/2015 19:31

Surrogate Quality Control
Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.
Analysis Name: Vocs- Solid by 8260 B
Batch number: Q151701AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7926802	79	81	80	80
7926803	88	94	87	87
7926805	82	87	82	83
7926806	71	76	70	70
7926807	78	83	77	76
7926808	70	78	69	81
7926809	82	87	80	69
7926810	59	59	59	81
7926811	78	84	80	70
7926812	57	61	56	85
7926813	86	94	86	86
Blank	86	91	88	85
LCS	83	88	85	89
LCSD	89	94	91	$50-131$

Analysis Name: Vocs- Solid by 8260 B
Batch number: Q151703AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7926804	60	61	62	75
7926814	83	87	81	80
7926815	83	89	82	81
7926816	73	79	75	79
7926817	70	74	70	74
7926818	71	78	73	75
7926819	79	83	79	82
Blank	86	89	86	83
LCS	83	86	84	81
LCSD	82	84	$53-131$	

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

sHoulepuos to enol

Acct. \# 721
:i tic eurofins
Lancaster Laboratories
Environmental Client
(1) Client Information
ate results are needed:

Sample Identification

Standard Rush
(Rush TAT is subject to laboratory approval and surcharge.)

Type I (Validation/non-CLP)
Type III (Reduced non-CLP)
Type IV (CLP SOW)
E-mail address:

Type VI (Raw Data Only)

$\varepsilon L \cdot d y \searrow \searrow \perp X \perp$
Eurofins Lancaster Laboratories Environmental, LLCP: 2425 New Holland Pike, Lancaster, PA 17601•717-656-2300

Client: Rettew Associates

Delivery and Receipt Information

| Delivery Method: | Client Drop Off | | Arrival Timestamp: | $\underline{06 / 12 / 2015} 14: 45$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of Packages: | 1 | | Number of Projects: | 1 |

Arrival Condition Summary

Shipping Container Sealed:	Yes	Sample IDs on COC match Containers:	No
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	N/A
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	O
Samples Intact:	Yes	Air Quality Samples Present:	No
Missing Samples:	No		
Extra Samples:	No		
Discrepancy in Container Qty on COC:	Yes		

Unpacked by Timothy Cubberley (6520) at 15:43 on 06/12/2015

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
$\mu \mathrm{g}$	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	$\begin{array}{r} \mu \mathrm{L} \\ \mathrm{pg} / \mathrm{L} \end{array}$	microliter(s) picogram/liter
$<$	less than		
>	greater than		
ppm	parts per million - One pp aqueous liquids, ppm is u very close to a kilogram.	milligram p valent to m ne ppm is	kilogram ($\mathrm{mg} / \mathrm{kg}$) or one gram per mil rams per liter (mg / l), because one liter ivalent to one microliter per liter of g
ppb	parts per billion		
Dry weight basis	Results printed under this concentration to approxim as-received basis.	justed for in a similar	sture content. This increases the an mple without moisture. All other res

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWLL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX E

Waste Disposal Manifests

NON-HAZARDOUS WASTE MANIFEST

16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations.
Printed / Typed Name

$\Delta \in R C$ NON-HAZARDOUS WASTE MANIFEST

NON-HAZARDOUS WASTE MANIFEST
3. Generator'S Name and Mailing,Address
273 Old Baltimore Pike 273 Old Baltimore Pike

4. Generator's Phone (610, $932-9330$

16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations.

19. Discrepancy Indication Space
20. Facility Owner or Operator: Certification of receipt of the waste materials covered by this manifest, except as noted in item 19.

Printed / Typed Name

White Copy: Environmental Recovery Corp.

APPENDIX F Low Flow Groundwater Purging and Monitoring Data Sheets

LOW－FLOW PURGUING AND SAMPLING
DATA SHEET
Field Personnel：Ed Dziedzic

Pump：4－Stage SS Mega Monsoon With DC Controller Meter：YSI 556 Multiparameter With Flow Cell \begin{tabular}{lcccc}
Screened Interval： \& 7 to 27 ft. \& $\approx 4.5 \mathrm{gd}$ PuR6さり

Depth To Water Before Pump Installation： \& 2.20 \& \&

Pump Intake Depth： \& 10 ft. \& \& Sample Time： \& $10: 55$

\hline

Screened Interval： \& 7 to 27 ft. \& $\approx 4.5 \mathrm{gd}$ PuR6さり

Depth To Water Before Pump Installation： \& 2.20 \& \&

Pump Intake Depth： \& 10 ft. \& \& Sample Time： \& $10: 55$

\hline

Screened Interval： \& 7 to 27 ft. \& $\approx 4.5 \mathrm{gd}$ PuR6さり

Depth To Water Before Pump Installation： \& 2.20 \& \&

Pump Intake Depth： \& 10 ft. \& \& Sample Time： \& $10: 55$

\hline

Screened Interval： \& 7 to 27 ft. \& $\approx 4.5 \mathrm{gd}$ PuR6さり

Depth To Water Before Pump Installation： \& 2.20 \& \&

Pump Intake Depth： \& 10 ft. \& \& Sample Time： \& $10: 55$

\hline
\end{tabular}

 We answer to you． Site：Herr Foods，Inc．，Nottingham，PA Date：3／9／15
50
$\begin{array}{ll}\text { Well No．：} & \text { MW－1 } \\ \text { Well Depth：} & 27 \mathrm{ft} .\end{array}$
Well Diameter：2－inch

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity$(\mathrm{mS} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp． （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \text { Pumping } \\ \text { Rate* } \\ (\mathrm{ml} / \mathrm{min}) \\ \hline \end{gathered}$	Depth To Water
	Reading	Change												
10：10		NA	600	2.20										
$10: 32$	6.03		0.277		309.4		2.25		0.245		11.40		500	3.40
$10: 36$	6.12		0.285		304.2		6.68		0.251		61.65		500	3.36
$10: 41$	6.15		0.302		301.1		6.39		0.267		61.65	0	400	3.25
$10: 47$	6.24	$+0.09$	0.337	$+10 \%$	294.3	－6．8	6.05	-0.34	0.295	$+9 \%$	11.72	$+0.07$	200	3.26
$10: 51$	6.25	＋0．01	0.342	＋ 2%	293.4	－0．9	6.03	－0．02	0.299	$+106$	11.51	－0．21	200	3.18
$\begin{array}{\|c\|} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{array}$	＋／－0．	． 2 SU	＋／－3\％of	f Reading	$=/-20$	mV＊＊	＋／－0．2	$\mathrm{mg} / \mathrm{L}^{* *}$	＋／－10\％	of Reading		$0.2^{\circ} \mathrm{C}$		A

10：10－10：32 ADDON CLAMPS AUS ADTU STED FLOW CELC TO
CONTMOC LEALSS，ADJSTED FLOW RATE
H：\Projects\10172\101722001\GS\Site Characterization\Low－Flow Data Sheet．xlsx
LOW-FLOW PURGUING AND SAMPLING DATA SHEET
Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller
Meter: YSI 556 Multiparameter With Flow Cell

2.86
Depth To Water Before Pump Installation:
Pump Intake Depth: $\quad 10 \mathrm{ft}$.

Time	$\begin{gathered} \mathrm{pH} \\ \text { (SU) } \end{gathered}$		Conductivity ($\mathrm{mS} / \mathrm{cm}$)		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \\ & \hline \end{aligned}$		Temp. (${ }^{\circ} \mathrm{C}$)		$\begin{aligned} & \text { Pumping } \\ & \text { Rate* } \\ & (\mathrm{ml} / \mathrm{min}) \\ & \hline \end{aligned}$	Depth To Water
	Reading	Change												
$n: 34$		NA	600	2.96										
1:37	5.35		1.982		323.1		7.01		1.293		10.28		450	4.88
$11: 44$	5.32		2.028		326.8		6.39		1.808		10.83		600	4.55
11:50	5.32	0	2.040		328.4		6.28		1.815		10.91		350	4.42
$11: 55$	5.32	0	2.058	$+1 \%$	330.9	$+2.5$	6.30	$+0.02$	1.830	$+1 \%$	10.93	+0.02	450	4.30
										.				
$\begin{gathered} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{gathered}$			+/-3\% o	f Reading	=/-	mV**	+/-0.2	$\mathrm{mg} / \mathrm{L}^{* *}$	+/-10\%	of Reading		. $2^{\circ} \mathrm{C}$		

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556
LOW-FLOW PURGUING AND SAMPLING DATA SHEET
Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller Meter: YSI 556 Multiparameter With Flow Cell
Screened Interval: 5 to 25 ft .
Depth To Water Before Pump Installation: Pump Intake Depth: $\quad 11 \mathrm{ft}$.

[^22]LOW-FLOW PURGUING AND SAMPLING DATA SHEET
Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller Meter: YSI 556 Multiparameter With Flow Cell
Screened Interval: $\quad 0$ to 19 ft .

Pump Intake Depth:

[^23]LOW-FLOW PURGUING AND SAMPLING DATA SHEET

> Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller Meter: YSI 556 Multiparameter With Flow Cell
Screened Interval: $\quad 7$ to 27 ft .
Depth To Water Before Pump Installation:
Pump Intake Depth:

[^24]LOW-FLOW PURGUING AND SAMPLING data sheet
Field Personnel: Ed Dziedzic
 We answer to you. Site: Herr Foods, Inc., Nottingham, PA 4111.5 Weather: SUN/NY 45° Well No.: MW-1
Well Depth:
Well Diameter: 2-inch

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$	
	Reading	Change
8.24		NA
8:28	6.25	
$8: 31$	5.96	
$8: 34$	5.90	
8:38	5.86	
$8: 41$	5.85	
3:43	5.89	+0.01
8:46	5.81	-0.03
Stabilization Criteria	+/-0.2 SU	

[^25]H:\Projects\10172\101722001\GS\Site Characterization\Low-Flow Data Sheet.xlsx

LOW-FLOW PURGUING AND SAMPLING

DATA SHEET

Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller Meter: YSI 556 Multiparameter With Flow Cell

Screened Interval: 3 to 23 ft .
Screened Interval:
Depth To Water Bef Pump Intake Depth:
tallation:
10 ft.

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556

$$
\begin{aligned}
& \text { ump Intake Depth: } \\
& \hline \hline
\end{aligned}
$$

LOW-FLOW PURGUING AND SAMPLING DATA SHEET

> Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller
Meter: YSI 556 Multiparameter With Flow Cell
7 to 27 ft .
2.9417
Depth To Water Before Pump Installation:
Pump Intake Depth: $\quad 10 \mathrm{ft}$.

Site: Herr	oods, Inc.	tingham,				Field Pers	nnel: Ed Dz	ziedzic							
Date:	41115					Pump: 4	age SS Meg	Mansoo	With DC C	ntroller					
Weather:		Nary	45°			Meter: YS	556 Multip	arameter	ith Flow C						
Well No.:		MW-5				Screened	terval:		7 to 27 ft .				5	P	(0) 0
Well Depth		27 ft .				Depth T	Vater Bef	Pump	tallation:	. 94					(6)
Well Diame	ter:	2-inch				Pump Int	e Depth:		10 ft .		Sample Ti	: ll:	03		
		H	Condu (mS	$\begin{aligned} & \text { Ictivity } \\ & \hline \mathrm{cm}) \\ & \hline \end{aligned}$									Pumping Rate*	Depth To	
Time	Reading	Change	($\mathrm{ml} / \mathrm{min}$)	Water											
$10: 38$		NA	600	2.88	6.2 V										
$10: 42$	5.01		1.679		285.4		6.60		1.474		11.45		400	3.24	
10:45	4.93		1.685		281.1		4.20		1.474		11.56		375	3.20	
10:48	4.94		1.698		277.3		2.88		1.482		11.70		550	3.35	6.34
$10: 52$	4.89		1.705		283.1		2.93		1.467		12.19		600	3.43	
$10: 55$	4.91		1.701		276.0		3.17		1.468		12.08		400	3.35	$6.2 y$
$10: 59$	4.89	-0.02	1.682	-1%	274.4	-1.6	2.97	-0.20	1.851	-1%	12,17	+0.0\%	400	3.29	
11.01	4.89	0	1,688	$<1 \%$	272.6	-1.8	2.91	-0.08	1.456	$\angle 1 \%$	1208	-0.09	300	3.25	
Stabilization ${ }_{\text {Criteria }}$	+/-0	. 2 SU	$\div /-3 \%$ o	f Reading	$=/-20$	$\mathrm{mV}^{* *}$	+/-0.2	mg/L**	+/-10\%	of Reading	+/-	0.2 ${ }^{\circ} \mathrm{C}$		NA	

[^26]LOW-FLOW PURGUING AND SAMPLING DATA SHEET
Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller
Meter: YSI 556 Multiparameter With Flow Cell

Well No.: Well Depth: Well Diameter:		MW-4 19 ft . 2-inch	Conductivity$(\mathrm{ms} / \mathrm{cm})$		Screened Interval Depth To Water B Pump Intake Dept			0 to 19 ft . tallation: 10 ft .		3.37	5 sal Purbeot SHEEN, STMark ODOR Sample Time: $12: 02$							
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$				$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp. (${ }^{\circ} \mathrm{C}$)		Pumping Rate* ($\mathrm{ml} / \mathrm{min}$)	Depth To Water				
	Reading	Change																
11:38		NA		3.37														
11:41	9.92		1.193		76.6		5.40		1.077		10.78							
11:45	9.53		1.159		62.5		2.90		1.021		11.37		>500	4.40				
11.48	9.17		1.138		-157.8		2.73		0.991		11.64		600	4.48				
11:51	-3.54		1.131		-167.0		2.05		0.985		11.46		400	4.43				
$11: 53$	8.19		1.077		-24.2		1.86		0.927		11.93		300	4.30				
$11: 56$	7.82		1.054		-23.4		1.27		0.905		12.22		300	4.35				
16:58	7.58	-0.24	1.048	L1\%	-8.8	$+14.6$	1.76	-0.01	0.900	-1%	12.29	t0.07	300	4.30				
12:00	7.39	-0.19	1.055	<1\%	-10.1	-1.3	1.80	+0.04	0.907	$+1 \%$	1227	-0.02	450	4.28				
Stabilization Criteria	+/-0.2 SU		+/-3\% of Reading		=/-20 mV**		+/-0.2 mg/L**		+/-10\% of Reading		$+/-0.2^{\circ} \mathrm{C}$		NA					

BUBBLIM SUBSDNON
SIFIES SPL UBSERVES ON TUBING UPW ROMOVAL
H:\Projects $\backslash 10172 \backslash 101722001$ \GS\Site Characterization \ow-Flow Data Sheet.xlsx
LOW-FLOW PURGUING AND SAMPLING DATA SHEET
Field Personnel: Ed Dziedzic
Pump: 4-Stage SS Mega Monsoon With DC Controller Meter: YSI 556 Multiparameter With Flow Cell Screened Interval: 5 to 25 ft . Depth To Water Before Pump Installation: Pump Intake Depth: 2.96 Ft $4.5 \mathrm{gd} \mathrm{Pun6e}$

LOW-FLOW PURGUING AND SAMPLING
data sheet

Meter: Multiparameter With Flow Cell 15%
Screened Interval: 3 to 23 ft. Pump Intake Depth:
firdag ayełul duand
10 ft .

$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \\ & \hline \end{aligned}$		Temp. $\left({ }^{\circ} \mathrm{C}\right)$			Depth To Water
Reading	Change	Reading	Change	Reading	Change	Reading	Change		
$10 \% 9$	NA	5.10	NA	1.648	NA	19.41	NA	270	
166.6	3, 3	3.55	1.25	4.654	Q, ig\%	1922	1) 14	270	\% 86
1083	38	348	0.43	1.656	0.048	147.15	0.77	270	388
101.9	1.2	3.37	0.05	1.657	0.001	$14 . j 4$	0.3	470	3, 36
100. 9	1.93	7. 85	1803	1.658	8.006	19.10	10.00	276	336
69.7	12	3, \%	18.07	$1-668$	0.600 !	fristom	0.04	220	3.34
+/-20 mV**		+/-0.2 mg/L**		+/-10\% of Reading		$+/-0.2^{\circ} \mathrm{C}$		NA	

5072359
Deborah Hannum
H:\Projects\10172\101722001\GS\Site Characterization\Low-Flow Data Sheet.x|sx

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556

Site: Herr Foods, Inc., Nottingham, PA Date: $7: 1.5$

Weather: Elomaly 78
Well No.: MW-2
Well Depth:
Well Depth:
Well Diameter:
2 -inch

К!!п!эприоэ

Reading \quad Change

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		
	Reading	Change	R
120.56	\cdots	NA	2
W28	8. 110	0.025	2
17 l	5.02	63.03	8
10%	3010	V. 61	7
163	5.3%	0.60	2
1788	950.30	0.01	2
Stabilization Criteria		2 SU	

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$

LOW-FLOW PURGUING AND SAMPLING
DATA SHEET
 Meter: Multiparameter With Flow Cell USE S

	$\begin{aligned} & i= \\ & m \end{aligned}$	$\frac{0}{n}$	\pm

Depth To Water Before Pump Installation: i, 85 $\frac{\text { SOL }}{\forall 0 \tau}$
$8 \cdots+5$

Sample Time: 4.152 | Temp. | Pumping |
| :--- | :--- | 3 6

6
 6
6
6
6
0
0
0
n
3
3
-

$$
8
$$

Field Personnel: Donswam E_{o} mod $(i(S T L)$
2

$$
8
$$ Screened Interval: $\quad 7$ to 27 ft . Screened Interval: Pump Intake Depth: 2 -

	Rea
	16

N

DO
(mg/L)

.

We answer to you. Site: Herr Foods, Inc., Nottingham, PA Date: $\quad 7 \mathrm{~m}=1$
 Well No.: MW-1

Well Depth: $\quad 27 \mathrm{ft}$. Well Depth:
Well Diameter:

Well Diameter: \quad 2-inch

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity ($\mathrm{mS} / \mathrm{cm}$)	
	Reading	Change	Reading	Change
$10 \% 0$	5 F	NA	10, St	NA
Y16\% ${ }^{2}$	$5{ }^{5}$	170	0.15	3 U4, 9
1116	5.47	\% $\mathrm{Lom}_{1} 6$	2.55°	0, D, \%
120	5.5\%	A, \%	0.55	On ber
1125	5×78		17.156	A. Wial
$113 / 2$	5 y	08.68	0.151	67.20
Stabilization Criteria		. 2 SU	+/-3\%	Reading

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556

$$
2021
$$

H:\Projects $\backslash 10172 \backslash 101722001 \backslash G S \backslash$ Site Characterization\Low-Flow Data Sheet.xlsx

Well No.:	MW-8
Well Depth:	20 ft.
Well Diameter:	2-inch

Screened Interval: $\quad 3$ to 20 ft .

data sheet
LOW-FLOW PURGUING AND SAMPLING

Site: Herr Foods, Inc., Nottingham, PA
良
Pump Intake Depth:

$$
\begin{aligned}
& \text { — }
\end{aligned}
$$

5072359
Deborah H
Deborah Hannum

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
* Resolution accuracy of multiparameter meter

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
5072359
Deborah Hannum
Screened Interval: 3 to 20 ft .
data sheet

Pump: Peristaltic Pump Cols- Pammin

Depth To Water Be

rotai furgud $24 g h$

H:\Projects\10172\101722001\GS\Site Characterization\Low-Flow Data Sheet.xlsx
LOW-FLOW PURGUING AND SAMPLING

DATA SHEET

Meter: Multiparameter With Flow Cell $4 \leq 5 \leq$
Screened Interval: $\quad 3$ to 20 ft .
Depth To Water Before Pump Installation: Pump Intake Depth:

5072398
Deborah Hannum

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter
H:\Projects\10172\101722001\GS\Site Characterization\Low-Flow Data Sheet.xlsx
 Site: Herr Foods, Inc., Nottingham, PA

Site: Herr Foods, Inc., Nottingham, PA
Date:
Weather: $\min _{\text {n }}$,
Well No.: \quad MW-9
Well Depth: 20 ft .
Well Depth:
Well Diameter
Well Diameter: \quad 2-inch
(nS)
Hd

NA
0.27

36
8
8.18

Time	pH (SU)		Conductivity (mS/cm)		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L} \end{gathered}$	
	Reading	Change	Reading	Change	Reading	Change	Reading	
020	¢ \%	NA	4.6	NA		NA	362	
48.5	6, 368	0.7	1.57	0.109	- 3 \% 6	IV,	277	
0180	58\%		1.463	4.42	- 27	7.2	$y=0$	2
5635	52	Put	1.68	18.72	- 1 cor 2	127	1-6	6
6340	$\omega_{0}+1$	$0_{0} .8$	$1-6$	9.06	$11-6$	\% 6	$1-63$	6
Stabilization Criteria	+/-0	2 SU	+/-3\%	Reading	+/-	$\mathrm{V}^{* *}$	+/-0	

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter

Site: Herr Foods, Inc., Nottingham, PA Date: $\quad Z=10 \cdots 1 \%$

Weather: $5 \mathrm{em} n \mathrm{~m}$ | Well No.: | MW-4 |
| :--- | :--- |
| Well Depth: | 19 ft. |
| Well Diameter: | 2-inch |

LOW-FLOW PURGUING AND SAMPLING
DATA SHEET

Meter: Multiparameter With Flow Cell $v 51551$
Screened Interval:

Depth To Water Before Pump Installation: 4 : पдdәa әуедиן dund
Pump: Peristaltic Pump

H:\Projects $\backslash 10172 \backslash 101722001 \backslash G S \backslash$ Site Characterization\Low-Flow Data Sheet.xlsx

[^27]* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter

LOW-FLOW PURGUING AND SAMPLING
DATA SHEET

Site: Herr Foods, Inc., Nottingham, PA
Date: $7=\mid \sqrt{2}+1)^{2}$
Weather: जxamy $\% 36$

Well No.:	MW-7
Well Depth:	20 ft.
Well Diameter:	2 -inch

Pump Intake Depth:

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity ($\mathrm{mS} / \mathrm{cm}$)		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp. (${ }^{\circ} \mathrm{C}$)		Pumping Rate* (ml/min)	Depth To Water
	Reading	Change												
1846		NA	0.34%	NA	58.8	NA	$2{ }^{2}$	NA		NA	5	NA	68	3.45
1050	508	6.268	4. 65	0.835	649	6	2. y^{8}	1.62	23.382	$B .04$		1877	31%	48
1166	5.16	$\theta 8$	6473	$03-6$	5 50	\%.	6.65	12.28	6.376	b. 506	72	2073	316	5.18
11%	520	17.64		12.005		36	$\sigma .51$	1504	94\% 79		1703	$6^{1 /} 22$	515	¢, 21
1110	52×3	$8{ }^{2}$	0. $\%$	6. 8 k 3	$55^{2} 0$		6.66	3 \%	5 3 72		17.08	0.173	3%	$5^{3}+2{ }^{2}$
$\begin{gathered} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{gathered}$		SU	+/-3\%	Reading		mV**	$+/-0$	$\mathrm{mg} / \mathrm{L}^{* *}$	+/-10\%	f Reading		$2^{\circ} \mathrm{C}$		A

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter

[^28]
LOW-FLOW PURGUING AND SAMPLING

data sheet

Meter: Multiparameter With Flow Cell $\quad y^{2}$
Screened Interval: 5 to 25 ft .
Depth To Water Before Pump Installation: Pump Intake Depth:

[^29]

 5072398 Deborah Hannum

＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of YSI 556

H：\Projects\10172\101722001\GS\Site Characterization\Low－Flow Data Sheet．xlsx
$\begin{array}{ll}\text { Well No.: } & \text { MW-2 } \\ \text { Well Depth: } & 23 \mathrm{ft.} \\ \text { Well Diameter: } & \text { 2-inch }\end{array}$
Well Diameter：

Time	，				Pump Intake Depth：		
	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity （ $\mathrm{ms} / \mathrm{cm}$ ）		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		
	Reading	Change	Reading	Change	Reading	Change	Reading
00.208	6.8	NA	2.431	NA	1450	NA	2.24
0985	6.4	0.4 .45	2．982	d， 62	139.1	10.9	1.65
0970	6.20	$0.23)$	2.488	0.620	129.0	5.1	1.25
0935	6.12	0.08	2418	0.014	180.1	1.1	1.17
2940	6.10	0.02	2.40 b	0.016	128.4	1.7	1.12
$\begin{array}{\|c} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{array}$	＋／－0	2 SU	＋／3\％	Reading	＋／－20	mV＊＊	＋／－0．2

[^30]＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of YSI 556

H：\Projects\10172\101722001\GS\Site Characterization\Low－Flow Data Sheet．xlsx
LOW－FLOW PURGUING AND SAMPLING

DATA SHEET

Site：Herr Foods，Inc．，Nottingham，PA														
Date：injus														
Weather etsemiy E om						Meter：Multiparameter With Flow Cell								
Well No．：		MW－3				Screened Interval：			5 to 25 ft ．					
Well Dept		25 ft ．				Depth To Water Before Pump installation：$\delta^{\prime}=8$								
Well Diam	ter：	2－inch				Pump Intake Depth：			11 ft		Sample Time：$\%$ \％			
Time	pH （SU）		Conductivity （ $\mathrm{ms} / \mathrm{cm}$ ）		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp． （ ${ }^{\circ} \mathrm{C}$ ）		Pumping Rate＊ （ $\mathrm{ml} / \mathrm{min}$ ）	Depth To Water
	Reading	Change												
$00^{2} 85$	6．U3	NA		NA	－ 6	NA	8．10	NA		NA	26.64	NA	975	$3^{6} 0$
1010	6，\square^{4}	12.16	9，60	02＊	－ 51.7	2\％． 6	数教7	10．47	48y	0.213		1.616	37	5．6．${ }^{2}$
4， 63	14．0．2	0.21	3， 3 为听	0.60	$=1 y^{4}{ }^{2}$	121	\％ 10	0,12	1.42	b	68	6.73		5． 6
Hid	5.62	0	2605	0.028	${ }^{-1}$	$1 / 4$	3%	V． 1	\％	0	25， 5	4.01	3% \％	$3+2$
50	6， 0	0	\％${ }^{2} 6$	0 OL	－15 ${ }^{2}$	线：	3．2！	38	1.428	b，mb			37\％	5.8
Stabillzation														
\qquad	＋／－0	2 SU	＋／．3\％	Reading	＋／－20	mV ＊＊	$+/-0.2$	$\mathrm{g} / \mathrm{L}^{\text {\％}}$	＋／－10\％	freading	＋／－0	$2^{\circ} \mathrm{C}$		

｜｜T｜ \mid｜｜｜
5100575
Deborah Hannum

LOW－FLOW PURGUING AND SAMPLING
data sheet
 Meter：Multiparameter With Flow Cell 45155

5
m
m
m
m

Weather:Clomaty syog
Well No.: MW-5
Well Depth:
2-inch
Well Diameter: 2-inch
pH

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter
LOW-FLOW PURGUING AND SAMPLING
DATA SHEET

Well No.: Well Depth: Well Diameter:		MW-6				Screened Interval:			3 to 20 ft .		$\text { Frowg Start } 1290$			
		20 ft .				Depth To Water Before Pump Installation: 5.42					Fiwome Enol: Bys			
		2-inch				Pump Intake Depth:			10 ft .		Sample Time: 1365			
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity ($\mathrm{mS} / \mathrm{cm}$)		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{gathered} \text { TDS } \\ (\mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$		Temp. $\left({ }^{\circ} \mathrm{C}\right)$		Pumping Rate* ($\mathrm{m} / / \mathrm{min}$)	Depth To Water
	Reading	Change												
1245	7.05	NA	0.046	NA	56.5	NA	6.57	NA	0.133	NA	29 92	NA	400	3.45
1250	6.86	0.19	0.177	O.039	55.7	8.8	6.40	0.17	0.184	0.009	21.5%	0.34	406	3.52
1255	6.81	0.125	0.177	0	69.4	41	$6-32$	0.08	0.122	0.002	21.82	0.24	400	3.54
1300	6.75	0.06	0.177	0	72.5	3.1	$6-62$	0.30	0.123	0.001	21.54	0.25	400	3.55
4395	6.76	0.01	0.177	0	73, 3	0.8	6.54	0.08	0125	0.002	21.45	0.06	400	3.56
$\begin{array}{\|c\|} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{array}$	+/-0.	2 SU	+/-3\%	Reading	+/-20	mV**	+/-0.2	$\mathrm{mg} / \mathrm{L}^{* *}$	+/.10\%	f Reading	+/-0	. $2^{\circ} \mathrm{C}$		A

[^31]2.5 galo phraged
We answer to you. Site: Herr Foods, Inc., Nottingham, PA Date: $1 / 1 / \mathrm{l} / \mathrm{l}$

Well No.:	MW-7
Well Depth:	20 ft.
Well Diameter:	2-inch

2
ged Site：Herr Foods，Inc．，Nottingham，PA Date：$\sqrt{2} 0-6=15$
Weather：Sinnoy 6

Well No．： Well Depth： 20 H Well Diameter：		MW－${ }^{\text {B }} 8$ 25 ft 2－inch			Screened interval： $3-204 \div 5$ to $25-\mathrm{ft}$ ． Depth To Water Before Pump Installation： 3.84 Pump Intake Depth： $10 \mathrm{ft} 1 \mathrm{H}_{\mathrm{ft}}$						Prome started： 165 Pareze Fuded： 1102 z Sample Time： $11 / 02$						
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \\ \hline \end{gathered}$		Conductivity （ms／cm）		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp． （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{aligned} & \text { Pumping } \\ & \text { Rate* } \\ & \text { (} \mathrm{ml} / \mathrm{min} \text {) } \end{aligned}$	Depth To Water			
	Reading				Change	Reading	Change	Reading	Change	Reading	Change	Reading			Change	Reading	Change
1040	6.91	NA	0.209	NA	1073	NA	$\stackrel{5}{7}$	NA	0.851	NA	9.76	NA	401	Y， 36			
1045	6．68	1） 2%	6．212	0.102	100.1	33.7	4.34	10.74	6） 15%	0202	部6爯	0.07	431	4.60			
10.50	$6-57$	0.11	0211	0.001	106.6	0.5	$4-15$	0.23	0153	0 O	14.85	d 14	401	4．14			
105	6.54	0.03	6， 211	0	96	0． 6	3.85	0.24	0.154	0.001	19.36	6． 19	481	4.263			
1100	648	0.06	6.204	0.607	989	019	3.86	6． 233	6.153	0.81	4481	0.15	401				
Stabilization Criteria	＋／－0．2 SU		＋／－3\％of Reading		＋／－20 mV＊＊		$+/ .0 .2 \mathrm{mg} / \mathrm{L}^{\text {＊＊}}$		＋／－10\％of Reading		$+1-0.2^{\circ} \mathrm{C}$		NA				

5100575
Deborah Hannum
＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of YSI 556
2.6 gats pargent
\cdots

$$
i \cdot y
$$

H：\Projects\10172\101722001\GS\Site Characterization\Low－Flow Data Sheet．xlsx

LOW-FLOW PURGUING AND SAMPLING

 DATA SHEETSite: Herr Foods, Inc., Nottingham, PA Date: $10 / 615$
 Well No.: MW-9 Well Depth:
Well Diameter: 2 -inch
Pump Intake Depth: Meter. Mukiparameter With Flow Cell is \downarrow sic
Screened Interval: $\quad 3$ to 20 ft.
Depth To Water Before Pump Installation: 16
10 ft .

Time	2-inch				Pump Intake Depth:				10 tt .		Sample Time: 26			
	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity ($\mathrm{ms} / \mathrm{cm}$)		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp. (${ }^{\circ} \mathrm{C}$)		$\begin{gathered} \text { Pumping } \\ \text { Rate* } \\ \text { (} \mathrm{ml} / \mathrm{min} \text {) } \end{gathered}$	Depth To Water
	Reading	Change												
1200	6.02	NA	1.932	NA	0.0	NA	30^{4}	NA	1.47%	NA	18.3	NA	400	4.52
1253		di. 01	1.92	080	1.6	1.8	1.61	d) 93	1244	0.068	50.04	(1) 4 有	Y0\%	4.71
1210	$00^{6} 4$	0.17	\% 0\%3\%	0.11	17.\%	18	1 4 4	2. 18	1.550	0.104	枚33	0.66	40	4.50
12.5	$44^{4} 5$	0.69	2.107	0.074	025	72.7	1.36	0.11	1.61\%	0.068	17.20	0.18	400	4. ${ }^{3}$
1220	6.40	0.05	2.169	2.650	46.9	4	1.34	0.02	1.663	0.051	17.00	0.40	100	\% 86
1225	$40^{3}-39$	0.010	2.184	$0.0)^{19}$	47	0.9	1.32	0.02	1.677	0.619	16.97	0.03	460	4.91
					.									
				\cdots										
Stabilization Criserla	+/-0.2 SU		+/-3\% of Reading		+/-20 mV**		$+/-0.2 \mathrm{mg} / \mathrm{L}^{* *}$		+/-10\% of Reading		$+/-0.2^{\circ} \mathrm{C}$		NA	

Depth To Water Before Pump Installation: 4.16 Puirge Eurt : 1224

5100575
Deborah
Deborah Hannum

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter
H:\Projects\10172\101722001\GS\Site Characterization\Low-Flow Data Sheet.xlsx

LOW-FLOW PURGUING AND SAMPLING

DATA SHEET

Weather: 5eqnay $\operatorname{sig}^{\circ} \mathrm{F}$ Well No.: MW-13
Well Depth:
12 ft.
2 -inch
Depth To Water Before Pump Installation: 3. 4 Pump Intake Depth:

Weather:	2以n\%	370%				Meter: M	parame	With Flow	ell	14	4519			
Well No.:		MW-13				Screened	terval:		2 to 12 ft .					
Well Depth:		12 ft .				Depth To	ter Befor	ump In	allation:					
Well Diame	ter:	2-inch				Pump In	Depth:		9 ft .		Sample Tim		$1 / 151$	
			Cond (ms	ctivity (cm)									Pumping Rate*	Depth To
Time	Reading	Change	(ml/min)	Water										
1025	\%. $/ 8$	NA	0.295	NA	$2 \mathrm{th} \mathrm{m}_{1}$	NA	$44^{4} 9$	NA	0.isy	NA	10.5	NA	36	3.5
1020	5.1	() $: 07$	0.300	0.005	230%	2, 2,7	4.35	0) 5	0.15	0.002	$11: 34$	$0 \cdot 37$	3.3	4.00
1835	$5 \cdot 0 \%$	9.02	024		240,5	9.4	4.4	a 06	0,100	1000	11.36	0.27	356	4,03
(0) 0	5607	O: 0^{3}	0297	$0 \cdot 02$	A46: ${ }^{2}$	7.6	463	0.0n	$0 \cdot 140$	0×002	1.50	() +16	350	4103
$16 / 5$	\%: 0	0.01	064%	0.003	4557	7%	4.38	0.05	0.47	1700	1175	020	5.68	$4 / 65^{\text {man }}$
$\begin{array}{\|c\|} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{array}$		2 SU	+/-3\%	Reading	+/-	$\mathrm{mV}{ }^{* *}$	+/-0	$\mathrm{mg} / \mathrm{L}^{* *}$	+/-10\%	of Reading		. $2^{\circ} \mathrm{C}$		N

6012049
Deborah Hannum
 Site：Herr Foods，Inc．，Nottingham， Date： $1 \sqrt{2}$ MW－12
12 ft. Well Diameter：2－inch Well No．：
Well Depth：
픔
Meter：Multiparameter With Flow Cell Fanm Hi A
Screened Interval： 2 to 12 ft ．
Depth To Water Before Pump Installation： 2.20° Pump Intake Depth：

Well Diameter：2－inch					Pump Intake Depth：				9 ft ．		Time： 012		$1-15-16$	
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity$(\mathrm{ms} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{gathered} \text { TDS } \\ (\mathrm{g} / \mathrm{L}) \end{gathered}$		Temp． $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \text { Pumping } \\ \text { Rate }^{*} \\ (\mathrm{ml} / \mathrm{min}) \end{gathered}$	Depth To Water
	Reading	Change												
3645	53	NA	c， 13	NA	1521	NA	395	NA	0.655^{*}	NA	110.15	NA	403	2.61
0954	510	11．20	0.10%	8.3	14.46	42.3	246	0．949	0.05	20%	$16-68$	0.50	460	2.90
0958	5.96	12.10	8.104		214	20.3	240	0.06	0.052	i		$0 \cdot 34$	406	296
S00	6． 0^{4}	0	6103	3.601	226.6	7.1	2.92	8 じ2	0.051	0.001	163	0.31	400	2.95
1005		06	A－167	6	227.7	6.1	2．69	0.07	0.052	C゙M	1－28	0.05	400	2.98
16.6	Sor	0	38.10	8.29	2250	1.0	3.05	A． 69	A05	6．cki		Q13	40	$3,5^{3} 6$
Stabilization Criteria			＋／－3\％	Reading	＋／－2	mV＊＊	＋／－0．2	$\mathrm{mg} / \mathrm{L}^{* *}$	＋／－10\％	f Reading	＋／－	$0.2{ }^{\circ} \mathrm{C}$		NA

2.6 gallows purated
Deborah Hannum

We answer to you． Site：Herr Foods，Inc．，Nottingham，PA Date：$/ 1 / 816$

Weather： $\operatorname{Sn} n=170^{6}$ Well No．：MW－3
Well No．：
Well Depth
Well Diameter：$\quad 2$－inch
pH

6012049
Deborah Hannum
Meter：Multiparameter With Flow Cell fanha $/ \% / 15 / 54$
Screened Interval：$\quad 5$ to 25 ft ．
Depth To Water Before Pump Installation：of
Pump Intake Depth：

Well No．：		MW－3				Screened Interval：			5 to 25 ft ．					
Well Depth：		25 ft ．				Depth To Water Before Pump Installation：\％ol								
Well Diameter：		2－inch				Pump Intake Depth：			11 ft ．		Sample Time： 2		$1 / 15 / 16$	
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity$(\mathrm{ms} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp． $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \text { Pumping } \\ & \text { Rate* } \\ & (\mathrm{ml} / \mathrm{min}) \end{aligned}$	$\begin{gathered} \text { Depth To } \\ \text { Water } \\ \hline \end{gathered}$
	Reading	Change												
120	bill	NA	1／465	NA	$-117,5$	NA	2，23	NA	.954	NA	14153	NA	300	5029
1210		$0,0 \%$	1196	0.051	－140．6	75×5	a 200	0.24	163：${ }^{6}$	024	14673	$\bigcirc \times 20$	362	ses
12.6	6.20	001	2.40	0.039	-219.8	2 \％ 2	768	9． 16	1.603	0．02．	$16 / 4 \times 4$	（） 3	308	3.06
12.26	(-2)	0.01	＊ 036	0.083	－－ 0^{4}	11.8	1.81	0.07	1，\％46	0.143	14.58	a， 6	300	5.06
122	6.22	6建	20.5	d， d_{6}	－ 436	308	1.6	03	$1 \cdot 6$ \％	D， 54	140	$\hat{6}$ ¢	300	J） 6
19， 4,6	4 23	$3 \cdot 1$	38120	d，\％${ }^{2}$	$\cdots 3762$	C，	$6{ }^{47} 4$	（i）x^{4} i	1，1／1	8 CB	14.6		500	3＊ 5
43	\％	$\theta 0$	A A^{3}	4， 38	－ $57 \% 7$	$\begin{aligned} & 6 \\ & 0 \end{aligned}$	17%	为	3.126	Guns	$14 \% 6$	4.6	506	3.12
＊M0	4 420	U，	4.276	（6） 095		（i）${ }^{3}$	$\cdots 4$		iside	U以12	$k \times 1 / 6$		300	5.12
						．								
Stabilization Criteria	＋／－	2 SU	＋／－3\％o	f Reading	＋／－2	mV ＊＊	＋／－0	$\mathrm{mg} / \mathrm{L}^{* *}$	＋／－10\％	of Reading		2． $2^{\circ} \mathrm{C}$		NA

＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of YSI 556
LOW－FLOW PURGUING AND SAMPLING
data sheet

Field Personnel：

Well No．：		MW－4				Screened	terval：		0 to 19 ft ．					
Well Depth		19 ft ．				Depth T	ter Befo	Pump In	lation：	\％				
Well Diame	ter：	2－inch				Pump Int	Depth：		10 ft ．		Sample Tir	12%	$1 \cdots 15$	
			Cond （mS	$\begin{aligned} & \text { ctivity } \\ & \mathrm{cm}) \end{aligned}$	OR						Tem ${ }^{\circ} \mathrm{C}$		Pumping Rate＊	Depth Yo
Time	Reading	Change	（ $\mathrm{ml} / \mathrm{min}$ ）	Water										
316	0.46	NA	1）146	NA	\cdots	NA	$2.51 / 4$	NA	．575	NA	1.962	NA	320	S，${ }^{2}$
13%	6.46	0.02	1．174	6， 2 A	－-146	23.	118	$0^{*}{ }^{3}$	．5\％\％	S 614	$15 \cdot 1 /$	0.17	520	6.63
1396	450	0.028	1.74	680	-454	10：3	1，48	4.4	ism	$6.6{ }^{6}$	1514	0.08	320	60.8
330	4.5	Q，0\％	1.166	0，	-156.4	6.1	1.74	$0 \cdot 1$	156.8	0.20 .3	15.25	U， 11	320	$i<1 /$
1356	6，32	2，01	1.160	CBO_{4}	-1632	6.8	$1.74{ }^{1}$		． 686	Q0t？	15，27	63.42	320	6.6
Stabilization Criteria	＋／－0	． 2 SU	＋／－3\％	Reading	＋／－20	mV＊＊	＋／－0．2	$\mathrm{mg} / \mathrm{L}^{* *}$	＋／－10\％	of Reading	＋／－0．	． $2^{\circ} \mathrm{C}$		A

H：\Projects\10172\101722001\GS\Site Characterization\Low－Flow Data Sheet．x｜sx

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter

We answer to you．
site：Herr Foods，Inc．，Nottingham，PA Date：lily／i6

Weather：Sinnmy 376
Well No．：MW－9
Well Depth：
Well Diameter：$\quad 2$－inch
20 ft
픈
$\stackrel{\sim}{0}$

$(\mathrm{mS} / \mathrm{cm})$	
Reading	Change
2.45%	NA

abr 2
$0 . \mathrm{CL}$
8
3
$\underset{\infty}{8}$
0

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3
Depth To Water Before Pump Installation： 3.94
Pump Intake Depth： 10 ft ．

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity$(\mathrm{mS} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{gathered} \text { TOS } \\ (\mathrm{g} / \mathrm{L}) \end{gathered}$		Temp． $\left({ }^{\circ} \mathrm{C}\right)$			Depth To Water
	Reading	Change												
1180	6.56	NA	2，451	NA	-11.3	NA	200	NA	1．226	NA	－3，＊？＇ 7	NA	4 H	4.91
115	$6{ }^{48}$	022	2458	0.602	-7.2	4	$0 \cdot 0$	0	1．226	0	13．96	c． 3	4010	4.21
1200	6	0	2.454	$0^{\prime \prime} \times 1$	－5．3	－i． 1	c 3	0.31	1.227	01	13.9	0.05	beto	4.25
1265	6.54	0	2． 483	0.00	－20．1	11.8	6.22	0.69	1．277	\square	多，50	0 为安	400	43%
1210	6.52		2.463	0.610	－2！ 2 －	1．3	b－2	00^{2}	1．23）	0.206	$1{ }^{4} 60$	6.15	4003	\％．79
12\％	6.5	C．0＇：	$2-163$	0	－19．7	1．5	0.22	0.04	－231	20062	17.96	0.2%	¢も？	4.96
Stabilization Criteria	$+/-0.2 \mathrm{SU}$		＋／－3\％of Reading		＋／－20 mV＊＊		＋／－0．2 mg／L＊＊		＋／－10\％of Reading		$+1-0.2^{\circ} \mathrm{C}$		NA	

＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of multiparameter meter

We answer to you． Site：Herr Foods，Inc．，Nottingham，PA Date：$\sqrt{j} / i / 6$

Well No．：MW－11
Well Depth：$\quad 12.5 \mathrm{ft}$ ．
Well Diameter：
2－inch

Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity$(\mathrm{mS} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{gathered} \text { TDS } \\ (\mathrm{g} / \mathrm{L}) \end{gathered}$		Temp． $\left({ }^{\circ} \mathrm{C}\right)$		Pumpingfr Rate＊ （ $\mathrm{ml} / \mathrm{min}$ ）	Depth To Water
	Reading	Change												
110	3.96	NA	0.477	NA	20%	NA	3.20	NA	0235	NA	1635	NA	300	O． 0^{1}
1115	3.94	0.62	0.509	0.026	$205 \% 7$	6－4\％1．	2．52．	17.68	0.356	0.018	11.59	0.24	300	0.62
1120	5．24	0	0.324	0.024	$20 \% .3$	0.6	2.69	0.17	0.262	0.006	11.45	0.11	700	0.62
1125	5.84	0	0.525	0.064	201.6	7.7	2.73	0.04	0.264	0.002	／i．6i	10.13	300	2．62
1230	5.44	0	0.535	0.007	193.8	8.1	2.72	0.01	0.267	0.007	11.67	0.03	300	0.2
1138	5.95	00 ！	0.525	0.007	185．4	7.6	2－76	0.02	0266	0.021	11.63	0	300	0.62
1140	645	0	0.326	02002	17.5	6.4	2.6	0.10	6.262	0.06%	11.64	0.01	300	0.62
Stabilization Criteria	＋／－0．2 SU		＋／－3\％of Reading		＋／－20 mV＊＊		$+/-0.2 \mathrm{mg} / \mathrm{L}^{* *}$		＋／－10\％of Reading		$+/-0.2^{\circ} \mathrm{C}$		NA	

＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of multiparameter meter
We answer to you．
Site：Herr Foods，Inc．，Nottingham，PA Date：${ }^{\prime} / 4-i$
Weather： $5_{w_{2}}$ に为 36
Well No．：MW－10
Well Depth：$\quad 20 \mathrm{ft}$ ．
Well Diameter：

Well Diameter：2－inch					Pump Intake Depth：				10 ft ．		Sample Time：		1／14／16	
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \\ \hline \end{gathered}$		Conductivity$(\mathrm{ms} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \text { TDS } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$		Temp． $\left({ }^{\circ} \mathrm{C}\right)$		Pumping$\begin{gathered} \text { Rate* }^{(\mathrm{ml} / \mathrm{min})} \\ \hline \end{gathered}$	Depth To Water
	Reading	Change												
0105	561	NA	2.202	NA	110.7	NA	0.00	NA	110	NA	16.05	NA	360	Y．25
1） 16	5． 5	0.06	2.241	0.03	108.9	1.8	0.0	0	\％12．${ }^{2}$	0.020	16， 13	0.08	243^{3}	4.31
115	5.87	0	2.24	0.008	111.1	2.2	12．00	0	1．18\％	0.001	16．2．	0.09	74	4.35
120	3．66	0.01	2.237	0.004	11302	2.1	0.00	0	1.121	0.001	$1 \% .26$	0.04	340	4
125	56	0	2.247	0.010	$1 / 38$	6.6	0.60	6	$\cdots 21$	0	（6．3）	0.07	340	44
136	5.68	0.02	4.236	0.011	112	1.0	0 O	0	1.117	0.6004	1699	0.20	342	4.41
135	56	8.81	2－242．	0.004	$1 / 22$	0.7	0.0	0	1.109	0.0685	16.47	0.06	36	4
$\begin{array}{\|c\|} \hline \text { Stabilization } \\ \text { Criteria } \\ \hline \end{array}$	＋／－0．	2 SU	＋／－3\％	Reading	＋／－2	mV ＊＊	＋／－0．2	$\mathrm{g} / \mathrm{L}^{* *}$	＋／－10\％	of Reading		． $2^{\circ} \mathrm{C}$		A

6012049
Deborah H
H：\Projects\10172\101722001\GS\Site Characterization\Low－Flow Data Sheet．xlsx
＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
2． 7 gallonsf farged
Deborah Hannum
＊＊Resolution accuracy of multiparameter meter

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter
LOW－FLOW PURGUING AND SAMPLING
DATA SHEET
Field Personnel： 0 ）
Pump：Peristaltic Pump forget：m AGt x
Meter：Multiparameter With Flow Cell jeferasad
Screened interval：$\quad 5$ to 25 ft ．

Well No．： Well Depth： Well Diameter：		MW－3				Screened interval：			5 to 25 ft ．					
		25 ft				Depth ro Water Before Pump installation：\％S y								
		2 －inch				Pump intake Depth：			11 ft		Sample Time：${ }^{\text {a }}$／$/ 6$ \％			
Time	$\rho \mathrm{H}$ （SU）		Conductivity $(\mathrm{ms} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} D O \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \mathrm{TOS} \\ & (\mathrm{~g} / \mathrm{L}) \end{aligned}$		Temp． $\left.8^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \text { Pumping } \\ & \text { Rate } \\ & (\mathrm{ml} / \mathrm{min}) \end{aligned}$	Depth To Water
	Reading	Change												
167	4	NA	1． 0_{0}	NA	-72.6	NA	0.827	NA	0.778	NA	［20．6）	NA	Lfor	2，76
$11 \mid 6$	6,23	（2） 04	15	13．637	wor ${ }^{2}$	9.7	d b^{2}	D） $0^{3} 4$	35.59	（3） 3	12.5	1.68	420	\％ 2,5
145	6－2 2	4^{4}	$6 x^{2} 3$	84	420	－1	20， 0^{2}	Pret	（2）\square^{4}	\％$x^{3}+$	12.8		46	－76
	\％ 7 ，${ }^{2}$	8 为	－ 46	d $\cos ^{2}$	－${ }^{\text {a }}$	68	\％ 6_{6}	…t．	326	$f^{*} t^{2}$	2－${ }^{\text {by }}$	＂ 2	4089	3，7en
128	6.27		（－4，${ }^{3}$		－ 1080	3.7	$6]^{4}$	$\theta 2$	$78+5$	0.010	42	12	Y2\％	为 7 \％
1190	6） 68	0.01	\cdots		-1.3	$2-1$	0.1	0	6.88	0.04	1298	18.3	184	\％\％
Stabilization Criteria		2 SU	＋1／3\％	f Reading	$+1-2$	$\mathrm{V}^{* *}$	＋／－0．2	$\mathrm{g} / \mathrm{L}^{* *}$	＋／－10\％	Reading		$2^{\circ} \mathrm{C}$		A

6040798
Deborah Hannum
＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of YSI 556
Site：Herr Foods，Inc．，Nottingharm，PA Date：

Weather： 8, sim 51 Well No．：MW－3

Well Depth：
Well Diamet
Time
167

$\begin{array}{c}\text { Stabilization } \\ \text { Criteria }\end{array}$

$\begin{array}{c}\begin{array}{c}\text { Criteria } \\ \text { Crin }\end{array} \\ \text {＊Not to exceed } 500 \mathrm{ml} / \mathrm{min}\end{array}$＋ 0.2 SU

6047798
Deborah Hannum

LOW-FLOW PURGUING AND SAMPLING
DATASHEET

Pump: Peristaltic Pump Pivactive Atases

0 to 19 ft .

Screened Interval:
Depth To Water B
Pump intake Depth
tallation: 3,0 多
10 ft .
20

We answer to you.
Site: Herr Foods, Inc., Nottingham, PA Date: $\int / / / 6$ Weather: Nosin

Well No.: \quad MW-4
Well Depth:
19 ft.
2 -inch

Well Diameter: 2-inch					Pump Intake Depth:				mple fime. (t \% e e ex					
	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \end{gathered}$		Conductivity$(\mathrm{ms} / \mathrm{cm})$		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \end{aligned}$		$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$		$\begin{gathered} \text { TDS } \\ (\mathrm{g} / \mathrm{L}) \end{gathered}$		Temp. $\left.{ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \text { Pumping } \\ \text { Rate } \\ (\mathrm{ml} / \mathrm{min}) \end{gathered}$	Depth To Water
Time	Reading	Change												
${ }_{1} 150$	7 m	NA	6.684	NA	$\cdots 6.7$	NA	1. 06	NA	$0 \cdot 6$ dut	NA	13.56	NA	492	\%, 6
b\%	$\cdots \mathrm{m}$	θ, θ^{\prime}	i4.78	0.427	\cdots	1.2	D 4			0.010	18	U, 0^{3}	Wer	4.35
0	\%6\%	Sose	0 \%	$0 \cdot 4{ }^{2}$	- T_{2}^{2}	x^{2}	49 4	2	(2) $0^{2}+8$	\%) 420	$42,5 c)$	ctay	4if?	4. L^{2} c
ats	$0{ }^{4}$	- ${ }^{2}$	metert	4 s	entrata	20	$\mathrm{T}^{4 a^{4}}$	6	St, 0			$\cdots \mathrm{N}$	$6 r^{4} 6$	\% 0^{104}
210	$6-4$	$0.7{ }^{2}$	$3{ }^{2}$	H. 06	\% 6	$2 C$	Pra	6		18.102	5	0,23	436	+2 ${ }^{2}$
				f										
Stabilization Criteria		$2.5 \cup$	+/.3\%	Reading	+/-20	$\mathrm{V} \mathrm{V}^{* *}$	$+/ .0$	$\mathrm{mg} / \mathrm{L}^{* *}$	+/-10\%	Reading		$2^{\circ} \mathrm{C}$		NA

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556
pabend symbaz
 6040798
Deborah Ha

Deborah Hannum

LOW-FLOW PURGUING AND SAMPLING
 data sheet

Field Personnel: Donoman Corme / (STL)
Pump: Peristaltic Pump Proctive Alexts
Meter: Multiparameter With Flow Cell Honna H I $981 c_{1}^{4}$
Screened Interval: $\quad 7$ to 27 ft.
Depth To Water Before Pump Installation:
i.
Pump intake Depth: 10 ft .

[^32]LOW-FLOW PURGUING AND SAMPLING
data sheet
\square
 Well No.: MW-7 Well Depth: Well Diameter:
2-inch Pump Intake Depth:
Meter: Multiparameter With Flow Cell Kkonsh HT 95154
Screened Interval: $\quad 3$ to 20 ft o. . .
 8 ft .
sioftrys fiend

* Not to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of multiparameter meter
LOW-FLOW PURGUING AND SAMPLING
DATA SHEET

Screened Interval: $\quad 3$ to 20 ft .
Depth To Water Before Pump Installation: 2.05 Pump intake Depth:
1545194

[^33]$$
\lim ^{2}
$$
6040798
Deborah Hannum

LOW-FLOW PURGUING AND SAMPLING
 DATA SHEET

Field Personnel: Q aw aron Cowell (5M)
Pump: Peristaltic Pump Pro cosine Adams

Meter: Multiparameter With Flow Cell Hammotion;o4 \begin{tabular}{lc}
Screened Interval: \& 3 to 20 ft

Depth To Water Before Pump installation: 3.6 z

Pump Intake Depth: \& 10 ft.

\hline

Screened Interval: \& 3 to 20 ft

Depth To Water Before Pump installation: 3.6 z

Pump Intake Depth: \& 10 ft.

\hline

Screened Interval: \& 3 to 20 ft

Depth To Water Before Pump Installation: 3.6 b

Pump Intake Depth: \& 10 ft.

\hline
\end{tabular}

Pon-ogne Stan ted: 1110 (Temp. \quad Pumping \square
$\stackrel{5}{5}$
NA

$$
\begin{array}{|l|l|l|l|}
\hline 1425 & \text { NA } & 402 & 3.32 \\
\hline
\end{array}
$$

064

$+$

$$
\text { Oranductivity ORP } \mid \text { no }
$$

$$
501
$$

$$
\frac{65}{64}
$$

$$
+
$$

$$
1
$$

-

$$
\begin{array}{l|l}
\hline & \\
\Sigma & 0
\end{array}
$$

$$
\begin{array}{|c|c}
\hline \frac{0}{0} & \\
\frac{\sum_{0}}{n} & \mathbb{Z} \\
\frac{c}{2} &
\end{array}
$$

$$
0
$$

$$
\text { OO } \quad d y 0
$$

[^34]\[

$$
\begin{array}{|c|c|}
\hline \text { ORT } & \text { DO } \\
(\mathrm{mV}) & (\mathrm{mg} / \mathrm{L}) \\
\hline
\end{array}
$$
\]

Well No．：MW－12
Well Depth：$\quad 12 \mathrm{ft}$ ．
Well Diameter：$\quad 2$－inch
＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of multiparameter meter
 6040798
Deborah Hannum

LOW－FLOW PURGUING AND SAMPLING

dATA SHEET

 Pump：Peristaltic Pump Prosactive Meter：Multiparameter With Flow Cell
95194

Well No．： Well Depth： Well Diameter：						Screened interval：$2 \text { to } 12 \mathrm{ft} .$								
		2 －inch				Pump intake Depth：			9 ft ．		Sample Time： 41616 104			
Time	$\begin{gathered} \mathrm{pH} \\ (\mathrm{SU}) \\ \hline \end{gathered}$		Conductivity （ $\mathrm{ms} / \mathrm{cm}$ ）		$\begin{aligned} & \text { ORP } \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$		$\begin{gathered} \text { DO } \\ (\mathrm{mg} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{gathered} \text { TDS } \\ (\mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$		Temp． $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \text { Pumping } \\ & \text { Rate } \\ & \text { (mi/min) } \end{aligned}$	Depth To Water
	Reading	Change												
1035	4.94	NA	0.253	NA	262．！	NA	4.45	NA	0.142	NA	10.00	NA	460°	4.6
1030	4.95	0.01	5258	O．D 1	276.5	14.4	4.44	001	0.14	0.001	180	0.07	40°	4.20
483	4， 9	6： 0	Q2ut	0.001		29	－797	6%	\％4	\％	13.45	20.4	$12+3$	4.28
－	－ 9	G6，	0842	－ 5	2 ta	64	$\underline{4}$	人4 x^{2}	＋+2	16.088	Stit	UR\％	＋4，	${ }^{2} 24$
Criteria Stabilization	＋／－0	． 2 S	＋／－3\％o	of Reading	＋／20	$\mathrm{m} \mathrm{V}^{* *}$	＋／－0．2	$\mathrm{mg} / \mathrm{L}^{* *}$	＋／－10\％	f Reading	＋／－0	． $2^{\circ} \mathrm{C}$		NA

＊Not to exceed $500 \mathrm{ml} / \mathrm{min}$
＊＊Resolution accuracy of multiparameter meter

* Nor to exceed $500 \mathrm{ml} / \mathrm{min}$
** Resolution accuracy of YSI 556

APPENDIX G

Groundwater Sample Laboratory Analytical Reports

ANALYTICAL RESULTS
Prepared by: Prepared for:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Rettew Associates

3020 Columbia Avenue
Lancaster PA 17603-4011
March 16, 2015
Project: Herr Foods, Inc.
Submittal Date: 03/09/2015
Group Number: 1543676
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	
MW-1 Grab Groundwater	7796532
MW-2 Grab Groundwater	7796533
MW-5 Grab Groundwater	7796534
MW-4 Grab Groundwater	7796535
MW-3 Grab Groundwater	7796536
Supply Well Grab Potable Water	7796537
Trip Blank Water	7796538

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

Lancaster Laboratories Environmental

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Herr Foods, Inc.

Collected: $03 / 09 / 201510: 55$	by EGD	Rettew Associates
Submitted: $03 / 09 / 201517: 05$	3020 Columbia Avenue	
		Lancaster PA $17603-4011$

Reported: $03 / 16 / 201516: 12$

HERR1

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	N. D.	0.5	1
10945	Ethylbenzene	100-41-4	N. D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N. D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $Q C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D150701AA	03/11/2015	16:30	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D150701AA	03/11/2015	16:30	Daniel H Heller	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Herr Foods, Inc.

Collected: $03 / 09 / 201512: 00$	by EGD	Rettew Associates
Submitted: $03 / 09 / 201517: 05$	3020 Columbia Avenue	
		Lancaster PA $17603-4011$

Reported: $03 / 16 / 201516: 12$

HERR2

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	$\mathrm{ug} / 1$	
10945	Benzene	71-43-2	N. D.	0.5	1
10945	Ethylbenzene	100-41-4	N. D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N. D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $Q C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D150701AA	03/11/2015	16:53	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D150701AA	03/11/2015	16:53	Daniel H Heller	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5 Grab Groundwater	LL Sample \# wh	
	Herr Foods, Inc.	LI G6534
		Group
		\#
		Account

Project Name: Herr Foods, Inc.

Collected: $03 / 09 / 201513: 05$	Ry EGD	Rettew Associates
Submitted: $03 / 09 / 201517: 05$	3020 Columbia Avenue	
		Lancaster PA $17603-4011$

Reported: $03 / 16 / 201516: 12$

HERR5

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	1,100	10	20
10945	Ethylbenzene	100-41-4	740	10	20
10945	Isopropylbenzene	98-82-8	25 J	10	20
10945	Methyl Tertiary Butyl Ether	1634-04-4	15 J	10	20
10945	Naphthalene	91-20-3	100	20	20
10945	Toluene	108-88-3	1,900	10	20
10945	1,2,4-Trimethylbenzene	95-63-6	280	10	20
10945	1,3,5-Trimethylbenzene	108-67-8	68	10	20
10945	Xylene (Total)	1330-20-7	1,600	10	20

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

cat	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D150701AA	03/11/2015	17:16	Daniel H Heller	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D150701AA	03/11/2015	17:16	Daniel H Heller	20

Project Name: Herr Foods, Inc.

Collected: $03 / 09 / 201514: 05$	Rettew Associates	
Submitted: $03 / 09 / 201517: 05$		3020 Columbia Avenue
		Lancaster PA $17603-4011$

Reported: $03 / 16 / 201516: 12$

HERR4

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	580	5	10
10945	Ethylbenzene	100-41-4	2,500	50	100
10945	Isopropylbenzene	98-82-8	63	5	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	5	10
10945	Naphthalene	91-20-3	310	10	10
10945	Toluene	108-88-3	7,300	50	100
10945	1,2,4-Trimethylbenzene	95-63-6	1,400	5	10
10945	1,3,5-Trimethylbenzene	108-67-8	400	5	10
10945	Xylene (Total)	1330-20-7	9,900	50	100

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D150701AA	03/11/2015	17:39	Daniel H Heller	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D150701AA	03/11/2015	18:02	Daniel H Heller	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D150701AA	03/11/2015	17:39	Daniel H Heller	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D150701AA	03/11/2015	18:02	Daniel H Heller	100

Project Name: Herr Foods, Inc.

Collected: $03 / 09 / 201514: 45$	by EGD	Rettew Associates
Submitted: $03 / 09 / 201517: 05$		Lancaster PA $17603-4011$

Reported: $03 / 16 / 201516: 12$

HERR3

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result		Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l		ug/l	
10945	Benzene	71-43-2	180		25	50
10945	Ethylbenzene	100-41-4	1,100		25	50
10945	Isopropylbenzene	98-82-8	33	J	25	50
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.		25	50
10945	Naphthalene	91-20-3	140	J	50	50
10945	Toluene	108-88-3	14,000		250	500
10945	1,2,4-Trimethylbenzene	95-63-6	670		25	50
10945	1,3,5-Trimethylbenzene	108-67-8	180		25	50
10945	Xylene (Total)	1330-20-7	6,500		25	50

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All OC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Project Name: Herr Foods, Inc.

Collected: $03 / 09 / 201515: 30$	by EGD	Rettew Associates
Submitted: $03 / 09 / 201517: 05$		3020 Columbia Avenue
Lancaster PA $17603-4011$		

Reported: $03 / 16 / 201516: 12$

HERRS

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	$\mathrm{ug} / 1$	
10945	Benzene	71-43-2	N. D.	0.5	1
10945	Ethylbenzene	100-41-4	N. D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N. D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall OC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D150701AA	03/11/2015	19:11	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D150701AA	03/11/2015	19:11	Daniel H Heller	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Herr Foods, Inc.

Collected: 03/09/2015	Rettew Associates
Submitted: $03 / 09 / 201517: 05$	3020 Columbia Avenue
Lancaster PA $17603-4011$	

Reported: $03 / 16 / 201516: 12$

HERRT

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N. D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N. D.	1	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $Q C$ is compliant unless otherwise noted. Please refer to the Quality
Control sumnary for overall oC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst		Dilution Factor
No.						Date and Ti				
10945	PA UST Unleaded + TMBs	SW-846	8260B	1	D150701AA	03/11/2015	12:40	Daniel	Heller	1
01163	GC/MS VOA Water Prep	SW-846	5030 B	1	D150701AA	03/11/2015	12:40	Daniel H	Heller	1

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1543676
Reported: 03/16/2015 16:12

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name

Batch number: D150701AA

Blank	Blank MDL	Report	LCS orec	LCSD $\%$ REC	LCS/LCSD	RPD	RPD
Sample number (S) : 7796532-7796538							
S. D .	(S):	ug/l	88		78-120		
N. D.	0.5	ug/l	90		80-120		
N. D.	0.5	ug/l	92		80-120		
N. D.	0.5	ug/l	89		75-120		
N. D.	1.	ug/l	85		59-120		
N. D.	0.5	ug/l	90		80-120		
N. D.	0.5	ug/l	88		80-120		
N. D.	0.5	ug/l	91		80-120		
N. D.	0.5	ug/l	92		80-120		

Benzene

Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
$\begin{array}{llll}\text { N.D. } & 0.5 & \mathrm{ug} / 1 & 91 \\ \text { N.D. } & 0.5 & \mathrm{ug} / 1 & 92\end{array}$
80-120

Sample Matrix Quality Control
Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	\% REC	\%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Batch number: D150701AA	Samp	number	779653	7796	UNS	: P79			
Benzene	102	102	72-134	0	30				
Ethylbenzene	104	102	71-134	2	30				
Isopropylbenzene	106	105	75-128	1	30				
Methyl Tertiary Butyl Ether	99	97	72-126	2	30				
Naphthalene	99	93	52-125	6	30				
Toluene	102	101	80-125	1	30				
1,2,4-Trimethylbenzene	103	101	72-130	2	30				
1,3,5-Trimethylbenzene	107	103	65-132	4	30				
Xylene (Total)	104	103	79-125	1	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PA UST Unleaded + TMBs
Batch number: D150701AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7796532	103	101	98	97

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates Group Number: 1543676
Reported: 03/16/2015 16:12

7796533	102	100	100	98
7796534	101	97	98	100
7796535	101	99	98	100
7796536	100	101	98	101
7796537	102	102	99	99
7796538	101	101	100	98
Blank	102	100	99	99
LCS	103	100	100	102
MS	101	102	99	99
MSD	101	$77-113$	100	101
LimitS:	$80-116$		$80-113$	$78-113$

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.
,
 TM

1 10
369539

Lab Use Only
or Lab Use Only
SC:
R\#: $\int(2) / 0$ Preservation Codes
$\mathrm{H}=\mathrm{HCl} \quad \mathrm{T}=$ Thiosulfate $\mathrm{N}=\mathrm{HNO}_{3} \quad \mathrm{~B}=\mathrm{NaOH}$ $\mathrm{S}=\mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{O}=$ Other 6) Remarks

For Eurofins Lancaster Laboratories Environmental use only
Group $\# 1543676$ Sample $\# 7796532-38$

(0)

卓 Co
\% ? ? ? ?
Type III (Reduced non-CLP)
-mail address:
ED DITEDZF
samples were collected:

Sample Identification
Date results are needed:
SUPPLY WEL
TMAP BLANK
Turnaround Time (TA
(Rush TAT Sts subject to laborato
(Rush TAT is subject to laboratory approval and surcharge.)
MW-1
MW-2
$M W-5$
$M W-4$
MW-3
MUPLY
Collected
(epjp aseald) pelsenbey ($1 \forall 1$) ou! 1 punoseunn (1 usny
ํㅗㅇㅑ eurofins

Client: Rettew Assoc. Inc.

Delivery and Receipt Information

Delivery Method:	Client Drop Off		Arrival Timestamp:	03/09/2015 17:05
Number of Packages:	1		Number of Projects:	1
State/Province of Origin:	PA			

Arrival Condition Summary

Shipping Container Sealed:	No	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}$:	Yes
Paperwork Enclosed:	Yes	VOA IDs ($\geq 6 m m)$:	See Below
Samples Intact:	No	Total Trip Blank Qty:	1
Missing Samples:	No	Trip Blank Type:	HCl
Extra Samples:	No	Air Quality Samples Present:	No
Discrepancy in Container Qty on COC:	No		

VOA Vial IDs (Headspace $\geq 6 \mathrm{~mm}$): 1 Trip Blank Vial
Unpacked by Patrick Engle (3472) at 17:13 on 03/09/2015

Samples Chilled Details							
Thermometer Types:		DT = Digital (Temp. Bottle)			Infrared (Su	ce Temp)	All Temperatures in ${ }^{\circ} \mathrm{C}$.
Cooler\#	Thermometer ID	Corrected Temp	Therm. Type	- Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT121	2.2	DT	Wet	Y	Bagged	N
	Samples Not Intact Details						
	Sample ID on Label	Bottle Code		Bottle Quantity Container Salvageable?			Comments
	Trip Blank	40 ml glass vial $\underset{\mathrm{HCl}}{(G C / M S)}$ -		1	N	Received 1 trip blank broken in cooler.	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
$\mu \mathrm{g}$	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	$\begin{array}{r} \mu \mathrm{L} \\ \mathrm{pg} / \mathrm{L} \end{array}$	microliter(s) picogram/liter
$<$	less than		
>	greater than		
ppm	parts per million - One pp aqueous liquids, ppm is u very close to a kilogram.	milligram p valent to m ne ppm is	kilogram ($\mathrm{mg} / \mathrm{kg}$) or one gram per mil rams per liter (mg / l), because one liter ivalent to one microliter per liter of g
ppb	parts per billion		
Dry weight basis	Results printed under this concentration to approxim as-received basis.	justed for in a similar	sture content. This increases the an mple without moisture. All other res

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWLL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

April 13, 2015
Project: Herr Foods 101722001
Submittal Date: 04/01/2015
Group Number: 1549961
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	
MW-1 Grab Groundwater	7830323
MW-2 Grab Groundwater	7830324
MW-5 Grab Groundwater	7830325
MW-4 Grab Groundwater	7830326
MW-3 Grab Groundwater	7830327
Trip Blank Water	7830328

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC Rettew Associates Attn: Ed Dziedzic COPY TO

Lancaster Laboratories Environmental

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
 Environmenta
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All OC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	Z151001AA	04/10/2015	14:38	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151001AA	04/10/2015	14:38	Anita M Dale	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2 Grab Groundwater	LL Sample \# WW	W830324
	Herr Foods 101722001	LL Group

Project Name: Herr Foods 101722001	
Collected: $04 / 01 / 201509: 48$	by EGD
Submitted: $04 / 01 / 201516: 36$	

Reported: 04/13/2015 17:44

HER02

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	$\mathrm{ug} / 1$	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N. D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All QC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	Z151001AA	04/10/2015	15:02	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151001AA	04/10/2015	15:02	Anita M Dale	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5 Grab Groundwater Herr Foods 101722001				LL LL Ac	\# WW 7830325 \# 1549961 \# 00721
Project Name: Herr Foods 101722001					
Collected: 04/01/2015 11:03 by EGD			Rettew Associates		
			3020 Columbia Avenue Lancaster PA 17603-4011		
Submitted: 04/01/2015 16:36					
Reported: 04/13/2015 17:44					
HER05					
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	$\mathrm{ug} / 1$	
10945	Benzene	71-43-2	1,700	10	20
10945	Ethylbenzene	100-41-4	1,300	10	20
10945	Isopropylbenzene	98-82-8	42	10	20
10945	Methyl Tertiary Butyl Ether	1634-04-4	21	10	20
10945	Naphthalene	91-20-3	190	20	20
10945	Toluene	108-88-3	3,500	10	20
10945	1,2,4-Trimethylbenzene	95-63-6	500	10	20
10945	1,3,5-Trimethylbenzene	108-67-8	130	10	20
10945	Xylene (Total)	1330-20-7	3,000	10	20

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All OC is compliant unless otherwise noted. Please refer to the Quality
Control sumnary for overall oC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	Z151001AA	04/10/2015	15:26	Anita M Dale	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151001AA	04/10/2015	15:26	Anita M Dale	20

Sample Description: MW- 4 Grab Groundwater	LL Sample \# wW 7830326	
	Herr Foods 101722001	LL Group
		\#
		Account
	\# 00721	

Project Name: Herr Foods 101722001	
Collected: $04 / 01 / 201512: 02 \quad$ by EGD	Rettew Associates
Submitted: $04 / 01 / 201516: 36$	

Reported: 04/13/2015 17:44
HER04

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	$\mathrm{ug} / 1$	
10945	Benzene	71-43-2	1,000	5	10
10945	Ethylbenzene	100-41-4	2,200	50	100
10945	Isopropylbenzene	98-82-8	67	5	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	5	10
10945	Naphthalene	91-20-3	310	10	10
10945	Toluene	108-88-3	9,000	50	100
10945	1,2,4-Trimethylbenzene	95-63-6	1,500	5	10
10945	1,3,5-Trimethylbenzene	108-67-8	440	5	10
10945	Xylene (Total)	1330-20-7	9,200	50	100

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record										
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution	
No.				Date and Ti			Factor			
10945	PA UST Unleaded + TMBs	SW-846	8260B		1	Z151001AA	04/10/2015	15:50	Anita M Dale	10
10945	PA UST Unleaded + TMBs	SW-846	8260B	1	Z151001AA	04/10/2015	16:14	Anita M Dale	100	
01163	GC/MS VOA Water Prep	SW-846	5030B	1	Z151001AA	04/10/2015	15:50	Anita M Dale	10	
01163	GC/MS VOA Water Prep	SW-846	5030B	2	Z151001AA	04/10/2015	16:14	Anita M Dale	100	

Sample Description: MW-3 Grab Groundwater Herr Foods 101722001				LL LL Ac	```# WW 7830327 # 1549961 # 00721```
Project Name: Herr Foods 101722001					
Collected: 04/01/2015 13:29 by EGD			Rettew Associates		
			3020 Columbia Avenue		
Submitted: 04/01/2015 16:36			Lancaster PA 17603-4011		
Reported: 04/13/2015 17:44					
HER03					
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	270	5	10
10945	Ethylbenzene	100-41-4	1,600	5	10
10945	Isopropylbenzene	98-82-8	49	5	10
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	5	10
10945	Naphthalene	91-20-3	240	10	10
10945	Toluene	108-88-3	17,000	50	100
10945	1,2,4-Trimethylbenzene	95-63-6	1,100	5	10
10945	1,3,5-Trimethylbenzene	108-67-8	310	5	10
10945	Xylene (Total)	1330-20-7	9,000	50	100

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

cat	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	Z151001AA	04/10/2015	16:38	Anita M Dale	10
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	Z151001AA	04/10/2015	17:02	Anita M Dale	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151001AA	04/10/2015	16:38	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z151001AA	04/10/2015	17:02	Anita M Dale	100

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Trip Blank Water	LL Sample \# wh	W830328	
	Herr Foods 101722001	LL Group	\#
		Account	\# 00721

Project Name: Herr Foods 101722001	
Collected: $04 / 01 / 2015$	Rettew Associates
Submitted: $04 / 01 / 201516: 36$	3020 Columbia Avenue

HERTB

$\begin{aligned} & \text { CAT } \\ & \text { NO. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N. D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N.D.	1	1
10945	Toluene	108-88-3	N. D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All $Q C$ is compliant unless otherwise noted. Please refer to the Quality
Control sumnary for overall oC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst		Dilution
No.					Date and Ti				Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	Z151002AA	04/10/2015	12:26	Anita M	Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151002AA	04/10/2015	12:26	Anita M	Dale	1

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1549961
Reported: 04/13/2015 17:44

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name

Batch number: Z151001AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene Xylene (Total)

Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Result	MDL	Units	용REC	\% $\%$ REC	Limits	RPD	Max
Sample number (S) : 7830323-7830327							
N. D.	0.5	ug/l	95		78-120		
N. D.	0.5	ug/l	95		80-120		
N. D.	0.5	ug/l	97		80-120		
N. D.	0.5	ug/l	88		75-120		
N. D.	1.	ug/l	93		59-120		
N. D.	0.5	ug/l	97		80-120		
N. D.	0.5	ug/l	95		80-120		
N. D.	0.5	ug/l	96		80-120		
N. D.	0.5	ug/l	98		80-120		
Sample number(s) : 7830328							
N. D.	0.5	ug/l	97		78-120		
N. D.	0.5	ug/l	99		80-120		
N. D.	0.5	ug/l	102		80-120		
N. D.	0.5	ug/1	93		75-120		
N. D.	1.	ug/l	94		59-120		
N. D.	0.5	ug/l	102		80-120		
N. D.	0.5	ug/l	100		80-120		
N. D.	0.5	ug/l	102		80-120		
N. D.	0.5	ug/l	102		80-120		

Sample Matrix Quality Control
Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	$\begin{aligned} & \text { MS } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { MSD } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { MS/MSD } \\ & \text { Limits } \end{aligned}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { MAX } \end{aligned}$	BKG Conc	DUP Conc	$\begin{aligned} & \text { DUP } \\ & \text { RPD } \end{aligned}$	$\begin{aligned} & \text { Dup RPD } \\ & \text { Max } \end{aligned}$
Batch number: z 151001 AA	Samp	number	78303	7830	7 UNS	: P82			
Benzene	105	105	72-134	0	30				
Ethylbenzene	106	108	71-134	2	30				
Isopropylbenzene	112	111	75-128	1	30				
Methyl Tertiary Butyl Ether	91	93	72-126	2	30				
Naphthalene	99	100	52-125	1	30				
Toluene	107	109	80-125	1	30				
1,2,4-Trimethylbenzene	107	107	72-130	0	30				
1,3,5-Trimethylbenzene	109	111	65-132	2	30				
Xylene (Total)	109	111	79-125	1	30				
Batch number: z151002AA	Samp	number	783032	UNSP	P83				

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1549961
Reported: 04/13/2015 17:44

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	\%REC	\% REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Benzene	101	93	72-134	7	30				
Ethylbenzene	108	108	71-134	0	30				
Isopropylbenzene	112	112	75-128	0	30				
Methyl Tertiary Butyl Ether	97	97	72-126	0	30				
Naphthalene	99	101	52-125	1	30				
Toluene	112	111	80-125	0	30				
1,2,4-Trimethylbenzene	109	113	72-130	4	30				
1,3,5-Trimethylbenzene	111	113	65-132	1	30				
Xylene (Total)	113	113	79-125	0	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PA UST Unleaded + TMBs
Batch number: Z151001AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7830323	102	99	98	95
7830324	102	100	99	95
7830325	100	98	97	95
7830326	102	99	97	94
7830327	100	98	99	95
Blank	100	100	100	97
LCS	99	100	99	98
MS	100	100	99	97
MSD	100	101	$80-113$	$78-113$

Analysis Name: PA UST Unleaded + TMBs
Batch number: Z151002AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7830328	101	98	98	94
Blank	101	99	99	95
LCS	100	100	99	97
MS	100	100	100	98
MSD	99	101	98	96
LimitS:	$80-116$	$77-113$	$80-113$	$78-113$

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.
For Lab Use Only
SC:
 Preservation Codes $\begin{array}{ll}\mathrm{H}=\mathrm{HCl} & \mathrm{T}=\text { Thiosulfate } \\ \mathrm{N}=\mathrm{HNO}_{3} & \mathrm{~B}=\mathrm{NaOH}\end{array}$ $\begin{array}{ll}\mathrm{N}=\mathrm{HNO}_{3} & \mathrm{~B}=\mathrm{NaOH} \\ \mathrm{S}=\mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{O}=\text { Other }\end{array}$

Client: Rettew Associates

Delivery and Receipt Information

Delivery Method:	Client Drop Off		Arrival Timestamp:		$\underline{04 / 01 / 2015.16: 36}$
Number of Packages:	1		Number of Projects:	1	
State/Province of Origin:	PA				

Arrival Condition Summary

Shipping Container Sealed:	No	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	2
Samples Intact:	Yes	Trip Blank Type:	HCl
Missing Samples:	No	Air Quality Samples Present:	No
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Patrick Engle (3472) at 16:41 on 04/01/2015

Samples Chilled Details							
Thermometer Types:		DT = Digital (Temp. Bottle)		$I R=$ Infrared (Surface Temp)			All Temperatures in ${ }^{\circ} \mathrm{C}$.
Cooler \#	Thermometer ID	Corrected Temp	Therm. Type	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT121	3.8	DT	Wet	Y	Bagged	N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
$\mu \mathrm{g}$	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	$\begin{array}{r} \mu \mathrm{L} \\ \mathrm{pg} / \mathrm{L} \end{array}$	microliter(s) picogram/liter
$<$	less than		
>	greater than		
ppm	parts per million - One pp aqueous liquids, ppm is u very close to a kilogram.	milligram p valent to m ne ppm is	kilogram ($\mathrm{mg} / \mathrm{kg}$) or one gram per mil rams per liter (mg / l), because one liter ivalent to one microliter per liter of g
ppb	parts per billion		
Dry weight basis	Results printed under this concentration to approxim as-received basis.	justed for in a similar	sture content. This increases the an mple without moisture. All other res

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWLL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Rettew - Lancaster	Project: Herr Foods
3020 Columbia Avenue	
Lancaster, PA 17603	
Attn: Ed Dziedzic	Regulatory ID:

General Method

Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A	1	07/09/15	KAL	07/09/15	10:30	DRC
Static Water Level (ft)	3.21	N/A	N/A	1	07/09/15	KAL	07/09/15	10:30	DRC
Total Volume Purged (gal)	3.20	N/A	N/A	1	07/09/15	KAL	07/09/15	10:30	DRC
Total Well Depth (ft)	23.0	N/A	N/A	1	07/09/15	KAL	07/09/15	10:30	DRC
Well Diameter (in)	2.00	N/A	N/A	1	07/09/15	KAL	07/09/15	10:30	DRC

Volatiles									
VOA, 8260, USTUnleaded									
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 14:59	JMM
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	07/17/15	JMM	07/17/15 14:59	JMM
Surrogate Recoveries		Resuits	Units	\%Recovery	Method			Limits (\%Recovery)	
Surrogate: Dibromofluoromethane		49.8	$\mu \mathrm{g} / \mathrm{L}$	99.6\%	SW 846 8260B			80-120	
Surrogate: 1,2-Dichloroethane-d4		51.4	$\mu \mathrm{g} / \mathrm{L}$	103\%	SW 846 8260B			80-120	
Surrogate: Toluene-d8		49.6	$\mu \mathrm{g} / \mathrm{L}$	99.1\%	SW 846 8260B			80-120	
Surrogate: Bromofluorobenzene		50.0	$\mu \mathrm{g} / \mathrm{L}$	99.9\%	SW 846 8260B			80-120	

General Method

| Monitor Well Sampling | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sampling Depth (ft) | 10.0 | $\mathrm{~N} / \mathrm{A}$ | N / A | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $12: 22$ | DRC | |
| Static Water Level (ft) | 2.89 | $\mathrm{~N} / \mathrm{A}$ | N | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $12: 22$ | DRC | |
| Total Volume Purged (gal) | 2.50 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $12: 22$ | DRC |
| Total Well Depth (ft) | 20.0 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $12: 22$ | DRC |
| Well Diameter (in) | 2.00 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $12: 22$ | DRC |

Volatiles									
VOA, 8260, USTUnleaded									
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/17/15	JMM	07/17/15 17:13	JMM
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	07/17/15	JMM	07/17/15 17:13	JMM
Surrogate Recoveries	Results		Units	\%Recovery	Method			Limits (\%Recovery)	
	Report Generated On: 07/21/2015 $1: 25$ pm STL_Results Revision\#1.6								
			Effective: 07/09/2014						

Sample Number: 5072359-03 Collector: DRC		Site: MW-8 Collect Date: 07/09/2015 12:22 pm		Sample ID: Sample Type: Grab					
Department / Test/ / arameter	Result	Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By

Volatiles (Continued)
VOA, 8260, USTUnleaded (Continued)

| Surrogate Recoveries (Continued) | Results | Units | \%Recovery | Method |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Surrogate: Dibromofluoromethane | 49.3 | $\mu \mathrm{~g} / \mathrm{L}$ | 98.6% | SW 8468260 B |
| Surrogate: 1,2-Dichloroethane-d4 | 50.5 | $\mu \mathrm{~g} / \mathrm{L}$ | 101% | SW 8468260 B |
| Surrogate: Toluene-d8 | 49.4 | $\mu \mathrm{~g} / \mathrm{L}$ | 98.8% | SW 8468260 B |
| Surrogate: Bromofluorobenzene | 49.4 | $\mu \mathrm{~g} / \mathrm{L}$ | $80-120$ | |

General Method Monitor Well Sampling

| Sampling Depth (ft) | 10.0 | N/A | N/A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $13: 12$ | DRC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Static Water Level (ft) | 3.05 | N/A | N/A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $13: 12$ | DRC |
| Total Volume Purged (gal) | 2.40 | N/A | N/A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $13: 12$ | DRC |
| Total Well Depth (ft) | 20.0 | N/A | N/A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $13: 12$ | DRC |
| Well Diameter (in) | 2.00 | N/A | N/A | 1 | $07 / 09 / 15$ | KAL | $07 / 09 / 15$ | $13: 12$ | DRC |

Volatiles

VOA, 8260, USTUnleaded
Benzene
Ethyl Benzene
Isopropylbenzene
Methyl-t-butyl ether (MTBE)
Naphthalene
Toluene

Report Generated On: 07/21/2015 $1: 25$ pm STL_Results Revision\#1.6

5072359
Effective: 07/09/2014

Data Qualifiers:

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs. Qualified data is generally acceptable for most data needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.
All results reported on an As Received (Wet Weight) basis unless otherwise noted.
This laboratory report may not be reproduced, except in full, without the written approval of STL.
Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By

Carol Schrenkel
QA Manager

01 50 c ә6ed
TAT (Circle One): Standard $24 \mathrm{hr} / 48 \mathrm{hr} / 72 \mathrm{hr} /$ Other
(Additional charges may apply for rush TAT. If not specified, standard TAT will apply).
${ }_{0}$

Project Name:

Address:
Phone: ______________
Fax:
Payment / P.O. Info:

Client Name: _
Address:
Contact Name:
Comments:

								ee Cod	s Bel		
	Sample Description / Site ID:	$\begin{aligned} & \frac{\square}{0} \\ & \stackrel{N}{0} \\ & \stackrel{N}{0} \\ & 0 \\ & \stackrel{y}{0} \\ & \hline 0 \end{aligned}$			Test(s) Requested:	кйueno apog			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{y}{2} \\ & \frac{0}{\#} \\ & 0 \\ & 0 \end{aligned}$		Comments / Field Data:
	M $1 / \mathrm{L}-2$	∞ / l_{1}	1030	baim	Pht $1+5$ Volatres	3	W_{n}	6	6	6	
	M H^{+}	$7 \frac{10}{n} 5$	1102	$\sqrt{12}$	1	\%	\%	1	i	1	
		$\% / 1 / 5$	\%	19 Ec	!	,	,	1	1	1	
		- / $1 / \mathrm{l}$	138	Mar	1	\square	ψ	*		W	
	Trep	$7 / \operatorname{m}$	Oby	4		z		6	13	S	
	- -										

Relinquished By :

Acceptable: Y / N
Acceptable: $2 / \mathrm{N}$

1
\vdots
0
0
E
$\stackrel{0}{\bullet}$

$$
\begin{array}{|ll|}
\hline \text { Date: } \\
\hline \text { Time: } \\
\hline \text { Date: } & \\
\hline \text { Time: } \\
\hline \text { Date: } & \\
\hline \text { Time: } & 4 / 5 \\
\hline \text { Date: } & 5 / 5 \\
\hline \text { Time: } / 4 / 5 \\
\hline
\end{array}
$$

g. SLF059 Rev. 1.3 Effective May 16, 2013.

Relinquished By :	Date:	
	Time:	
Received By:	Date:	Temp ${ }^{\circ} \mathrm{C}$:\qquad Acceptable: Y / N
	Time:	
	$\text { Date: } ;$	$\text { Temp }{ }^{\circ} \mathrm{C}: \frac{i^{\frac{2}{7}},}{\text { Acceptable: }}$
	Time: ins	
Received in Lab By:$1+\operatorname{sib} 4 \infty,$	Date: $7-9-15$	Temp ${ }^{\circ} \mathrm{C}$:\qquad Acceptable AiN
	Time: $14 y$	

Rettew - Lancaster	Project: Herr Foods
3020 Columbia Avenue	
Lancaster, PA 17603	
Attn: Ed Dziedzic	Regulatory ID:

General Method

Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A	1	07/10/15	KAL	07/10/15	8:42	DRC
Static Water Level (ft)	2.40	N/A	N/A	1	07/10/15	KAL	07/10/15	8:42	DRC
Total Volume Purged (gal)	2.40	N/A	N/A	1	07/10/15	KAL	07/10/15	8:42	DRC
Total Well Depth (ft)	20.0	N/A	N/A	1	07/10/15	KAL	07/10/15	8:42	DRC
Well Diameter (in)	2.00	N/A	N/A	1	07/10/15	KAL	07/10/15	8:42	DRC

Volatiles
VOA, 8260, USTUnleaded
Benzene

Sample Number: 5072398-02 Collector: DRC	Site: MW-6 Collect Date: 07/10/2015		$9: 38 \mathrm{am}$	Sample ID: Sample Type: Grab				Analysis Date	
Department/Test/Parameter	Result	Units	Method	R.L.	DF	Prep Date	By		By
General Method									
Monitor Well Sampling									
Sampling Depth (t)	10.0	N/A	N/A		1	07/10/15	KAL	07/10/15 9:38	DRC
Static Water Level (ft)	1.90	N/A	N/A		1	07/10/15	KAL	07/10/15 9:38	DRC
Total Volume Purged (gal)	3.35	N/A	N/A		1	07/10/15	KAL	07/10/15 9:38	DRC
Total Well Depth (t)	20.0	N/A	N/A		1	07/10/15	KAL	07/10/15 9:38	DRC
Well Diameter (in)	2.00	N/A	N/A		1	07/10/15	KAL	07/10/15 9:38	DRC
Report Generated On: 07/20/2015 4:51 pm			5072398						

General Method

| Monitor Well Sampling | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sampling Depth (ft) | 10.0 | $\mathrm{~N} / \mathrm{A}$ | N / A | $07 / 10 / 15$ | KAL | $07 / 10 / 15$ | $10: 22$ | DRC | |
| Static Water Level (ft) | 3.53 | $\mathrm{~N} / \mathrm{A}$ | N / A | $07 / 10 / 15$ | KAL | $07 / 10 / 15$ | $10: 22$ | DRC | |
| Total Volume Purged (gal) | 2.70 | $\mathrm{~N} / \mathrm{A}$ | N / A | $07 / 10 / 15$ | KAL | $07 / 10 / 15$ | $10: 22$ | DRC | |
| Total Well Depth (ft) | 27.0 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $07 / 10 / 15$ | KAL | $07 / 10 / 15$ | $10: 22$ | DRC |
| Well Diameter (in) | 2.00 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $07 / 10 / 15$ | KAL | $07 / 10 / 15$ | $10: 22$ | DRC |

Volatiles
VOA, 8260, USTUnleaded
Benzene

Sample Number: 5072398-03 Collector: DRC		Site: MW-5 Collect Date: 07/10/2015 10:22 am		Sample ID: Sample Type: Grab					
Department / Test/ / arameter	Result	Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By

Volatiles (Continued)
VOA, 8260, USTUnleaded (Continued)

| Surrogate Recoveries (Continued) | Results | Units | \%Recovery | Method |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Surrogate: Dibromofluoromethane | 46.2 | $\mu \mathrm{~g} / \mathrm{L}$ | 92.3% | SW 8468260 B |
| Surrogate: 1,2-Dichloroethane-d4 | 50.0 | $\mu \mathrm{~g} / \mathrm{L}$ | 99.9% | SW 8468260 B |
| Surrogate: Toluene-d8 | 43.3 | $\mu \mathrm{~g} / \mathrm{L}$ | 86.6% | SW 8468260 B |
| Surrogate: Bromofluorobenzene | 44.0 | $\mu \mathrm{~g} / \mathrm{L}$ | $80-120$ | |

General Method									
Monitor Well Sampling									
Sampling Depth (t)	8.00	N/A	N/A	1	07/10/15	KAL	07/10/15	11:12	DRC
Static Water Level (ft)	4.45	N/A	N/A	1	07/10/15	KAL	07/10/15	11:12	DRC
Total Volume Purged (gal)	3.10	N/A	N/A	1	07/10/15	KAL	07/10/15	11:12	DRC
Total Well Depth (t)	20.0	N/A	N/A	1	07/10/15	KAL	07/10/15	11:12	DRC
Well Diameter (in)	2.00	N/A	N/A	1	07/10/15	KAL	07/10/15	11:12	DRC

Report Generated On: 07/20/2015 4:51 pm STL_Results Revision\#1.6

5072398
Effective: 07/09/2014

General Method
 Monitor Well Sampling

Sampling Depth (ft)	10.0
Static Water Level (ft)	4.31
Total Volume Purged (gal)	2.60
Total Well Depth (ft$)$	19.0
Well Diameter (in)	2.00

N/A	N/A
N/A	N/A

1	$07 / 10 / 15$	KAL	$07 / 10 / 15$	$12: 48$	DRC
1	$07 / 10 / 15$	KAL	$07 / 10 / 15$	$12: 48$	DRC
1	$07 / 10 / 15$	KAL	$07 / 10 / 15$	$12: 48$	DRC
1	$07 / 10 / 15$	KAL	$07 / 10 / 15$	$12: 48$	DRC
1	$07 / 10 / 15$	KAL	$07 / 10 / 15$	$12: 48$	DRC

Volatiles

VOA, 8260, USTUnleaded										
Benzene	237	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	25.0	50	07/15/15	JMM	07/15/15	16:02	JMM
Ethyl Benzene	1330	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	25.0	50	07/15/15	JMM	07/15/15	16:02	JMM
Isopropylbenzene	65.8	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	07/14/15	JMM	07/14/15	20:38	JMM
Methyl-t-butyl ether (MTBE)	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	07/14/15	JMM	07/14/15	20:38	JMM
Naphthalene	346	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	25.0	50	07/15/15	JMM	07/15/15	16:02	JMM

Report Generated On: 07/20/2015 $4: 51$ pm STL_Results Revision\#1.6

5072398
Effective: 07/09/2014

Sample Number: 5072398-06 Collector: DRC	Site: MW-4 Collect Date:		07/10/2015 12:48 pm			Sample ID: Sample Type: Grab					
Department/Test/Parameter	Result		Units		Method	R.L.	DF	Prep Date	By	Analysis Date	By
Volatiles (Continued)											
VOA, 8260, USTUnteaded (Continued)											
Toluene	2280		$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	25.0	50	07/15/15	JMM	07/15/15 16:02	JMM
1,2,4-Trimethylbenzene	1550		$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	25.0	50	07/15/15	JMM	07/15/15 16:02	JMM
1,3,5-Trimethylbenzene	406		$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	25.0	50	07/15/15	JMM	07/15/15 16:02	JMM
Xylenes, Total	7320		$\mu \mathrm{g} / \mathrm{L}$		SW 846 8260B	50.0	50	07/15/15	JMM	07/15/15 16:02	JMM
Surrogate Recoveries		Results		v	Units	\%Recovery	Method			Limits (\%Recovery)	
Surrogate: Dibromofluoromethane		37.1			$\mu \mathrm{g} / \mathrm{L}$	74.3\%		8468260 B		80-120	
Surrogate: 1,2-Dichloroethane-d4		45.0			$\mu \mathrm{g} / \mathrm{L}$	89.9\%		846 8260B		80-120	
Surrogate: Toluene-d8		40.0			$\mu \mathrm{g} / \mathrm{L}$	80.0\%		346 8260B		80-120	
Surrogate: Bromofluorobenzene		42.7			$\mu \mathrm{g} / \mathrm{L}$	85.5\%		346 8260B		80-120	

Data Qualifiers:

C1 The CCV for this analyte was below acceptance criteria.
E The concentration exceeds the calibration range and has greater uncertainty.
V The surrogate associated with this sample was not within the established acceptance criteria.

5072398
Effective: 07/09/2014

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs. Qualified data is generally acceptable for most data needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015
All results reported on an As Received (Wet Weight) basis unless otherwise noted.
This laboratory report may not be reproduced, except in full, without the written approval of STL
Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By:

Carol Schrenkel
QA Manager

General Method									
Monitor Well Sampling									
Sampling Depth (tt)	10.0	N/A	N/A		1	10/06/15	KAL	10/06/15 10:22	DRC
Static Water Level (ft)	4.79	N/A	N/A		1	10/06/15	KAL	10/06/15 10:22	DRC
Total Volume Purged (gal)	2.50	N/A	N/A		1	10/06/15	KAL	10/06/15 10:22	DRC
Total Well Depth (t)	27.0	N/A	N/A		1	10/06/15	KAL	10/06/15 10:22	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/06/15	KAL	10/06/15 10:22	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/08/15	DMP	10/08/15 12:38	DMP
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	1.0	1	10/08/15	DMP	10/08/15 12:38	DMP
Surrogate Recoveries		Results	Units	\%Recovery				Limits (\%Rec	very)
Surrogate: Dibromofluoromethane		50.5	$\mu \mathrm{g} / \mathrm{L}$	101\%		468260 B		80-120	
Surrogate: 1,2-Dichloroethane-d4		49.6	$\mu \mathrm{g} / \mathrm{L}$	99.2\%		468260 B		80-120	
Surrogate: Toluene-d8		49.3	$\mu \mathrm{g} / \mathrm{L}$	98.6\%		468260 B		80-120	
Surrogate: Bromofluorobenzene		46.5	$\mu \mathrm{g} / \mathrm{L}$	93.0\%		468260 B		80-120	

General Method

Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A	1	10/06/15	KAL	10/06/15	9:42	DRC
Static Water Level (ft)	5.62	N/A	N/A	1	10/06/15	KAL	10/06/15	9:42	DRC
	Report Generated On: 10/16/2015 4:16 pm		5100575						
STL_Results Revision \#1.6			Effective: 07/09/2014						

Sample Number: 5100575-03 Collector: DRC		Site: MW 3 Collect Date:	10/07/2015 10:18 am		Sample ID: Sample Type: Grab					
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By

General Method

Monitor Well Sampling									
Sampling Depth (ft)	11.0	N/A	N/A	1	10/07/15	KAL	10/07/15	10:18	DRC
Static Water Level (ft)	5.34	N/A	N/A	1	10/07/15	KAL	10/07/15	10:18	DRC
Total Volume Purged (gal)	2.70	N/A	N/A	1	10/07/15	KAL	10/07/15	10:18	DRC
Total Well Depth (ft)	25.0	N/A	N/A	1	10/07/15	KAL	10/07/15	10:18	DRC
Well Diameter (in)	2.00	N/A	N/A	1	10/07/15	KAL	10/07/15	10:18	DRC

Volatiles

Benzene	42.7	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	10/12/15	DMP	10/12/15 18:19	DMP
Ethyl Benzene	430	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	10/12/15	DMP	10/12/15 18:19	DMP
Isopropylbenzene	21.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 18:19	DMP
Methyl-t-butyl ether (MTBE)	< 5.0	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 18:19	DMP

Report Generated On: 10/16/2015 4:16 pm STL_Results Revision \#1. 6

5100575
Effective: 07/09/2014

General Method

Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A	1	10/07/15	KAL	10/07/15	11:12	DRC
Static Water Level (ft)	6.16	N/A	N/A	1	10/07/15	KAL	10/07/15	11:12	DRC
Total Volume Purged (gal)	3.30	N/A	N/A	1	10/07/15	KAL	10/07/15	11:12	DRC
Total Well Depth (ft)	19.0	N/A	N/A	1	10/07/15	KAL	10/07/15	11:12	DRC
Well Diameter (in)	2.00	N/A	N/A	1	10/07/15	KAL	10/07/15	11:12	DRC

Volatiles
VOA, 8260, USTUnleaded
Benzene
Ethyl Benzene
Isopropylbenzene
Methyl-t-butyl ether (MTBE)
Naphthalene
Toluene
$1,2,4$-Trimethylbenzene
1760

Report Generated On: 10/16/2015 4:16 pm
STL Results Revision\#1.6

5100575
Effective: 07/09/2014

Volatiles (Continued)

General Method

Monitor Well Sampling Sampling Depth (ft) Static Water Level (ft) Total Volume Purged (gal)
Total Well Depth (ft)

N/A	N/A
N/A	N/A
N/A	N/A
N/A	N/A

1	$10 / 07 / 15$	KAL	$10 / 07 / 15$	$8: 38$	DRC
1	$10 / 07 / 15$	KAL	$10 / 07 / 15$	$8: 38$	DRC
1	$10 / 07 / 15$	KAL	$10 / 07 / 15$	$8: 38$	DRC
1	$10 / 07 / 15$	KAL	$10 / 07 / 15$	$8: 38$	DRC
1	$10 / 07 / 15$	KAL	$10 / 07 / 15$	$8: 38$	DRC

Volatiles

VOA, 8260, USTUnleaded
Benzene
Ethyl Benzene
Isopropylbenzene
Methyl-t-butyl ether (MTBE)
Naphthalene
Toluene

Sample Number: 5100575-07 Collector: DRC		Site: MW 6 Collect Date:	10/06/2015	1:05 pm			e: Grab			
Department / Test/Parameter	Result		Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By

General Method

Monitor Well Sampling

| Sampling Depth (ft) | 10.0 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $13: 08$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Static Water Level (ft) | 3.42 | $\mathrm{~N} / \mathrm{A}$ | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $13: 08$ | DRC | |
| Total Volume Purged (gal) | 2.60 | $\mathrm{~N} / \mathrm{A}$ | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $13: 08$ | DRC | |
| Total Well Depth (ft) | 20.0 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $13: 08$ | DRC |
| Well Diameter (in) | 2.00 | $\mathrm{~N} / \mathrm{A}$ | N / A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $13: 08$ | DRC |

Volatiles									
VOA, 8260, USTUnleaded									
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/12/15	DMP	10/12/15 17:22	DMP
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	10/12/15	DMP	10/12/15 17:22	DMP
Surrogate Recoveries		Resuits	Units	\%Recovery				Limits (\%Reco	
Surrogate: Dibromofluoromethane		47.8	$\mu \mathrm{g} / \mathrm{L}$	95.6\%		46 8260B		80-120	
Surrogate: 1,2-Dichloroethane-d4		45.9	$\mu \mathrm{g} / \mathrm{L}$	91.8\%		46 8260B		80-120	
Surrogate: Toluene-d8		49.4	$\mu \mathrm{g} / \mathrm{L}$	98.8\%		468260 B		80-120	
Report Generated On: 10/16/2015 4:16 pm			5100575						

Volatiles (Continued)
VOA, 8260, USTUnleaded (Continued)

| Surrogate Recoveries (Continued) | Results | Units | \%Recovery | Method |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Surrogate: Bromofluorobenzene | 48.2 | $\mu \mathrm{~g} / \mathrm{L}$ | Limits (\%Recovery) | |

General Method

Monitor Well Sampling									
Sampling Depth (ft)	8.00	N/A	N/A	1	10/07/15	KAL	10/07/15	9:32	DRC
Static Water Level (tt)	6.01	N/A	N/A	1	10/07/15	KAL	10/07/15	9:32	DRC
Total Volume Purged (gal)	3.66	N/A	N/A	1	10/07/15	KAL	10/07/15	9:32	DRC
Total Well Depth (ft)	20.0	N/A	N/A	1	10/07/15	KAL	10/07/15	9:32	DRC
Well Diameter (in)	2.00	N/A	N/A	1	10/07/15	KAL	10/07/15	9:32	DRC

Volatiles									
VOA, 8260, USTUnleaded									
Benzene	514	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Ethyl Benzene	728	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Isopropylbenzene	53.4	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Methyl-t-butyl ether (MTBE)	< 5.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Naphthalene	240	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Toluene	741	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
1,2,4-Trimethylbenzene	622	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
1,3,5-Trimethylbenzene	169	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Xylenes, Total	3050	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	10.0	10	10/12/15	DMP	10/12/15 19:17	DMP
Surrogate Recoveries		Resuits	Units	\%Recovery	Method			Limits (\%Recovery)	
Surrogate: Dibromofluoromethane		48.1	$\mu \mathrm{g} / \mathrm{L}$	96.1\%	SW 846 8260B		80-120		
Surrogate: 1,2-Dichloroethane-d4		46.1	$\mu \mathrm{g} / \mathrm{L}$	92.2\%	SW 846 8260B		80-120		
Surrogate: Toluene-d8		49.6	$\mu \mathrm{g} / \mathrm{L}$	99.1\%	SW 846 8260B		80-120		
Surrogate: Bromofluorobenzene		49.2	$\mu \mathrm{g} / \mathrm{L}$	98.4\%	SW 846 8260B		80-120		

General Method

Report Generated On: 10/16/2015 4:16 pm
STL_Results Revision\#1.6

5100575
Effective: 07/09/2014

General Method

Monitor Well Sampling

Sampling Depth (ft)	10.0	N/A	N/A		1	10/06/15	KAL	10/06/15 12:28	DRC
Static Water Level (ft)	4.16	N/A	N/A		1	10/06/15	KAL	10/06/15 12:28	DRC
Total Volume Purged (gal)	3.20	N/A	N/A		1	10/06/15	KAL	10/06/15 12:28	DRC
Total Well Depth (ft)	20.0	N/A	N/A		1	10/06/15	KAL	10/06/15 12:28	DRC
Well Diameter (in)	2.00	N/A	N/A		1	10/06/15	KAL	10/06/15 12:28	DRC
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	2.6	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/08/15	DMP	10/08/15 14:59	DMP
Ethyl Benzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/08/15	DMP	10/08/15 14:59	DMP

Report Generated On: 10/16/2015 4:16 pm
STL_Results Revision\#1.

5100575
Effective: 07/09/2014

| General Method | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Monitor Well Sampling | | | | | | | | | |
| Sampling Depth (ft) | 10.0 | N/A | N/A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $11: 42$ | DRC |
| Static Water Level (ft) | 2.60 | N/A | N/A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $11: 42$ | DRC |
| Total Volume Purged (gal) | N/A | N/A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $11: 42$ | DRC | |
| Total Well Depth (tt) | 2.0 | N/A | N/A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $11: 42$ | DRC |
| Well Diameter (in) | 2.00 | N/A | N/A | 1 | $10 / 06 / 15$ | KAL | $10 / 06 / 15$ | $11: 42$ | DRC |

Volatiles
VOA, 8260, USTUnleaded
Benzene
Ethyl Benzene
Isopropylbenzene
Methyl-t-butyl ether (MTBE)
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylenes, Total

Volatiles (Continued)
VOA, 8260, USTUnleaded (Continued)

Surrogate Recoveries (Continued)	Results	Units	\%Recovery	Method	Limits (\%Recovery)
Surrogate: Toluene-d8	48.8	$\mu \mathrm{~g} / \mathrm{L}$	97.6%	SW 8468260B	$80-120$
Surrogate: Bromofluorobenzene	46.6	$\mu \mathrm{~g} / \mathrm{L}$	93.2%	SW 846 8260B	$80-120$

| Sample Number:
 Collector: DRC | Site: TRIP BLANK DAY 2 OF SAMPLING
 Collect Date: $10 / 05 / 20153: 22 ~ p m ~$ | Sample ID:
 Sample Type: Grab |
| :--- | :--- | :--- | :--- |

| Department / Test / Parameter | Result | Units | Method | R.L. | DF | Prep Date | By | Analysis Date | By |
| :--- |

Volatiles

VOA, 8260, USTUnleaded									
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	10/08/15	DMP	10/08/15 12:10	DMP
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	1.0	1	10/08/15	DMP	10/08/15 12:10	DMP
Surrogate Recoveries		Resuits	Units	\%Recovery				Limits (\%Reco	ry)
Surrogate: Dibromofluoromethane		49.6	$\mu \mathrm{g} / \mathrm{L}$	99.2\%		46 8260B		80-120	
Surrogate: 1,2-Dichloroethane-d4		48.1	$\mu \mathrm{g} / \mathrm{L}$	96.3\%		46 8260B		$80-120$	
Surrogate: Toluene-d8		49.2	$\mu \mathrm{g} / \mathrm{L}$	98.4\%		468260 B		$80-120$	
Surrogate: Bromofluorobenzene		46.7	$\mu \mathrm{g} / \mathrm{L}$	93.4\%		46 8260B		80-120	

Data Qualifiers

D1 The Duplicate for this sample was not within the established acceptance criteria.

5100575
Effective: 07/09/2014

SUBURBAN
TEST\|NGLABS

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.
All results reported on an As Received (Wet Weight) basis unless otherwise noted.
This laboratory report may not be reproduced, except in full, without the written approval of STL.
Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By:

Deborah Hannum
Project Manager

LZ 10 レレ | 6ed |
| :---: |

General Method									
Monitor Well Sampling									
Sampling Depth (tt)	11.0	N/A	N/A	1	01/15/16	BAK	01/15/16	12:43	DRC
Static Water Level (ft)	4.91	N/A	N/A	1	01/15/16	BAK	01/15/16	12:43	DRC
Total Volume Purged (gal)	2.80	N/A	N/A	1	01/15/16	BAK	01/15/16	12:43	DRC
Total Well Depth (t)	25.0	N/A	N/A	1	01/15/16	BAK	01/15/16	12:43	DRC
Well Diameter (in)	2.00	N/A	N/A	1	01/15/16	BAK	01/15/16	12:43	DRC

Volatiles
VOA, 8260, USTUnleaded
Benzene
Ethyl Benzene
sopropylbenzene
Methyl-t-butyl ether (MTBE)
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylenes, Total

General Method

Monitor Well Sampling
Sampling Depth (ft)

10.0	N/A	N/A	1	$01 / 15 / 16$	BAK	$01 / 15 / 16$	$13: 39$	DRC
5.81	N/A	N/A	1	$01 / 15 / 16$	BAK	$01 / 15 / 16$	$13: 39$	DRC

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision \#1.6

6012049
Effective: 07/09/2014

Sample Number: 6012049-04 Collector: DRC	Site: MW 4 Collect Date:		01/15/2016	1:39 pm	Sample ID: Sample Type: Grab				Analysis Date	By
Department/Test/Parameter	Result		Units	Method	R.L.	DF	Prep Date	By		
General Method (Continued)										
Monitor Well Sampling (Continued)										
Total Volume Purged (gal)	1.70		N/A	N/A		1	01/15/16	BAK	01/15/16 13:39	DRC
Total Well Depth (tt)	19.0		N/A	N/A		1	01/15/16	BAK	01/15/16 13:39	DRC
Well Diameter (in)	2.00		N/A	N/A		1	01/15/16	BAK	01/15/16 13:39	DRC
Volatiles										
VOA, 8260 , USTUnleaded										
Benzene	1790		$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	50.0	100	01/20/16	AMD	01/22/16 12:38	AMD
Ethyl Benzene	1290		$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	50.0	100	01/20/16	AMD	01/22/16 12:38	AMD
Isopropylbenzene	36.5		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/20/16 14:30	AMD
Methyl---butyl ether (MTBE)	< 0.5		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/20/16 14:30	AMD
Naphthalene	129		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	50.0	100	01/20/16	AMD	01/22/16 12:38	AMD
Toluene	8710		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	50.0	100	01/20/16	AMD	01/22/16 12:38	AMD
1,2,4-Trimethylbenzene	725		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	50.0	100	01/20/16	AMD	01/22/16 12:38	AMD
1,3,5-Trimethylbenzene	220		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	50.0	100	01/20/16	AMD	01/22/16 12:38	AMD
Xylenes, Total	5860		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	100	100	01/20/16	AMD	01/22/16 12:38	AMD
Surrogate Recoveries		Resut		Units	\%Recovery				Limits (\%Reco	very)
Surrogate: Dibromofluoromethane		39.9		$\mu \mathrm{g} / \mathrm{L}$	79.8\%		8468260 B		80-120	
Surrogate: 1,2-Dichloroethane-d4		55.2		$\mu \mathrm{g} / \mathrm{L}$	110\%		3468260 B		80-120	
Surrogate: Toluene-d8		44.5		$\mu \mathrm{g} / \mathrm{L}$	89.0\%		846 8260B		80-120	
Surrogate: Bromofluorobenzene		45.3		$\mu \mathrm{g} / \mathrm{L}$	90.7\%		8468260 B		80-120	

General Method

Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A	1	01/14/16	BAK	01/14/16	13:05	DRC
Static Water Level (ft)	4.60	N/A	N/A	1	01/14/16	BAK	01/14/16	13:05	DRC
Total Volume Purged (gal)	2.90	N/A	N/A	1	01/14/16	BAK	01/14/16	13:05	DRC
Total Well Depth (ft)	27.0	N/A	N/A	1	01/14/16	BAK	01/14/16	13:05	DRC
Well Diameter (in)	2.00	N/A	N/A	1	01/14/16	BAK	01/14/16	13:05	DRC

Volatiles

Benzene	187	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
Ethyl Benzene	94.7	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
Isopropylbenzene	5.6	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
Methyl-t-butyl ether (MTBE)	4.1	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision\#1.6

6012049
Effective: 07/09/2014

Sample Number: 6012049-05 Collector: DRC-STL	Site: MW 5 Collect Date:		01/14/2016	1:05 pm	Sample ID: Sample Type: Grab					
Department/Test/Parameter	Result		Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By
Volatiles (Continued)										
VOA, 8260 , USTUnleaded (Continued)										
Naphthalene	21.8		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
Toluene	6.4		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
1,2,4-Trimethylbenzene	56.8		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
1,3,5-Trimethylbenzene	17.9		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:04	AMD
Xylenes, Total	151		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	01/19/16	AMD	01/19/16 21:04	AMD
Surrogate Recoveries		Resuit		Units	\%Recovery				Limits (\%Reco	very)
Surrogate: Dibromofluoromethane		51.5		$\mu \mathrm{g} / \mathrm{L}$	103\%		8468260 B		80-120	
Surrogate: 1,2-Dichloroethane-d4		50.8		$\mu \mathrm{g} / \mathrm{L}$	102\%		846 8260B		80-120	
Surrogate: Toluene-d8		53.1		$\mu \mathrm{g} / \mathrm{L}$	106\%		846 8260B		80-120	
Surrogate: Bromofluorobenzene		49.0		$\mu \mathrm{g} / \mathrm{L}$	98.1\%		846 8260B		80-120	

Sample Number: 6012049-06 Collector: HMB-STL	Site: TRIP BLANK DAY 1 OF SAMPLING Collect Date: 01/14/2016 12:00 am			Sample ID: Sample Type: Grab					
Department / Test/ Parameter	Result	Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By
Volatiles									
VOA, 8260, USTUnleaded									
Benzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
Ethyl Benzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
Isopropylbenzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
Methyl-t-butyl ether (MTBE)	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
1,2,4-Trimethylbenzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
1,3,5-Trimethylbenzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/22/16 11:15	AMD
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	01/20/16	AMD	01/22/16 11:15	AMD
Surrogate Recoveries		Results	Units	\%Recovery				Limits (\%Recor	very)
Surrogate: Dibromofluoromethane		54.8	$\mu \mathrm{g} / \mathrm{L}$	110\%		$468260 B$		80-120	
Surrogate: 1,2-Dichloroethane-d4		52.0	$\mu \mathrm{g} / \mathrm{L}$	104\%		468260 B		80-120	
Surrogate: Toluene-d8		49.7	$\mu \mathrm{g} / \mathrm{L}$	99.4\%		468260 B		80-120	
Surrogate: Bromofluorobenzene		51.2	$\mu \mathrm{g} / \mathrm{L}$	102\%		468260 B		80-120	

General Method

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision\#1.6

6012049
Effective: 07/09/2014

General Method									
Monitor Well Sampling									
Sampling Depth (ft)	10.0	N/A	N/A		1	01/14/16	BAK	01/14/16 12:18	DRC
Static Water Level (ft)	3.94	N/A	N/A		1	01/14/16	BAK	01/14/16 12:18	DRC
Total Volume Purged (gal)	2.60	N/A	N/A		1	01/14/16	BAK	01/14/16 12:18	DRC
Total Well Depth (ft)	20.0	N/A	N/A		1	01/14/16	BAK	01/14/16 12:18	DRC
Well Diameter (in)	2.00	N/A	N/A		1	01/14/16	BAK	01/14/16 12:18	DRC
Volatiles									
VOA, 8260 , USTUnleaded									
Benzene	5.4	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/19/16	AMD	01/19/16 21:31	AMD
Ethyl Benzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/19/16	AMD	01/19/16 21:31	AMD

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision\#1.6

6012049
Effective: 07/09/2014

General Method									
Monitor Well Sampling									
Sampling Depth (t)	10.0	N/A	N/A	1	01/14/16	BAK	01/14/16	11:38	DRC
Static Water Level (ft)	4.01	N/A	N/A	1	01/14/16	BAK	01/14/16	11:38	DRC
Total Volume Purged (gal)	2.70	N/A	N/A	1	01/14/16	BAK	01/14/16	11:38	DRC
Total Well Depth (t)	20.0	N/A	N/A	1	01/14/16	BAK	01/14/16	11:38	DRC
Well Diameter (in)	2.00	N/A	N/A	1	01/14/16	BAK	01/14/16	11:38	DRC

Volatiles
VOA, 8260, USTUnleaded
Benzene
Ethyl Benzene
Isopropylbenzene
Methyl-t-butyl ether (MTBE)
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylenes, Total

Volatiles (Continued)
VOA, 8260, USTUnleaded (Continued)

Surrogate Recoveries (Continued)	Results	Units	\%Recovery	Method
Surrogate: Toluene-d8	51.5	$\mu \mathrm{~g} / \mathrm{L}$	103%	SW 8468260 B
Surrogate: Bromofluorobenzene	50.2	$\mu \mathrm{~g} / \mathrm{L}$	100%	SW 8468260 B

Sample Number: 6012049-12	Site: TRIP BLANK DAY 2 OF SAMPLING	Sample ID:
Collector:	Collect Date: 01/14/2016 12:00 am	Sample Type: Grab

Volatiles

General Method									
Monitor Well Sampling									
Sampling Depth (t)	11.5	N/A	N/A	1	01/15/16	BAK	01/15/16	11:43	DRC
Static Water Level (ft)	0.240	N/A	N/A	1	01/15/16	BAK	01/15/16	11:43	DRC
Total Volume Purged (gal)	2.40	N/A	N/A	1	01/15/16	BAK	01/15/16		DRC
Total Well Depth (ft)	12.5	N/A	N/A	1	01/15/16	BAK	01/15/16	11:43	DRC
Well Diameter (in)	2.00	N/A	N/A	1	01/15/16	BAK	01/15/16	11:43	DRC

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision\#1.6

6012049
Effective: 07/09/2014

General Method

Monitor Well Sampling								
Sampling Depth (ft)	9.00	N/A	N/A	$01 / 15 / 16$	BAK	$01 / 15 / 16$	$10: 12$	DRC
Static Water Level (tt)	2.20	N/A	N/A	1	$01 / 15 / 16$	BAK	$01 / 15 / 16$	$10: 12$
DRC								
Total Volume Purged (gal)	2.60	N/A	N/A	1	$01 / 15 / 16$	BAK	$01 / 15 / 16$	$10: 12$
Total Well Depth (ft)	12.0	NRC						
Well Diameter (in)	2.00	N/A	N/A	1	$01 / 15 / 16$	BAK	$01 / 15 / 16$	$10: 12$
DRC								

Volatiles
VOA, 8260, USTUnleaded
Benzene

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision\#1.6

6012049
Effective: 07/09/2014

General Method Monitor Well Sampling

Sampling Depth (ft)	9.00	N/A	N/A	1	01/15/16	BAK	01/15/16 10:49	DRC
Static Water Level (ft)	3.41	N/A	N/A	1	01/15/16	BAK	01/15/16 10:49	DRC
Total Volume Purged (gal)	1.80	N/A	N/A	1	01/15/16	BAK	01/15/16 10:49	DRC
Total Well Depth (ft)	12.0	N/A	N/A	1	01/15/16	BAK	01/15/16 10:49	DRC
Well Diameter (in)	2.00	N/A	N/A	1	01/15/16	BAK	01/15/16 10:49	DRC

Volatiles									
VOA, 8260, USTUnleaded									
Benzene	$<0.5 \mathrm{M}$	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
Ethyl Benzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
Isopropylbenzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
Naphthalene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
Toluene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
1,2,4-Trimethylbenzene	< 0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	01/20/16	AMD	01/20/16 17:21	AMD
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	1.0	1	01/20/16	AMD	01/20/16 17:21	AMD
Surrogate Recoveries		Resuits	Units	\%Recovery	Method			Limits (\%Recovery)	
Surrogate: Dibromofluoromethane		52.9	$\mu \mathrm{g} / \mathrm{L}$	106\%	SW 846 8260B			80-120	
Surrogate: 1,2-Dichloroethane-d4		56.7	$\mu \mathrm{g} / \mathrm{L}$	113\%	SW 846 8260B			80-120	
Surrogate: Toluene-d8		49.4	$\mu \mathrm{g} / \mathrm{L}$	98.7\%	SW 846 8260B			80-120	
Surrogate: Bromofluorobenzene		48.8	$\mu \mathrm{g} / \mathrm{L}$	97.6\%	SW 846 8260B			80-120	

Report Generated On: 01/25/2016 2:06 pm
STL_Results Revision\#1.6

6012049
Effective: 07/09/2014

Data Qualifiers:

M The Matrix Spike associated with this sample is not within established acceptance criteria, indicating potential matrix interference.
V
The surrogate associated with this sample was not within the established acceptance criteria.

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.
All results reported on an As Received (Wet Weight) basis unless otherwise noted.
This laboratory report may not be reproduced, except in full, without the written approval of STL
Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By

Deborah Hannum
Project Manager

ヤて

Field Results

$\begin{array}{c}\text { Sample } \\ \text { Number }\end{array}$	Sample Description－Site ID	$\begin{array}{c}\text { Collect } \\ \text { Date／Time }\end{array}$	$\begin{array}{c}\text { Sam } \\ \text { In }\end{array}$	
$6012049-04$	MW 4	$1 / \%$	$\% \%$	0

Container Type／Preservation

General Method
Analysis－Method
Monitor Well Sampling－N／A
Volatiles
VOA， 8260,
VOA，8260，USTUnleaded－SW 846 8260B
VOA， 8260 ，USTUnleaded－SW $8468260 B$
Volatiles
General Method
Montiles

Grab	
Analysis－Method	

General Wethod

C

40 ml VOA－Cool to $6 \mathrm{C} \&$ Ascorbic Acid \＆ HCl	D

$40 \mathrm{mi} \mathrm{VOA}-$ Cool to 6 C \＆Ascorbic Acid \＆ HCl
40 ml VOA－Cool to 6 C \＆Ascorbic Acid \＆ HCl
40 ml VOA－Cool to 6 C \＆Ascorbic Acid \＆ HCl
40 ml VOA－Cool to 6 C \＆Ascorbic Acid \＆ HCl

$6012049-06$	TRIP BLANK DAY 1 OF SAMPLING

Container Type／Preservation
Container Type／Preservation Field Services Field Services

40 ml VOA－Cool to 6 C \＆Ascorbic Acid \＆ HCl
40 ml VOA－Cool to 6 C \＆Ascorbic Acid \＆ HCl
40 ml VOA－Cool to 6 C \＆Ascorbic Acid $\& \mathrm{HCl}$
8012049－07－MW 6
Container Type／Preservation
Field Services
40 ml VOA－Cool to 6 C \＆Ascorbic Acid \＆ HCl
40 ml VOA－Cooltor $6 \subset$ \＆Ascorbic Acid \＆ HCl

Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time	
DRC	Non-potable	Grab		
Preservation Check				Field Results
General Method Monitor Well Sampling - N/A Volatiles VOA, 8260, USTUnleaded - SW 846 8260B				

Abstract

VOA, 8260, USTUnleaded - SW $8468260 B$

Suburban Testing Labs．
1037F MacArthur Road
Reading，PA 19605

Submitted with COC？
Number of containers match number on COC？$/ \mathrm{N}$
All Containers in tact？
$\begin{array}{ll}\text { All Containers in tact？} & / \mathrm{N} \\ \text { Tests within holding times？} \\ 40 \mathrm{~mL} \text { VOA vials free of headspace？} & / \mathrm{N} \\ \end{array}$
Relinquished by：
Received in Lab by：Kare
 Page 5 of 5

General Method									
Monitor Well Sampling									
Sampling Depth (tt)	11.0	N/A	N/A	1	04/07/16	KAL	04/07/16	11:34	DRC
Static Water Level (ft)	2.55	N/A	N/A	1	04/07/16	KAL	04/07/16	11:34	DRC
Total Volume Purged (gal)	3.20	N/A	N/A	1	04/07/16	KAL	04/07/16	11:34	DRC
Total Well Depth (tt)	25.0	N/A	N/A	1	04/07/16	KAL	04/07/16	11:34	DRC
Well Diameter (in)	2.00	N/A	N/A	1	04/07/16	KAL	04/07/16	11:34	DRC

Volatiles										
VOA, 8260 , USTUnleaded										
Benzene	160	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16	21:13	CEM
Ethyl Benzene	1110	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	25.0	50	04/19/16	CEM	04/21/16	18:32	CEM
Isopropylbenzene	42.8	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16	21:13	CEM
Methyl-t-butyl ether (MTBE)	1.3	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16	21:13	CEM
Naphthalene	196	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16	21:13	CEM
Toluene	8400	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	25.0	50	04/19/16	CEM	04/21/16	18:32	CEM
1,3,5-Trimethylbenzene	197	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16	21:13	CEM
1,2,4-Trimethylbenzene	514	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	25.0	50	04/19/16	CEM	04/21/16	18:32	CEM
Xylenes, Total	4750	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	50.0	50	04/19/16	CEM	04/21/16	18:32	CEM
Surrogate Recoveries		Results	Units	\%Recovery	DF	Method		Limits (\%Recovery)		
Surrogate: Dibromofluoromethane		45.4	$\mu \mathrm{g} / \mathrm{L}$	91\%	1	SW 846 8260B		72-136		
Surrogate: 1,2-Dichloroethane-d4		48.6	$\mu \mathrm{g} / \mathrm{L}$	97\%	1	SW 846 8260B		79-135		
Surrogate: Toluene-d8		47.5	$\mu \mathrm{g} / \mathrm{L}$	95\%	1	SW 846826			88-112	
Surrogate: Bromofluorobenzene		52.0	$\mu \mathrm{g} / \mathrm{L}$	104\%	1	SW 8468260 B		75-117		

General Method

$$
\begin{array}{rll}
\text { Report Generated On: 04/25/2016 11:41 am } & 6040798 \\
\text { STL_Results } & \text { Revision \#1.6 } & \text { Effective: 07/09/2014 }
\end{array}
$$

Sample Number: 6040798-04 Collector: DRC	Site: MW 4			$12: 14 \mathrm{pm}$	Sample ID: Sample Type: Grab				Analysis Date	By
Department / Test / Parameter	Result	Units		Method	R.L.	DF	Prep Date	By		
General Method (Continued)										
Monitor Well Sampling (Continued)										
Total Volume Purged (gal)	2.60	N/A		N/A		1	04/07/16	KAL	04/07/16 12:14	DRC
Total Well Depth (ft)	19.0	N/A		N/A		1	04/07/16	KAL	04/07/16 12:14	DRC
Well Diameter (in)	2.00	N/A		N/A		1	04/07/16	KAL	04/07/16 12:14	DRC
Volatiles										
VOA, 8260, USTUnleaded										
Benzene	1170	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	10.0	20	04/21/16	CEM	04/21/16 15:48	CEM
Ethyl Benzene	2820	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	10.0	20	04/21/16	CEM	04/21/16 15:48	CEM
Isopropylbenzene	79.5	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16 21:42	CEM
Methyl-t-butyl ether (MTBE)	1.9	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16 21:42	CEM
Naphthalene	313	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	10.0	20	04/21/16	CEM	04/21/16 15:48	CEM
Toluene	4870	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	10.0	20	04/21/16	CEM	04/21/16 15:48	CEM
1,3,5-Trimethylbenzene	2180	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	10.0	20	04/21/16	CEM	04/21/16 15:48	CEM
1,2,4-Trimethylbenzene	1970	$\mu \mathrm{g} / \mathrm{L}$		SW 8468260 B	10.0	20	04/21/16	CEM	04/21/16 15:48	CEM
Xylenes, Total	9430	$\mu \mathrm{g} / \mathrm{L}$		SW 846 8260B	20.0	20	04/21/16	CEM	04/21/16 15:48	CEM
Surrogate Recoveries	Results			Units	\%Recovery	DF	Method		Limits (\%Reco	very)
Surrogate: Dibromofluoromethane	35.1		V	$\mu \mathrm{g} / \mathrm{L}$	70\%	1	SW 846826		72-136	
Surrogate: 1,2-Dichloroethane-d4	48.6			$\mu \mathrm{g} / \mathrm{L}$	97\%	1	SW 846826		79-135	
Surrogate: Toluene-d8	42.3		V	$\mu \mathrm{g} / \mathrm{L}$	85\%	1	SW 846826		88-112	
Surrogate: Bromofluorobenzene	54.7			$\mu \mathrm{g} / \mathrm{L}$	109\%	1	SW 846826		75-117	

Sample Number: 6040798-05	Site: MW 5			Sample ID:			
Collector: DRC	Collect Date:	$04 / 06 / 2016$	$2: 04 \mathrm{pm}$		Sample Type: Grab		
Department $/$ Test $/$ Parameter	Result	Units	Method	R.L.	DF	Prep Date	By

General Method

Monitor Well Sampling Sampling Depth (ft) Static Water Level (ft) Total Volume Purged (gal) Total Well Depth (ft) Well Diameter (in)

10.0	$\mathrm{~N} / \mathrm{A}$	N / A
4.61	$\mathrm{~N} / \mathrm{A}$	N / A
2.10	$\mathrm{~N} / \mathrm{A}$	N / A
27.0	$\mathrm{~N} / \mathrm{A}$	N / A
2.00	$\mathrm{~N} / \mathrm{A}$	N / A

1	$04 / 06 / 16$	KAL	$04 / 06 / 1614: 04$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 1614: 04$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 1614: 04$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 1614: 04$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 1614: 04$	DRC

Volatiles

VOA, 8260, USTUnleaded									
Benzene	594	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	04/07/16	CEM	04/13/16 23:58	RCS3
Ethyl Benzene	304	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	04/07/16	CEM	04/13/16 23:58	RCS3
Isopropylbenzene	12.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 14:40	CEM
Methyl-t-butyl ether (MTBE)	10.6	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 14:40	CEM
Naphthalene	36.7	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 14:40	CEM

Report Generated On: 04/25/2016 11:41 am
STL_Results Revision\#1.6

6040798

Effective: 07/09/2014

Sample Number: 6040798-05 Collector: DRC	Site: MW 5Collect Date:		04/06/2016	2:04 pm	Sample ID: Sample Type: Grab					
Department / Test/Parameter	Result		Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By
Volatiles (Continued)										
VOA, 8260, USTUnteaded (Continued)										
Toluene	155		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 14:40	CEM
1,3,5-Trimethylbenzene	35.2		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 14:40	CEM
1,2,4-Trimethylbenzene	156		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 14:40	CEM
Xylenes, Total	643		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	10.0	10	04/07/16	CEM	04/13/16 23:58	RCS3
Surrogate Recoveries		Result		Units	\%Recovery	DF	Method		Limits (\%Reco	very)
Surrogate: Dibromofluoromethane		49.3		$\mu \mathrm{g} / \mathrm{L}$	99\%	1	SW 84682		72-136	
Surrogate: Dibromofluoromethane		49.2		$\mu \mathrm{g} / \mathrm{L}$	98\%	10	SW 84682		72-136	
Surrogate: 1,2-Dichloroethane-d4		51.0		$\mu \mathrm{g} / \mathrm{L}$	102\%	1	SW 84682		79-135	
Surrogate: 1,2-Dichloroethane-d4		48.6		$\mu \mathrm{g} / \mathrm{L}$	97\%	10	SW 84682		79-135	
Surrogate: Toluene-d8		50.8		$\mu \mathrm{g} / \mathrm{L}$	102\%	10	SW 84682		88-112	
Surrogate: Toluene-d8		50.9		$\mu \mathrm{g} / \mathrm{L}$	102\%	1	SW 846826		88-112	
Surrogate: Bromofluorobenzene		52.7		$\mu \mathrm{g} / \mathrm{L}$	105\%	1	SW 846826		75-117	
Surrogate: Bromofluorobenzene		51.0		$\mu \mathrm{g} / \mathrm{L}$	102\%	10	SW 84682		75-117	

Report Generated On: 04/25/2016 11:41 am
STL_Results Revision \#1.6

6040798
Effective: 07/09/2014

Sample Number: 6040798-08 Collector: DRC		04/07/2016 10:44 am	Sample ID: Sample Type: Grab					
Department / Test / Parameter	Result	Method	R.L.	DF	Prep Date	By	Analysis Date	By
General Method								
Monitor Well Sampling								
Sampling Depth (ft)	8.00	N/A		1	04/07/16	KAL	04/07/16 10:44	DRC
Static Water Level (ft)	4.33	N/A		1	04/07/16	KAL	04/07/16 10:44	DRC
Total Volume Purged (gal)	2.60	N/A		1	04/07/16	KAL	04/07/16 10:44	DRC
Total Well Depth (ft)	20.0	N/A		1	04/07/16	KAL	04/07/16 10:44	DRC
Well Diameter (in)	2.00	N/A		1	04/07/16	KAL	04/07/16 10:44	DRC
Volatiles								
VOA, 8260 , USTUnleaded								
Benzene	2770	SW 8468260 B	10.0	20	04/19/16	CEM	04/21/16 16:16	CEM
Ethyl Benzene	2050	SW 8468260 B	10.0	20	04/19/16	CEM	04/21/16 16:16	CEM
Isopropylbenzene	91.4	SW 846 8260B	0.5	1	04/19/16	CEM	04/19/16 22:11	CEM
Methyl-t-butyl ether (MTBE)	0.9	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16 22:11	CEM
Naphthalene	389	SW 846 8260B	10.0	20	04/19/16	CEM	04/21/16 16:16	CEM
Toluene	<0.5	SW 8468260 B	0.5	1	04/19/16	CEM	04/19/16 22:11	CEM
1,3,5-Trimethylbenzene	373	SW 8468260 B	10.0	20	04/19/16	CEM	04/21/16 16:16	CEM
1,2,4-Trimethylbenzene	1680	SW 8468260 B	10.0	20	04/19/16	CEM	04/21/16 16:16	CEM
Xylenes, Total	10300	SW 846 8260B	20.0	20	04/19/16	CEM	04/21/16 16:16	CEM
Surrogate Recoveries		Units	\%Recovery	DF	Method		Limits (\%Recor	very)
Surrogate: Dibromofluoromethane		$\mu \mathrm{g} / \mathrm{L}$	79\%	1	SW 846826		72-136	
Surrogate: 1,2-Dichloroethane-d4		$\mu \mathrm{g} / \mathrm{L}$	87\%	1	SW 846826		79-135	
Surrogate: Toluene-d8		$\mu \mathrm{g} / \mathrm{L}$	96\%	1	SW 846826		88-112	
Surrogate: Bromofluorobenzene		$\mu \mathrm{g} / \mathrm{L}$	105\%	1	SW 846826		75-117	

General Method

Monitor Well Sampling
Sampling Depth (ft) Static Water Level (ft) Total Volume Purged (gal)
Total Well Depth (ft)
Well Diameter (in)

10.0	$\mathrm{~N} / \mathrm{A}$
2.05	$\mathrm{~N} / \mathrm{A}$
3.70	$\mathrm{~N} / \mathrm{A}$
20.0	$\mathrm{~N} / \mathrm{A}$
2.00	$\mathrm{~N} / \mathrm{A}$

N/A
N/A
N/A
N/A
N/A

1	$04 / 06 / 16$	KAL	$04 / 06 / 16$	$12: 28$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 16$	$12: 28$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 16$	$12: 28$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 16$	$12: 28$	DRC
1	$04 / 06 / 16$	KAL	$04 / 06 / 16$	$12: 28$	DRC

Volatiles

General Method

Monitor Well Sampling

Sampling Depth (ft)	10.0	N/A	N/A	1	04/06/16	KAL	04/06/16 11:34	DRC
Static Water Level (ft)	3.63	N/A	N/A	1	04/06/16	KAL	04/06/16 11:34	DRC
Total Volume Purged (gal)	2.10	N/A	N/A	1	04/06/16	KAL	04/06/16 11:34	DRC
Total Well Depth (ft)	20.0	N/A	N/A	1	04/06/16	KAL	04/06/16 11:34	DRC
Well Diameter (in)	2.00	N/A	N/A	1	04/06/16	KAL	04/06/16 11:34	DRC

Volatiles

VOA, 8260, USTUnleaded										
Benzene	2050	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	5.0	10	04/14/16	CEM	04/14/16	0:26	RCS3
Ethyl Benzene	10.4	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
Isopropylbenzene	28.0	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
Methyl-t-butyl ether (MTBE)	122	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
Naphthalene	62.6	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
Toluene	22.3	$\mu \mathrm{g} / \mathrm{L}$	SW $8468260 B$	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
1,3,5-Trimethylbenzene	4.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
1,2,4-Trimethylbenzene	3.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:02	CEM
Xylenes, Total	23.9	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	04/07/16	CEM	04/07/16	16:02	CEM
Surrogate Recoveries		Resuits	Units	\%Recovery	DF	Method		Limits (\%Recovery)		
Surrogate: Dibromofluoromethane		48.6	$\mu \mathrm{g} / \mathrm{L}$	97\%	1	SW 8468260 B		72-136		
Surrogate: 1,2-Dichloroethane-d4		51.3	$\mu \mathrm{g} / \mathrm{L}$	103\%	1	SW 84682			79-135	
Surrogate: Toluene-d8		50.4	$\mu \mathrm{g} / \mathrm{L}$	101\%	1	SW 84682			88-112	

$$
\begin{array}{rll}
\text { Report Generated On: 04/25/2016 11:41 am } & 6040798 \\
& \text { STL_Results } & \text { Revision \#1.6 }
\end{array} \text { Effective: 07/09/2014 }
$$

Volatiles (Continued)
VOA, 8260, USTUnleaded (Continued)

Surrogate Recoveries (Continued)	Results	Units	\%Recovery	DF	Method	Limits (\%Recovery)
Surrogate: Bromofluorobenzene	51.6	$\mu g / L$	103%	1	SW 846 8260B	$75-117$

General Method										
Monitor Well Sampling										
Sampling Depth (ti)	9.00	N/A	N/A		1	04/06/16	KAL	04/06/16	10:08	DRC
Static Water Level (ft)	2.09	N/A	N/A		1	04/06/16	KAL	04/06/16	10:08	DRC
Total Volume Purged (gal)	2.60	N/A	N/A		1	04/06/16	KAL	04/06/16	10:08	DRC
Total Well Depth (tt)	12.0	N/A	N/A		1	04/06/16	KAL	04/06/16	10:08	DRC
Well Diameter (in)	2.00	N/A	N/A		1	04/06/16	KAL	04/06/16	10:08	DRC
Volatiles										
VOA, 8260 , USTUnleaded										
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	04/14/16	CEM	04/14/16	1:20	RCS3
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:30	CEM
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:30	CEM
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:30	CEM
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	04/14/16	CEM	04/14/16		RCS3
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:30	CEM
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:30	CEM

Report Generated On: 04/25/2016 11:41 am STL_Results Revision \#1.6

6040798

Effective: 07/09/2014

Sample Number: 6040798-14 Collector: DRC	Site: MW 12		10:08 am	Sample ID: Sample Type: Grab					
Department / Test / Parameter	Result	Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By
Volatiles (Continued)									
VOA, 8260, USTUnleaded (Continued)									
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 16:30	CEM
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	1.0	1	04/07/16	CEM	04/07/16 16:30	CEM
Surrogate Recoveries	Results		Units	\%Recovery	DF	Method		Limits (\%Recovery)	
Surrogate: Dibromofluoromethane	50.2		$\mu \mathrm{g} / \mathrm{L}$	100\%	1	SW 8468260 B		72-136	
Surrogate: 1,2-Dichloroethane-d4	51.1		$\mu \mathrm{g} / \mathrm{L}$	102\%	1	SW 8468260 B		79-135	
Surrogate: Toluene-d8	49.9		$\mu \mathrm{g} / \mathrm{L}$	100\%	1	SW 846 8260B		88-112	
Surrogate: Bromofluorobenzene	51.0		$\mu \mathrm{g} / \mathrm{L}$	102\%	1	SW 846 8260B		75-117	

General Method

Monitor Well Sampling									
Sampling Depth (ft)	9.00	N/A	N/A	1	04/06/16	KAL	04/06/16	10:44	DRC
Static Water Level (ft)	3.98	N/A	N/A	1	04/06/16	KAL	04/06/16	10:44	DRC
Total Volume Purged (gal)	2.10	N/A	N/A	1	04/06/16	KAL	04/06/16	10:44	DRC
Total Well Depth (ft)	12.0	N/A	N/A	1	04/06/16	KAL	04/06/16	10:44	DRC
Well Diameter (in)	2.00	N/A	N/A	1	04/06/16	KAL	04/06/16	10:44	DRC

Volatiles										
VOA, 8260 , USTUnleaded										
Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
Ethyl Benzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
Isopropylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
Methyl-t-butyl ether (MTBE)	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
Naphthalene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
Toluene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
1,3,5-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
1,2,4-Trimethylbenzene	<0.5	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16	16:57	CEM
Xylenes, Total	<1.0	$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	1.0	1	04/07/16	CEM	04/07/16	16:57	CEM
Surrogate Recoveries		Resuits	Units	\%Recovery	DF	Method		Limits (\%Recovery)		
Surrogate: Dibromofluoromethane		49.6	$\mu \mathrm{g} / \mathrm{L}$	99\%	1	SW 8468260 B		72-136		
Surrogate: 1,2-Dichloroethane-d4		50.9	$\mu \mathrm{g} / \mathrm{L}$	102\%	1	SW 8468260 B		79-135		
Surrogate: Toluene-d8		49.7	$\mu \mathrm{g} / \mathrm{L}$	99\%	1	SW 8468260 B		88-112		
Surrogate: Bromofluorobenzene		51.0	$\mu \mathrm{g} / \mathrm{L}$	102\%	1	SW 846 8260B		75-117		

Report Generated On: 04/25/2016 11:41 am
STL_Results Revision\#1.6

6040798
Effective: 07/09/2014

SUBURBAN
TESTING LABS

Sample Number: 6040798-16 Collector: DRC	Site: SW Collect Date:		04/06/2016	1:14 pm	Sample ID: Sample Type: Grab					
Department / Test / Parameter	Result		Units	Method	R.L.	DF	Prep Date	By	Analysis Date	By
General Method										
Monitor Well Sampling										
Sampling Depth (ft)	100		N/A	N/A		1	04/06/16	KAL	04/06/16 13:14	DRC
Static Water Level (ft)	5.31		N/A	N/A		1	04/06/16	KAL	04/06/16 13:14	DRC
Total Volume Purged (gal)	2.60		N/A	N/A		1	04/06/16	KAL	04/06/16 13:14	DRC
Total Well Depth (ft)	Unknown		N/A	N/A		1	04/06/16	KAL	04/06/16 13:14	DRC
Well Diameter (in)	6.00		N/A	N/A		1	04/06/16	KAL	04/06/16 13:14	DRC
Volatiles										
VOA, 8260, USTUnleaded										
Benzene	2310		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	04/14/16	CEM	04/14/16 0:53	RCS3
Ethyl Benzene	1280		$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	04/14/16	CEM	04/14/16 0:53	RCS3
Isopropylbenzene	33.4		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 17:24	CEM
Methyl-t-butyl ether (MTBE)	47.5		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 17:24	CEM
Naphthalene	118		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 17:24	CEM
Toluene	4730		$\mu \mathrm{g} / \mathrm{L}$	SW 846 8260B	5.0	10	04/14/16	CEM	04/14/16 0:53	RCS3
1,3,5-Trimethylbenzene	120		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	0.5	1	04/07/16	CEM	04/07/16 17:24	CEM
1,2,4-Trimethylbenzene	518		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	5.0	10	04/14/16	CEM	04/14/16 0:53	RCS3
Xylenes, Total	3160		$\mu \mathrm{g} / \mathrm{L}$	SW 8468260 B	10.0	10	04/14/16	CEM	04/14/16 0:53	RCS3
Surrogate Recoveries		Resu		Units	\%Recovery	DF	Method		Limits (\%Re	ery)
Surrogate: Dibromofluoromethane		45.3		$\mu \mathrm{g} / \mathrm{L}$	91\%	1	SW 846826		72-13	
Surrogate: 1,2-Dichloroethane-d4		49.3		$\mu \mathrm{g} / \mathrm{L}$	99\%	1	SW 846826		79-13	
Surrogate: Toluene-d8		50.3		$\mu \mathrm{g} / \mathrm{L}$	101\%	1	SW 846826		88-11	
Surrogate: Bromofluorobenzene		53.0		$\mu \mathrm{g} / \mathrm{L}$	106\%	1	SW 846826		75-11	

Data Qualifiers:

H Hold time was exceeded for this analysis.
$V \quad$ The surrogate associated with this sample was not within the established acceptance criteria.
X Sample was reanalyzed outside of hold time due to suspected carryover in original analysis.
Xa Sample was reanalyzed outside of hold time due to suspected carryover in the original analysis.
** This report has been Amended (Rev1) and replaces all previous reports for this order ID **

| Report Generated On: 04/25/2016 11:41 am | 6040798 |
| ---: | :--- | :--- |
| STL_Results Revision \#1.6 | Effective: 07/09/2014 |

SUBURBAN
TEST\|NGLABS

All results meet the requirements of STL's TNI (NELAC) Accredited Quality System unless otherwise noted. If your results contain any data qualifiers or comments, you should evaluate useability relative to your needs.

If collectors initials include "STL", samples have been collected in accordance with STL SOP SL0015.
All results reported on an As Received (Wet Weight) basis unless otherwise noted.
This laboratory report may not be reproduced, except in full, without the written approval of STL.
Results are considered Preliminary unless report is signed by authorized representative of STL.

Reviewed and Released By:

Deborah Hannum
Project Manager

レع 」o てレ ә6ed

Sample \quad Composite | Composite |
| :---: |
| Start Date / Time | Field Results

oring in: inazas

ample umber	Sample Description - Site ID	Sampling Location	Collect Date/Time	Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
0798-16	SW		1416101314	DAC	Non-potable	Grab	
Container Type / Preservation			Preservation Check	Analysis - Method			Field Results
Field Services A			General Method Monitor Well Sampling - N/A				
$40 \mathrm{ml} \mathrm{VOA} \mathrm{-} \mathrm{Cool} \mathrm{to} 6 \mathrm{C}$ \& Ascorbic A^{\prime} cid \& HCl B			Unassigned Sample Collection, Custom 3 - SL.0015				
40 ml VOA - Cool to 6 C \& Ascorbic Acid \& HCl			Volatiles VOA, 8260, USTUnleaded - SW 846 8260B				
40 ml VOA - Cool to $6 \mathrm{C} \&$ Ascorbic Acid \& HCl							

.

ORDER ID: 6040798
IIIIIIIIIIIIIIIII

Preservation Check Analysis
1
Field Results
-
ORDER ID: 6040798 ,illinilitiliuilili
$\left.\left.\left.\begin{array}{l}\begin{array}{c}\text { Sampler's } \\ \text { Initials }\end{array} \\ \hline \text { Matrix }\end{array} \begin{array}{c}\text { Sample } \\ \text { Type }\end{array}\right] \begin{array}{c}\text { Composite } \\ \text { Start Date / Time }\end{array}\right] \begin{array}{|c|c|}\hline \text { Non-potable } & \text { Grab }\end{array}\right]$ N| Grab

Field Results

 Field Results
 ___ - ._-

ample umber	Sample Description - Site ID	Sampling Location	Collect Date/Time		Sampler's Initials	Matrix	Sample Type	Composite Start Date / Time
0798-16	SW		4/6/16	1314	DRC	Non-potable	Grab	
Container Type / Preservation			Preservation Check		Analysis - Method			Field Results
Field Services A			General Method Monitor Well Sampling - N/A					
$40 \mathrm{ml} \mathrm{VOA} \mathrm{-} \mathrm{Cool} \mathrm{to} 6 \mathrm{C} \&$ Ascorbic Ácid \& HCl B			Unassigned Sample Collection, Custom 3 - SL0015					
$40 \mathrm{ml} \mathrm{VOA} \mathrm{-} \mathrm{Cool} \mathrm{to} 6 \mathrm{C}$ \& Ascorbic Ácid \& HCl C			Volatiles VOA, 8260, USTUnleaded - SW 846 8260B					
$40 \mathrm{ml} \mathrm{VOA} \mathrm{-} \mathrm{Cool} \mathrm{to} \mathrm{6} \mathrm{C} \mathrm{\&} \mathrm{Ascorbic} \mathrm{Ácid} \mathrm{\&} \mathrm{HCI}$ D								
0798-17-Endwall						Non-potable	Grab	
Container Type			Preservatio	Check	Anal	hod		Field Results
Field Services					Gen Mo	thod Sampling -		
$40 \mathrm{ml} \mathrm{VOA} \mathrm{-} \mathrm{Cool} \mathrm{to} 6 \mathrm{C} \&$ Ascorbic,Acid \& HCl					Una Sa	ection, Custo		"
40 ml VOA - Cool to $6 \mathrm{C} \&$ Ascorbic Acid \& HCl C						USTUnleade		
40 m TVOA - Cool to 6 C \& Ascorbic Ácid \& HCI		D						

APPENDIX H

Baildown Test Data Plots

APPENDIX I

SPL Sample Laboratory Analytical Report

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

July 21, 2015
Project: Herr Foods Inc.
Submittal Date: 07/09/2015
Group Number: 1575572
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	Lancaster Labs (LL) \#
MW-4 SPL Grab SPL	7960539

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

(717) 556-7236

Project Name: Herr Foods Inc.

Collected: $07 / 09 / 201509: 05$	by EGD	Rettew Associates
through $07 / 09 / 201511: 35$	3020 Columbia Avenue	
Submitted: $07 / 09 / 201513: 30$	Lancaster PA $17603-4011$	

Reported: $07 / 21 / 201514: 46$

M4 SPL

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All OC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst		Dilution
10237	PA Unleaded/Diesel 8260B	SW-846	8260B	1	Q151951AA	07/14/2015	15:49	Sarah A	A Guill	20000
10237	PA Unleaded/Diesel 8260B	SW-846	8260B	1	Q151951AA	07/14/2015	16:12	Sarah A	A Guill	200000
00373	DP 21 Bulk Prep of Oil Samples	SW-846	5030B	1	Q151951AA	07/13/2015	10:02	Sarah A	A Guill	п.a.
02535	Quantitative GC Fingerprint	SW-846 modifie	$\begin{aligned} & 8015 \mathrm{~B} \\ & \text { ed } \end{aligned}$	1	151960036A	07/15/2015	22:43	Heather	E Willians	100

Quality Control Summary

Client Name: Rettew Associates
Group Number: 1575572
Reported: 07/21/2015 14:46

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name

Batch number: Q151951AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene

Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
Result	MDL	Units	\%REC	\%REC	Limits	$\underline{\text { RPD }}$	Max
Sample number(s) : 7960539							
N. D.	250.	ug/kg	91	94	80-120	4	30
N. D.	500.	ug/kg	85	87	80-120	2	30
N. D.	500.	ug/kg	81	84	76-120	4	30
N. D.	250.	$\mathrm{ug} / \mathrm{kg}$	89	93	72-120		30
N. D.	500.	ug/kg	81	88	64-120	8	30
N. D.	500.	ug/kg	90	93	80-120	3	30
N. D.	500.	ug/kg	84	87	79-120	4	30
N. D.	500.	$\mathrm{ug} / \mathrm{kg}$	82	86	78-120	5	30
N. D.	500.	$\mathrm{ug} / \mathrm{kg}$	85	87	80-120	2	30

1,3,5-Trimethylbenzene Xylene (Total)

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PA Unleaded/Diesel 8260B
Batch number: Q151951AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7960539	82	78	89	92
Blank	87	92	85	82
LCS	93	97	90	87
LCSD	97	102	95	91
LimitS:	$50-141$	$54-135$	$52-141$	$50-131$

Analysis Name: Quantitative GC Fingerprint
Batch number: 151960036 A

	Chlorobenzene	Orthoterphenyl
7960539	103	104
Limits:	$50-150$	$50-150$

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

Acct. \#00221 For Eurofing t ancaster Laboratories Environmental use only
5)
Analysis Requested
Preservation Codes \qquad -

Doc Log ID:
85298
Group Number(s): $/ 575572$

Client: Rettew Assoc.

Delivery and Receipt Information

Delivery Method:	Client Drop Off		Arrival Timestamp:		$07 / 09 / 2015$
Number of Packages:	1			Number of Projects:	1

Arrival Condition Summary

Shipping Container Sealed:	Yes	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	N/A
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	0
Samples Intact:	Yes	Air Quality Samples Present:	No
Missing Samples:	No		
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Timothy Cubberley (6520) at 13:48 on 07/09/2015

Samples Chilled Details

Thermometer Types		DT = Digital (Temp. Bottle)		$I R=$ Infrared (Surface Temp)			All Temperatures in ${ }^{\circ} \mathrm{C}$.	
Cooler \#	Th	Corrected Tem	Therm.		Ice Present?	Ice Container	Elevated Temp?	Samples Collected Same Day as Receipt?
1	DT131	7.6	DT	Wet	$\frac{\mathrm{y}}{}$	Bagged	\% Y	Y

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
$\mu \mathrm{g}$	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	$\begin{array}{r} \mu \mathrm{L} \\ \mathrm{pg} / \mathrm{L} \end{array}$	microliter(s) picogram/liter
$<$	less than		
>	greater than		
ppm	parts per million - One pp aqueous liquids, ppm is u very close to a kilogram.	milligram p valent to m ne ppm is	kilogram ($\mathrm{mg} / \mathrm{kg}$) or one gram per mil rams per liter (mg / l), because one liter ivalent to one microliter per liter of g
ppb	parts per billion		
Dry weight basis	Results printed under this concentration to approxim as-received basis.	justed for in a similar	sture content. This increases the an mple without moisture. All other res

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWLL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681• www.LancasterLabs.com
REVISED

ANALYTICAL RESULTS

Prepared by
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

Report Date: April 27, 2016
Project: Herr Foods Inc.
Submittal Date: 07/09/2015
Group Number: 1575572
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description
MW-4 SPL Grab SPL
Lancaster Labs
$\frac{(\text { LL) \# }}{7960539}$

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratoriesenvironmental/resources/certifications/.

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories

Environmental

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com
REVISED

Project Name: Herr Foods Inc.	
Collected: $07 / 09 / 201509: 05$	
through $07 / 09 / 201511: 35$	by EGD
Submitted: $07 / 09 / 201513: 30$	
Reported: $04 / 27 / 201608: 41$	Lancaster PA 17603-4011

M4SPL

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	$\mathrm{ug} / 1$	
10237	Benzene	71-43-2	600,000	10,000	20000
10237	Ethylbenzene	100-41-4	12,000,000	200,000	200000
10237	Isopropylbenzene	98-82-8	1,300,000	20,000	20000
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	10,000	20000
10237	Naphthalene	91-20-3	380,000	20,000	20000
10237	Toluene	108-88-3	22,000,000	200,000	200000
10237	1,2,4-Trimethylbenzene	95-63-6	38,000,000	200,000	200000
10237	1,3,5-Trimethylbenzene	108-67-8	12,000,000	200,000	200000
10237	Xylene (Total)	1330-20-7	59,000,000	200,000	200000
GC PetroleumHydrocarbons					
02535	The GC Fingerprint for this sample is most similar to our Gasoline reference standard. Based on relative peak intensities and ratios, the product in this sample does not appear to be weathered. When we calculate total sample area in the C8-C40 normal hydrocarbon range as petroleum distilate, it is present at 56\% by weight.				

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/16.
All QC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Quality Control Summary

Client Name: Rettew Associates
Reported: $04 / 27 / 201608: 41$$\quad$ Group Number: 1575572

Method Blank

Analysis Name	Result	MDL
	ug/l	$\mathrm{ug} / 1$
Batch number: Q151951AA	Sample number(s) :	7960539
Benzene	N.D.	250
Ethylbenzene	N.D.	500
Isopropylbenzene	N.D.	500
Methyl Tertiary Butyl Ether	N.D.	250
Naphthalene	N.D.	500
Toluene	N.D.	500
1,2,4-Trimethylbenzene	N.D.	500
1,3,5-Trimethylbenzene	N.D.	500
Xylene (Total)	N.D.	500

Analysis Name	LCS Spike Added ug/l	$\begin{aligned} & \text { LCS } \\ & \text { Conc } \end{aligned}$ $\mathrm{ug} / 1$	LCSD Spike Added ug/l	LCSD Conc ug/l	$\begin{aligned} & \text { LCS } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { \%REC } \end{aligned}$	LCS/LCSD Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: Q151951AA	Sample number(s) : 7960539								
Benzene	10000	9091.42	10000	9423.47	91	94	80-120	4	30
Ethylbenzene	10000	8537.2	10000	8728.82	85	87	80-120	2	30
Isopropylbenzene	10000	8113.95	10000	8417.58	81	84	76-120	4	30
Methyl Tertiary Butyl Ether	10000	8905.24	10000	9328.76	89	93	72-120	5	30
Naphthalene	10000	8125.11	10000	8774.92	81	88	64-120	8	30
Toluene	10000	9003.81	10000	9281.75	90	93	80-120	3	30
1,2,4-Trimethylbenzene	10000	8361.79	10000	8710.87	84	87	79-120	4	30
1,3,5-Trimethylbenzene	10000	8206.08	10000	8625.79	82	86	78-120	5	30
Xylene (Total)	30000	25630.08	30000	26135.86	85	87	80-120	2	30

[^35](1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

```
Client Name: Rettew Associates
Reported: 04/27/2016 08:41
```


Surrogate Quality Control

Surrogate recoveries which are outside of the $O C$ window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.				
Analysis Name: PA Unleaded/Diesel 8260B Batch number: Q151951AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7960539	82	78	89	92
Blank	87	92	85	82
LCS	93	97	90	87
LCSD	97	102	95	91
Limits:	50-141	54-135	52-141	50-131

Analysis Name: Quantitative GC Fingerprint
Batch number: 151960036A

	Chlorobenzene	Orthoterphenyl
7960539	103	104

Limits: 50-150 50-150
*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group

Acct. \#00221 For Eurofing t ancaster Laboratories Environmental use only
5)
Analysis Requested
Preservation Codes \qquad -

Doc Log ID:
85298
Group Number(s): $/ 575572$

Client: Rettew Assoc.

Delivery and Receipt Information

Delivery Method:	Client Drop Off		Arrival Timestamp:		$07 / 09 / 2015$
Number of Packages:	1			Number of Projects:	1

Arrival Condition Summary

Shipping Container Sealed:	Yes	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	N/A
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	0
Samples Intact:	Yes	Air Quality Samples Present:	No
Missing Samples:	No		
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Timothy Cubberley (6520) at 13:48 on 07/09/2015

Samples Chilled Details

Thermometer Types		DT = Digital (Temp. Bottle)		$I R=$ Infrared (Surface Temp)			All Temperatures in ${ }^{\circ} \mathrm{C}$.	
Cooler \#	Th	Corrected Tem	Therm.		Ice Present?	Ice Container	Elevated Temp?	Samples Collected Same Day as Receipt?
1	DT131	7.6	DT	Wet	$\frac{\mathrm{y}}{}$	Bagged	\% Y	Y

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and $<$ the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX J

Aquifer Test Data Plots

APPENDIX K

Soil Gas Sample Laboratory Analytical Reports

ANALYTICAL RESULTS

Prepared by:	Prepared for:
Eurofins Lancaster Laboratories Environmental	Rettew Associates
2425 New Holland Pike	3020 Columbia Avenue
Lancaster, PA 17601	Lancaster PA 17603-4011

Report Date: April 06, 2016
Project: Herr Foods 101722001
Submittal Date: 03/25/2016
Group Number: 1644353
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	Lancaster Labs (LL) \#
SG-2 Air	8304248

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
 Environmental

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name		CAS Number	Final Result	MDL	Final Result	MDL	DF
Volati	les in Air EPA	TO-15		ppb (v)	ppb (v)	$\mathrm{ug} / \mathrm{m} 3$	$\mathrm{ug} / \mathrm{m} 3$	
05298	Benzene		71-43-2	N.D.	0.20	N.D.	0.64	1
05298	Cumene		98-82-8	N. D.	0.20	N.D.	0.98	1
05298	Ethylbenzene		100-41-4	N. D.	0.20	N. D.	0.87	1
05298	Methyl t-Butyl Ether		1634-04-4	N. D.	0.20	N. D.	0.72	1
05298	Naphthalene		91-20-3	N. D.	0.50	N. D.	2.6	1
05298	Toluene		108-88-3	N. D.	0.20	N. D.	0.75	1
05298	1,2,4-Trimethylbenzene		95-63-6	N. D.	0.20	N. D.	0.98	1
05298	1,3,5-Trimethylbenzene		108-67-8	N. D.	0.20	N. D.	0.98	1
05298	m/p-Xylene		179601-23-1	N. D.	0.20	N.D.	0.87	1
05298	o-Xylene		95-47-6	N. D.	0.20	N. D.	0.87	1

MDL $=$ Method Detection Limit

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record							
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	E1609630BA	04/05/2016 22:20	Jacob E Bailey	1

Quality Control Summary

Method Blank

Analysis Name	Result	MDL
	ppb(v)	ppb (v)
Batch number: E1609630BA	Sample number(s) : 8304248	
Benzene	N.D.	0.20
Cumene	N.D.	0.20
Ethylbenzene	N.D.	0.20
Methyl t-Butyl Ether	N.D.	0.20
Naphthalene	N.D.	0.40
Toluene	N.D.	0.20
1,2,4-Trimethylbenzene	N.D.	0.20
1,3,5-Trimethylbenzene	N.D.	0.20
m/p-Xylene	N.D.	0.20
O-Xylene	N.D.	0.20

Analysis Name	LCS Spike Added ppb (v)	LCS Conc ppb (v)	$\begin{gathered} \text { LCSD Spike } \\ \text { Added } \\ \text { ppb (v) } \end{gathered}$	$\begin{array}{r} \text { LCSD } \\ \text { Conc } \\ \text { ppb (v) } \end{array}$	$\begin{aligned} & \text { LCS } \\ & \% \text { REC } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { \%REC } \end{aligned}$	$\begin{gathered} \text { LCS/LCSD } \\ \text { Limits } \end{gathered}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: E1609630BA	Sample numb	s) : 830							
Benzene	10	10.04	10	9.95	100	100	70-130	1	25
Cumene	10	10.2	10	10.44	102	104	70-130	2	25
Ethylbenzene	10	9.92	10	9.97	99	100	70-130	1	25
Methyl t-Butyl Ether	10	9.22	10	9.72	92	97	52-129	5	25
Naphthalene	10	6.76	10	8.30	68	83	35-153	20	25
Toluene	10	10.24	10	10.23	102	102	70-130	0	25
1,2,4-Trimethylbenzene	10	10.39	10	10.64	104	106	60-128	2	25
1,3,5-Trimethylbenzene	10	10.26	10	10.54	103	105	61-132	3	25
m/p-Xylene	10	10.23	10	10.16	102	102	70-130	1	25
o-Xylene	10	10.34	10	10.48	103	105	70-130	1	25

[^36](1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Client: Rettew Associates

Delivery and Receipt Information

Delivery Method:	Client Drop Off		Arrival Timestamp:	$\underline{03 / 25 / 2016 \text { 15:45 }}$
Number of Packages:	1		Number of Projects:	1
State/Province of Origin:	PA			

Arrival Condition Summary

Shipping Container Sealed:	No	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	N/A	VOA Vial Headspace $26 \mathrm{~mm}:$	N/A
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	0
Samples Intact:	Yes	Air Quality Samples Present:	Yes
Missing Samples:	No	Air Quality Flow Controllers Present:	No
Extra Samples:	No	Air Quality Returns:	No
Discrepancy in Container Qty on COC:	No		

Unpacked by Patrick Engle (3472) at 16:06 on 03/25/2016

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and $<$ the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

Report Date: April 22, 2016
Project: Herr Foods 101722001
Submittal Date: 04/13/2016
Group Number: 1650083
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description
SOIL GAS SG-2 Air
Lancaster Labs
$\frac{(\mathrm{LL}) \#}{8330858}$

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratoriesenvironmental/resources/certifications/.

Electronic Copy To Rettew Associates Attn: Ed Dziedzic

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
 Environmental

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name		CAS Number	Final	Result	MDL	Final	Result	MDL	DF
Volati	les in Air EPA	TO-15		ppb (v)		ppb (v)	$\mathrm{ug} / \mathrm{m} 3$		$\mathrm{ug} / \mathrm{m} 3$	
05298	Benzene		71-43-2	N.D.		0.20	N.D.		0.64	1
05298	Cumene		98-82-8	N. D.		0.20	N. D.		0.98	1
05298	Ethylbenzene		100-41-4	N. D.		0.20	N. D.		0.87	1
05298	Methyl t-Butyl Ether		1634-04-4	N. D.		0.20	N. D.		0.72	1
05298	Naphthalene		91-20-3	N. D.		0.50	N. D.		2.6	1
05298	Toluene		108-88-3	0.26	J	0.20	0.98	J	0.75	1
05298	1,2,4-Trimethylbenzene		95-63-6	N. D.		0.20	N. D.		0.98	1
05298	1,3,5-Trimethylbenzene		108-67-8	N. D.		0.20	N. D.		0.98	1
05298	m / p-Xylene		179601-23-1	0.40	J	0.20	1.7	J	0.87	1
05298	o-Xylene		95-47-6	0.24	J	0.20	1.0	J	0.87	1

MDL $=$ Method Detection Limit

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality Control Sumnary for overall $O C$ performance data and associated samples.

Laboratory Sample Analysis Record							
CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	E1611230AA	04/21/2016 19:56	Jacob E Bailey	1

Quality Control Summary

Client Name: Rettew Associates
Reported: $04 / 22 / 2016$ Group Number: $15: 54$
Matrix oC may not be reported if insufficient sample or site-specific oC samples were not submitted. In these
situations, to demonstrate precision and accuracy at a batch level, acs/LCSD was performed, unless otherwise specified
in the method.
All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted
on the Analysis Report.

Method Blank

Analysis Name	Result	MDL
	ppb(v)	ppb (v)
Batch number: E1611230AA	Sample number (s) : 8330858	
Benzene	N.D.	0.20
Cumene	N.D.	0.20
Ethylbenzene	N.D.	0.20
Methyl t-Butyl Ether	N.D.	0.20
Naphthalene	N.D.	0.40
Toluene	N.D.	0.20
1,2,4-Trimethylbenzene	N.D.	0.20
1,3,5-Trimethylbenzene	N.D.	0.20
m/p-Xylene	N.D.	0.20
O-XYlene	N.D.	0.20

LCS / LCSD

Analysis Name	$\begin{gathered} \text { LCS Spike } \\ \text { Added } \\ \text { ppb (v) } \end{gathered}$	$\begin{gathered} \text { Lcs } \\ \text { Conc } \\ \text { ppb (v) } \end{gathered}$	$\begin{gathered} \text { LCSD Spike } \\ \text { Added } \\ \text { ppb (v) } \end{gathered}$	$\begin{array}{r} \text { LCSD } \\ \text { Conc } \\ \text { ppb (v) } \end{array}$	$\begin{aligned} & \text { LCS } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { LCS/LCSD } \\ & \text { Limits } \end{aligned}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: E1611230AA	Sample numb	(s) : 833							
Benzene	10	10.67	10	10.63	107	106	70-130	0	25
Cumene	10	11.12	10	10.47	111	105	70-130	6	25
Ethylbenzene	10	10.55	10	10.52	105	105	70-130	0	25
Methyl t-Butyl Ether	10	9.55	10	9.80	95	98	52-129	3	25
Naphthalene	10	10.18	10	11.19	102	112	35-153	9	25
Toluene	10	10.61	10	10.67	106	107	70-130	1	25
1,2,4-Trimethylbenzene	10	11.53	10	11.72	115	117	60-128	2	25
1,3,5-Trimethylbenzene	10	10.98	10	11.27	110	113	61-132	3	25
m/p-Xylene	10	10.76	10	10.82	108	108	70-130	1	25
o-Xylene	10	10.94	10	11.1	109	111	70-130	1	25

[^37](1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

[^38](1) The result for one or both determinations was less than five times the LOQ
(2) The unspiked result was more than four times the spike added.
$\mathrm{P} \# \# \# \# \#$ is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Client: Rettew Associates

Delivery and Receipt Information

| Delivery Method: | Client Drop Off | | Arrival Timestamp: | $\underline{04 / 13 / 2016} 11: 50$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of Packages: | 1 | | Number of Projects: | 1 |

Arrival Condition Summary

Shipping Container Sealed:	Yes	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	N/A	VOA Vial Headspace $\geq 6 m m:$	N/A
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	0
Samples Intact:	Yes	Air Quality Samples Present:	Yes
Missing Samples:	No	Air Quality Flow Controllers Present:	Yes
Extra Samples:	No	Flow Controller Quantity:	1
Discrepancy in Container Qty on COC:	No	Air Quality Returns:	No

Unpacked by Krista Abel (3058) at 12:06 on 04/13/2016

[^39]
Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and $<$ the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX L

Sediment and Surface Water Sample Laboratory Analytical Reports

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601

Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

March 01, 2016
Project: Herr Foods 101722001
Submittal Date: 02/22/2016
Group Number: 1633538
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description	
Stream-2 Grab Surface Water	8252137
SED-2 Grab Sediment	8252138
Stream-1 Grab Surface Water	8252139
SED-1 Grab Sediment	8252140
Trip Blank Water	8252141

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC Rettew Associates Attn: Ed Dziedzic COPY TO

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
Environmental

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 - Fax: 717-656-2681 • www.LancasterLabs.com

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All OC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10945	PA UST Unleaded + TMBs	SW-846	8260B	1	D160562AA	02/25/2016	19:44	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846	5030 B	1	D160562AA	02/25/2016	19:44	Daniel H Heller	1

Sample Description: SED-2 Grab Sediment	LI Sample \# SW 8252138	
	Herr Foods 101722001	LL Group
		\#
		Account
	\#	O0721

| Collected: $02 / 22 / 2016$ | $10: 55$ | by BO |
| :--- | :--- | :--- | Rettew Associates \quad 3020 Columbia Avenue

HRR-2

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N.D.	0.5	0.82
10237	Ethylbenzene	100-41-4	N. D.	1	0.82
10237	Isopropylbenzene	98-82-8	N. D.	1	0.82
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	0.82
10237	Naphthalene	91-20-3	N. D.	1	0.82
10237	Toluene	108-88-3	N. D.	1	0.82
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	1	0.82
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	1	0.82
10237	Xylene (Total)	1330-20-7	N. D.	1	0.82
Wet Chemistry SM 2540 G-1997			$\%$	$\%$	
00111	Moisture Moisture represents the loss 103 - 105 degrees Celsius. The as-received basis.	$\mathrm{n} . \mathrm{a}$. in weight of the e moisture res	23.6 ample a reported	0.50	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	Method		Trial\#	Batch\#	Analysis Date and Ti		Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846	8260B	1	A160601AA	02/29/2016	12:35	Jennifer K Howe	0.82
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	1	201605440144	02/22/2016	10:55	Client Supplied	1
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	2	201605440144	02/22/2016	10:55	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201605440144	02/22/2016	10:55	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	16055820009 B	02/25/2016	08:36	William C Schwebel	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Project Name: Herr Foods 101722001

Collected: $02 / 22 / 201611: 30$	by BO	Rettew Associates
Submitted: $02 / 22 / 201613: 50$	3020 Columbia Avenue	
		Lancaster PA $17603-4011$

Reported: 03/01/2016 19:17

HRR-3

| CAT | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. | Analysis Name | CAS Number | Result | Method
 Detection |
| Fimition | | | | |

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All OC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

cat	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Time			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	F160571AA	02/26/2016	14:43	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F160571AA	02/26/2016	14:43	Anita M Dale	1

Sample Description: SED-1 Grab Sediment	LI Sample \# sw 8252140		
	Herr Foods 101722001	LL Group	\#
			Account
	\#	O0721	

| Collected: $02 / 22 / 2016$ | $11: 40$ | by BO |
| :--- | :--- | :--- |\quad| Rettew Associates |
| :--- |
| Submitted: $02 / 22 / 2016$ |
| Reported: $03 / 01 / 2016$ |
| $19: 17$ |\quad| Lancaster PA $17603-4011$ |
| :--- |

HRR-4

CAT No.	Analysis Name	CAS Number	$\begin{aligned} & \text { Dry } \\ & \text { Result } \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & \text { Method } \\ & \text { Detection Limit } \end{aligned}$	Dilution Factor
GC/MS	Volatiles SW-846 8	8260 B	$\mathrm{ug} / \mathrm{kg}$	ug/kg	
10237	Benzene	71-43-2	5 J	0.5	0.74
10237	Ethylbenzene	100-41-4	N. D.	0.9	0.74
10237	Isopropylbenzene	98-82-8	N. D.	0.9	0.74
10237	Methyl Tertiary Butyl Ether	1634-04-4	160	0.5	0.74
10237	Naphthalene	91-20-3	N. D.	0.9	0.74
10237	Toluene	108-88-3	N. D.	0.9	0.74
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.9	0.74
10237	1,3,5-Trimethylbenzene	108-67-8	N.D.	0.9	0.74
10237	Xylene (Total)	1330-20-7	N. D.	0.9	0.74
Wet Chemistry SM 2540 G-1997			$\%$	$\%$	
00111	Moisture Moisture represents the loss 103 - 105 degrees Celsius. Th as-received basis.	п.a. in weight of the e moisture resu	22.1 ample afte reported	0.50	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	Method		Trial\#	Batch\#	Analysis Date and Ti		Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260B	SW-846	8260B	1	A160601AA	02/29/2016	12:58	Jennifer K Howe	0.74
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	1	201605440144	02/22/2016	11:40	Client Supplied	1
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	2	201605440144	02/22/2016	11:40	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201605440144	02/22/2016	11:40	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	16055820009 B	02/25/2016	08:36	William C Schwebel	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Trip Blank Water	LL Sample \# wh 8252141		
	Herr Foods 101722001	LL Group	\#
		Account	\# 00721

Project Name: Herr Foods 101722001

Collected: $02 / 22 / 2016$	Rettew Associates
Submitted: $02 / 22 / 201613: 50$	3020 Columbia Avenue
Lancaster PA $17603-4011$	

Reported: $03 / 01 / 201619: 17$

HRR-5

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l	
10945	Benzene	71-43-2	N. D.	0.5	1
10945	Ethylbenzene	100-41-4	N. D.	0.5	1
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1
10945	Naphthalene	91-20-3	N. D.	1	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1

General Sample Comments
PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $Q C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name		Method		Trial\#	Batch\#	Analysis		Analyst			Dilution Factor
No.							Date and Ti					
10945	PA UST Unleaded	+ TMBs	SW-846	8260B	1	F160571AA	02/26/2016	15:04	Anita	M	Dale	1
01163	GC/MS VOA Water	Prep	SW-846	5030 B	1	F160571AA	02/26/2016	15:04	Anita	M	Dale	1

Quality Control Summary

Client Name: Rettew Associates
Reported: $03 / 01 / 201619: 17$$\quad$ Group Number: 1633538

Method Blank

Analysis Name	LCS Spike Added $\mathrm{ug} / \mathrm{kg}$	LCS Conc $\mathrm{ug} / \mathrm{kg}$	LCSD Spike Added $\mathrm{ug} / \mathrm{kg}$	LCSD Conc $\mathrm{ug} / \mathrm{kg}$	$\begin{aligned} & \text { LCS } \\ & \% \text { REC } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { \%REC } \end{aligned}$	$\begin{gathered} \text { LCS/LCSD } \\ \text { Limits } \end{gathered}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: A160601AA	Sample number (s) : 8252138,8252140								
Benzene	20	18.62	20	17.83	93	89	80-120	4	30
Ethylbenzene	20	18.79	20	18.14	94	91	80-120	4	30

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Quality Control Summary

Client Name: Rettew Associates Group Number: 1633538

Reported: 03/01/2016 19:17

Analysis Name	LCS Spike Added $\mathrm{ug} / \mathrm{kg}$	LCS Cone $\mathrm{ug} / \mathrm{kg}$	LCSD Spike Added $\mathrm{ug} / \mathrm{kg}$	LCSD Conc $\mathrm{ug} / \mathrm{kg}$	$\begin{aligned} & \text { LCS } \\ & \% \mathrm{REC} \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \% R E C \end{aligned}$	$\begin{gathered} \text { LCS/LCsD } \\ \text { Limits } \end{gathered}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Isopropylbenzene	20	18.84	20	18.36	94	92	70-120	3	30
Methyl Tertiary Butyl Ether	20	18.58	20	18.22	93	91	72-120	2	30
Naphthalene	20	18.07	20	17.31	90	87	53-120	4	30
Toluene	20	18.6	20	18.29	93	91	80-120	2	30
1,2,4-Trimethylbenzene	20	18.88	20	18.39	94	92	74-120	3	30
1,3,5-Trimethylbenzene	20	18.6	20	18.34	93	92	73-120	1	30
Xylene (Total)	60	56.02	60	54.36	93	91	80-120	3	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: D160562AA	Sample number(s) : 8252137								
Benzene	20	18.34			92		78-120		
Ethylbenzene	20	18.71			94		78-120		
Isopropylbenzene	20	18.73			94		80-120		
Methyl Tertiary Butyl Ether	20	18.34			92		75-120		
Naphthalene	20	17.67			88		59-120		
Toluene	20	18.41			92		80-120		
1,2,4-Trimethylbenzene	20	18.51			93		75-120		
1,3,5-Trimethylbenzene	20	18.65			93		75-120		
Xylene (Total)	60	55.81			93		80-120		
Batch number: F160571AA	Sample number(s) : 8252139,8252141								
Benzene	20	19.64	20	19.86	98	99	78-120	1	30
Ethylbenzene	20	19.86	20	19.42	99	97	78-120	2	30
Isopropylbenzene	20	19.76	20	19.19	99	96	80-120	3	30
Methyl Tertiary Butyl Ether	20	19.01	20	18.79	95	94	75-120	1	30
Naphthalene	20	18.54	20	17.9	93	89	59-120	4	30
Toluene	20	19.82	20	19.39	99	97	80-120	2	30
1,2,4-Trimethylbenzene	20	19.22	20	18.66	96	93	75-120	3	30
1,3,5-Trimethylbenzene	20	19.91	20	18.67	100	93	75-120	6	30
Xylene (Total)	60	58.39	60	57.42	97	96	80-120	2	30
	\%	\%	\%	\%					
Batch number: 16055820009 B	Sample number(s) : 8252138,8252140								
Moisture	89.5	89.47			100		99-101		

MS / MSD
Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	$\begin{aligned} & \text { MS } \\ & \text { Conc } \\ & \text { ug/l } \end{aligned}$	MSD Spike Added ug/l	MSD Conc ug/l	$\begin{gathered} \text { MS } \\ \% \text { Rec } \end{gathered}$	$\begin{aligned} & \text { MSD } \\ & \% \operatorname{Rec} \end{aligned}$	MS/MSD Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: D160562AA	Sample number	r(s) : 825	37 UNS	: P251190						
Benzene	N. D.	20	20.43	20	18.15	102	91	78-120	12	30
Ethylbenzene	1.24	20	22.51	20	19.41	106	91	78-120	15	30
Isopropylbenzene	N. D.	20	21.43	20	18.52	107	93	80-120	15	30
Methyl Tertiary Butyl Ether	N. D.	20	21.81	20	19.07	109	95	75-120	13	30
Naphthalene	N. D.	20	18.48	20	15.64	92	78	59-120	17	30
Toluene	N. D.	20	20.85	20	18	104	90	80-120	15	30
1,2,4-Trimethylbenzene	1.19	20	22.27	20	18.83	105	88	75-120	17	30
1,3,5-Trimethylbenzene	N. D.	20	20.89	20	17.72	104	89	75-120	16	30

[^40]Lancaster Laboratories
Environmental

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PA Unleaded/Diesel 8260B
Batch number: A160601AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8252138	106	102	95	92
8252140	107	109	96	92
Blank	106	103	97	92
LCS	104	99	101	100
LCSD	102	98	101	99
Limits:	$50-141$	$54-135$	$52-141$	$50-131$

Analysis Name: PA UST Unleaded + TMBs
Batch number: D160562AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8252137	92	96	101	97
Blank	95	96	101	97
LCS	94	98	101	100
MS	93	97	101	100
MSD	93	97	100	100
Limits:	$80-116$	$77-113$	$80-113$	$78-113$

Analysis Name: PA UST Unleaded + TMBs
Batch number: F160571AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8252139	93	98	98	94
8252141	94	98	98	93
Blank	93	98	100	95
LCS	93	99	99	96
LCSD	95	101	98	96

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Analysis Report
2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

```
Client Name: Rettew Associates Group Number: 1633538
```

Reported: 03/01/2016 19:17
Limits: 80-116 77-113 $\quad 80-113 \quad 78-113$
*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.
$\mathrm{P} \# \# \# \# \#$ is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

eurofins

2425 New Holland Pike, Lancaster, PA 17601 * 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike
Lancaster, PA 17601
Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

Report Date: April 19, 2016
Project: Project No. 101722001
Submittal Date: 04/06/2016
Group Number: 1647796
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description

Stormwater Grab Surface Water
Lancaster Labs
(LL) \#

Stream 3 Grab Surface Water
8320673

Stream 1 Grab Surface Water 8320675
SED3 Grab Sediment
8320676
SED4 Grab Sediment
8320677
Stream 4 Grab Surface Water
8320678

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratoriesenvironmental/resources/certifications/.

Attn: Ed Dziedzic

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall 0 C performance data and associated samples.

Laboratory Sample Analysis Record

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall 0 C performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution	
No.				Date and Ti			Factor			
10945	PA UST Unleaded + TMBs	SW-846	8260B		1	F161034AA	04/13/2016	00:40	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846	5030 B	1	F161034AA	04/13/2016	00:40	Hu Yang	1	

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall 0 C performance data and associated samples.

Laboratory Sample Analysis Record

Sample Description:	SED3 Grab Sediment	LI Sample	\#	SW 8320676
	Sediment	LL Group	\#	1647796
		Account	\#	00721

Project Name: Project No. 101722001

Collected: $04 / 06 / 201611: 15$	Rettew Associates	
Submitted: $04 / 06 / 201616: 14$	3020 Columbia Avenue	
		Lancaster PA $17603-4011$

Reported: 04/19/2016 12:28

SED-3

$\begin{aligned} & \text { CAT } \\ & \text { No. } \end{aligned}$	Analysis Name	CAS Number	Dry Result	```Dry Method Detection Limit```	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	$\mathrm{ug} / \mathrm{kg}$	$\mathrm{ug} / \mathrm{kg}$	
10237	Benzene	71-43-2	N. D.	2	1.2
10237	Ethylbenzene	100-41-4	N. D.	3	1.2
10237	Isopropylbenzene	98-82-8	N. D.	3	1.2
10237	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	2	1.2
10237	Naphthalene	91-20-3	N. D.	3	1.2
10237	Toluene	108-88-3	N. D.	3	1.2
10237	1,2,4-Trimethylbenzene	95-63-6	N. D.	3	1.2
10237	1,3,5-Trimethylbenzene	108-67-8	N. D.	3	1.2
10237	Xylene (Total)	1330-20-7	N. D.	3	1.2

The recovery for the sample internal standard is outside the OC
acceptance limits. The following corrective action was taken:
The sample was re-analyzed and the OC is again outside of the
acceptance limits, indicating a matrix effect. The data is
reported from the initial trial.

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method		Trial\#	Batch\#	Analysis Date and Ti		Analyst	Dilution Factor
10237	PA Unleaded/Diesel 8260 B	SW-846	8260B	1	X160981AA	04/07/2016	12:54	Jennifer K Howe	
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	1	201609740724	04/06/2016	11:15	Client Supplied	1
02392	$\begin{aligned} & \text { GC/MS - Field Preserved } \\ & \text { NaHSO4 } \end{aligned}$	SW-846	5035A	2	201609740724	04/06/2016	11:15	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201609740724	04/06/2016	11:15	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	16098820006A	04/07/2016	19:17	Scott W Freisher	1

Sample Description:	SED4 Grab Sediment	LL Sample	\#	SW 8320677
	Sediment	LL Group	\#	1647796
		Account	\#	00721

Project Name: Project No. 101722001

Collected: $04 / 06 / 2016$	$11: 25$	Rettew Associates
Submitted: $04 / 06 / 201616: 14$		La20 Columbia Avenue
		Lancaster PA $17603-4011$

Reported: 04/19/2016 12:28

SED-4

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All QC is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution
No.						Date and Ti			Factor
10237	PA Unleaded/Diesel 8260B	SW-846	8260B	1	X160981AA	04/07/2016	13:17	Jennifer K Howe	1.04
02392	GC/MS - Field Preserved NaHSO4	SW-846	5035A	1	201609740724	04/06/2016	11:25	Client Supplied	1
07579	GC/MS-5g Field Preserv.MeOH-NC	SW-846	5035A	1	201609740724	04/06/2016	11:25	Client Supplied	1
00111	Moisture	SM 2540	G-1997	1	16098820006A	04/07/2016	19:17	Scott W Freisher	1

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sampl	$\begin{aligned} \text { e Description: Stream } 4 \\ 10172200 \end{aligned}$	Grab Surface	Water	LL LL Ac	\# WW 8320678 \# 1647796 \# 00721	
Project Name: Project No. 101722001						
Collected: 04/06/2016 14:45		by EGD		Rettew Associates		
			3020 Columbia Avenue			
Reported: 04/19/2016 12:28				Lancaster PA 17603-4011		
STRM4						
CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260 B	ug/l	ug/l		
10945	Benzene	71-43-2	N. D.	0.5	1	
10945	Ethylbenzene	100-41-4	N. D.	0.5	1	
10945	Isopropylbenzene	98-82-8	N. D.	0.5	1	
10945	Methyl Tertiary Butyl Ether	1634-04-4	N. D.	0.5	1	
10945	Naphthalene	91-20-3	N. D.	1	1	
10945	Toluene	108-88-3	N. D.	0.5	1	
10945	1,2,4-Trimethylbenzene	95-63-6	N. D.	0.5	1	
10945	1,3,5-Trimethylbenzene	108-67-8	N. D.	0.5	1	
10945	Xylene (Total)	1330-20-7	N. D.	0.5	1	

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.
All $O C$ is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall 0 C performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor	
No.				Date and Ti						
10945	PA UST Unleaded + TMBs	SW-846	8260B		1	F161034AA	04/13/2016	01:24	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846	5030 B	1	F161034AA	04/13/2016	01:24	Hu Yang	1	

Quality Control Summary

Method Blank

Analysis Name

Batch number: X160981AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)

Batch number: F161034AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)

Result	MDL
ug/kg	$\mathrm{ug} / \mathrm{kg}$
Sample number (s) :	$8320676-8320677$
N.D.	0.5
N.D.	1
N.D.	1
N.D.	0.5
N.D.	1
ug/l	$u g / 1$
Sample number (s) $:$	$8320673-8320675,8320678$
N.D.	0.5
N.D.	1
N.D.	0.5

LCS /LCSD

Analysis Name	LCS Spike Added ug/kg	LCS Conc ug/kg	LCSD Spike Added ug/kg	LCSD Conc ug/kg	LCS \%REC	LCSD \%REC	LCS/LCSD Limits
Ratch number: X160							

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Quality Control Summary

MS /MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	$\begin{aligned} & \text { MS } \\ & \text { Cone } \\ & \text { ug/l } \end{aligned}$	MSD Spike Added ug/l	MSD Conc ug/l	$\begin{gathered} \text { MS } \\ \% \operatorname{Rec} \end{gathered}$	$\begin{aligned} & \text { MSD } \\ & \% \operatorname{Rec} \end{aligned}$	MS/MSD Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: F161034AA	Sample numb	r(s) : 832	73-832	75,8320678	UNSPK:	P325302				
Benzene	N. D.	20	21.53	20	21.67	108	108	78-120	1	30
Ethylbenzene	N. D.	20	20.2	20	20.59	101	103	78-120	2	30
Isopropylbenzene	N. D.	20	20.36	20	21.03	102	105	80-120	3	30
Methyl Tertiary Butyl Ether	N. D.	20	20.33	20	20.54	102	103	75-120	1	30
Naphthalene	N. D.	20	16.34	20	17.08	82	85	59-120	4	30
Toluene	N. D.	20	20.01	20	20.53	100	103	80-120	3	30
1,2,4-Trimethylbenzene	N. D.	20	19.03	20	19.38	95	97	75-120	2	30
1,3,5-Trimethylbenzene	N. D.	20	19.63	20	20.1	98	100	75-120	2	30
Xylene (Total)	N. D.	60	59.71	60	61.48	100	102	80-120	3	30

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Lancaster Laboratories
Environmental

Quality Control Summary

Client Name: Rettew Associates	Group Number: 1647796
Reported: $04 / 19 / 2016$ 12:28	

Surrogate Quality Control

Surroga unless	ecoveries which ibuted to dilut	outside of the or otherwise	window a on the A	
Analysi Batch n	me: PA UST Unle r: F161034AA	$+ \text { TMBs }$		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8320673	97	95	98	94
8320674	96	95	97	92
8320675	100	94	99	95
8320678	99	94	97	92
Blank	99	98	99	93
LCS	97	98	97	96
MS	98	97	97	97
MSD	96	98	98	96
Limits:	80-116	77-113	80-113	78-113

Analysis Name: PA Unleaded/Diesel 8260B
Batch number: X160981AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8320676	104	104	116	80
8320677	99	97	115	80
Blank	101	100	101	97
LCS	101	100	101	101
LCSD	100	98	101	100
Limits:	$50-141$	$54-135$	$52-141$	$50-131$

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Doc Log ID:
141892
Group Number(s): 1647796

Client: Rettew Associates

Delivery and Receipt Information

| Delivery Method: | Client Drop Off | | Arrival Timestamp: | 04/06/2016 16:14 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of Packages: | 1 | | Number of Projects: | 1 |

Arrival Condition Summary

Shipping Container Sealed:	No	Sample IDs on COC match Containers;	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	2
Samples Intact:	Yes	Trip Blank Type:	HCl
Missing Samples:	No	Air Quality Samples Present:	No
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Patrick Engle (3472) at 16:46 on 04/06/2016

Samples Chilled Details

Thermometer Types:		DT = Digital (Temp. Bottle)		$1 \mathrm{R}=$ Infrared (Surface Temp)			All Temperatures in ${ }^{\circ} \mathrm{C}$.	
Cooler \#	Thermometer ID	Corrected Tem	Therm Type	ice Ty	Ice Present?	Ice Container	Elevated Temp?	Samples Collected Same Day as Receipt?
1	32170023	7.5	IR	Wet	Y	Bagged	Y	Y

$$
\begin{array}{ll}
\text { General Comments: } & \begin{array}{l}
\text { Samples Received with Ink Smearing due to contact with water, } \\
\text { sample Stream } 3 \text { Identified through process of elimination, Sample ID, } \\
\text { Date and Time illegible. }
\end{array}
\end{array}
$$

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and $<$ the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Client: Rettew Associates

Delivery and Receipt Information

Delivery Method:
Number of Packages:
Client Drop Off
Arrival Timestamp:
02/22/2016 13:50
Number of Projects:
1
State/Province of Origin:
PA

Arrival Condition Summary

Shipping Container Sealed:	No	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	2
Samples Intact:	Yes	Trip Blank Type:	HCl
Missing Samples:	No	Air Quality Samples Present:	No
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Katherine Metzger (2241) at 14:23 on 02/22/2016

Samples Chilled Details

Thermometer Types: $\quad D T=$ Digital (Temp. Bottle) $\quad I R=\operatorname{Infrared}$ (Surface Temp) \quad All Temperatures in ${ }^{\circ} \mathrm{C}$.

Cooler \#	Thermometer ID	Corrected Temp	Therm. Type	Ice Type		Ice Present?		Ice Container
1	DT121	1.3	DT	Wet	Y	Loose/Bag	N	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and $<$ the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:
Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601
Prepared for:
Rettew Associates
3020 Columbia Avenue
Lancaster PA 17603-4011

Report Date: April 21, 2016
Project: Project No. 101722001
Submittal Date: 04/13/2016
Group Number: 1650073
PO Number: 101722001
State of Sample Origin: PA

Client Sample Description
Lancaster Labs

DPW-1 Grab Groundwater
(LL) \#
8330790
DPW-2 Grab Groundwater
8330791
The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratoriesenvironmental/resources/certifications/.

Respectfully Submitted,

(717) 556-7236

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality
Control Sumnary for overall 0 C performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method		Trial\#	Batch\#	Analysis		Analyst	Dilution Factor	
No.				Date and Ti						
10945	PA UST Unleaded + TMBs	SW-846	8260B		1	D161101AA	04/19/2016	22:47	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846	5030 B	1	D161101AA	04/19/2016	22:47	Hu Yang	1	

Lancaster Laboratories
 Environmental
 Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/17.

All QC is compliant unless otherwise noted. Please refer to the Quality
Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT	Analysis Name	Method	Trial\#	Batch\#	Analysis		Analyst	Dilution
No.					Date and Ti			Factor
10945	PA UST Unleaded + TMBs	SW-846 8260B	1	D161101AA	04/19/2016	21:39	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D161101AA	04/19/2016	21:39	Hu Yang	1

Quality Control Summary

Client Name: Rettew Associates
Reported: $04 / 21 / 2016$ Group Number: $09: 41$
Matrix oc may not be reported if insufficient sample or site-specific oC samples were not submitted. In these
situations, to demonstrate precision and accuracy at a batch level, acs/LCSD was performed, unless otherwise specified
in the method.
All Inorganic Initial calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted
on the Analysis Report.

Method Blank

Analysis Name

Batch number: D161101AA
Benzene
Ethylbenzene
Isopropylbenzene
Methyl Tertiary Butyl Ether
Naphthalene
Toluene
1,2,4-Trimethylbenzene
1,3,5-Trimethylbenzene
Xylene (Total)

Result	MDL
ug/l	$\mathrm{ug} / 1$
Sample number(s) :	$8330790-8330791$
N.D.	0.5
N.D.	1
N.D.	0.5

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	$\begin{aligned} & \text { LCS } \\ & \% \text { REC } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { \%REC } \end{aligned}$	$\begin{aligned} & \text { LCS/LCSD } \\ & \text { Limits } \end{aligned}$	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number: D161101AA	Sample nur	: 833	0-8330791						
Benzene	20	18.63			93		78-120		
Ethylbenzene	20	18.19			91		78-120		
Isopropylbenzene	20	19.12			96		80-120		
Methyl Tertiary Butyl Ether	20	20.84			104		75-120		
Naphthalene	20	17.24			86		59-120		
Toluene	20	18.72			94		80-120		
1,2,4-Trimethylbenzene	20	18.75			94		75-120		
1,3,5-Trimethylbenzene	20	17.11			86		75-120		
Xylene (Total)	60	56.62			94		80-120		

MS / MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name		Unspiked Conc ug/l	MS Spike Added ug/l			Spike Added ug/l	MSD Conc ug/l	$\begin{gathered} \text { MS } \\ \% \operatorname{Rec} \end{gathered}$	$\begin{aligned} & \text { MSD } \\ & \% \operatorname{Rec} \end{aligned}$	MS/MSD Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Batch number:	D161101AA	Sample number (s) : 8330790-8330791				$\begin{array}{cr}\text { UNSPK: } & \text { P36892 } \\ 20 & 18.29\end{array}$						
Benzene		N. D.	20	20.22				101	91	78-120	10	30
Ethylbenzene		N. D.	20	22.66		20	17.1	113	85	78-120	28	30

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ.
(2) The unspiked result was more than four times the spike added.

P\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

Quality Control Summary

Client Name: Rettew Associates	Group Number: 1650073
Reported: $04 / 21 / 2016$ 09:41	

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l		MSD Spike Added ug/l	MSD Conc ug/l	$\begin{gathered} \text { MS } \\ \% \operatorname{Rec} \end{gathered}$	$\begin{aligned} & \text { MSD } \\ & \% \operatorname{Rec} \end{aligned}$	MS/MSD Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Max } \end{aligned}$
Isopropylbenzene	N. D.	20	21.64	20	17.82	108	89	80-120	19	30
Methyl Tertiary Butyl Ether	N. D.	20	19.77	20	19.38	99	97	75-120	2	30
Naphthalene	N. D.	20	18.97	20	17.07	95	85	59-120	10	30
Toluene	N. D.	20	19.03	20	18.45	95	92	80-120	3	30
1,2,4-Trimethylbenzene	N. D.	20	21.22	20	16.78	106	84	75-120	23	30
1,3,5-Trimethylbenzene	N. D.	20	19.08	20	17.25	95	86	75-120	10	30
Xylene (Total)	N. D.	60	62.83	60	53.82	105	90	80-120	15	30

Surrogate Quality Control

Surrogate recoveries which are outside of the $O C$ window are confirmed
unless attributed to dilution or otherwise noted on the Analysis Report.
Analysis Name: PA UST Unleaded + TMBs
Batch number: D161101AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8330790	94	97	94	88
8330791	96	104	102	89
Blank	100	102	92	87
LCS	97	102	100	92
MS	97	103	94	104
MSD	98	101	100	93
Limits:	$80-116$	$77-113$	$80-113$	$78-113$

*- Outside of specification
(1) The result for one or both determinations was less than five times the LOQ
(2) The unspiked result was more than four times the spike added

P\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group
For Eurofins Lancaster Laboratories Environmental use only
Group \# 1650073 Sampie \# $8330790-92$

Client: Rettew

Delivery and Receipt Information

Delivery Method:	Client Drop Off		Arrival Timestamp:		$\underline{04 / 13 / 2016} 11: 50$
Number of Packages:	1		Number of Projects:	1	

Arrival Condition Summary

Shipping Container Sealed:	Yes	Sample IDs on COC match Containers:	Yes
Custody Seal Present:	No	Sample Date/Times match COC:	Yes
Samples Chilled:	Yes	VOA Vial Headspace $\geq 6 \mathrm{~mm}:$	No
Paperwork Enclosed:	Yes	Total Trip Blank Qty:	2
Samples Intact:	Yes	Trip Blank Type:	HCl
Missing Samples:	No	Air Quality Samples Present:	No
Extra Samples:	No		
Discrepancy in Container Qty on COC:	No		

Unpacked by Krista Abel (3058) at 12:09 on 04/13/2016

Samples Chilled Details

Thermometer Types: $\quad D T=$ Digital (Temp. Bottle) $\quad I R=$ Infrared (Surface Temp) \quad All Temperatures in ${ }^{\circ} \mathrm{C}$.

Cooler \#	Thermometer ID	Corrected Temp	Therm. Type	Ice Type		Ice Present?	Ice Container
1	DT146	4.5	DT	Wet	Y	Bagged	N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

Laboratory Data Qualifiers:

B - Analyte detected in the blank
C - Result confirmed by reanalysis
E - Concentration exceeds the calibration range
J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and $<$ the Limit of Quantitation (LOQ or RL)
P - Concentration difference between the primary and confirmation column $>40 \%$. The lower result is reported.
U - Analyte was not detected at the value indicated
V - Concentration difference between the primary and confirmation column $>100 \%$. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.
Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.
This report shall not be reproduced except in full, without the written approval of the laboratory.
Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX M

Concentration vs Time Plots

N
N
N

MW-3
Toluene Concentrations vs Time
MW-3
Ethylbenzene Concentrations vs Time

1,800
1,600
1,400
8
-
-
©
¿
1,200
\%
(7/8ึ) ио!ңедұиәэиоэ әиәzиәq|Кчээ
MW-3
Naphthalene Concentrations vs Time

MW-3
1,2,4-TMB Concentrations vs Time
1200
800
600
4/30/2015
stoz/8z/8
Date
6/29/2015
12/26/2015
2/24/2016
910Z/カZ/t

MW－3 1，3，5－TMB Concentrations vs Time

MW-3
Xylenes Concentrations vs Time

$\stackrel{\circ}{\circ}$

Date
$9102 / \hbar z / Z$
12/26/2015
SI0Z/8Z/8
10,000

MW-4
Toluene Concentrations vs Time

SLOZ/8Z/8
Date
stoz/6z/9

SIOZ/0E/ฤ
/ $/ \varepsilon$
0
MW-4
Naphthalene Concentrations vs Time

MW-4
1,2,4-TMB Concentrations vs Time

MW-4
1,3,5-TMB Concentrations vs Time

2/24/2016
12/26/2015
4/24/2016
$R^{2}=0.3436 \quad, \quad, \quad-\infty$

MW-4
Xylenes Concentrations vs Time

MW-5
Benzene Concentrations vs Time

MW-5
Toluene Concentrations vs Time
(2000
MW-5
Naphthalene Concentrations vs Time

MW-5
1,2,4-TMB Concentrations vs Time

MW-5
1,3,5-TMB Concentrations vs Time

MW-5
Xylenes Concentrations vs Time
MW-5
MTBE Concentrations vs Time

MW-7
Benzene Concentrations vs Time

MW-7
Toluene Concentrations vs Time

MW-7
1,2,4-TMB Concentrations vs Time

1,800

MW-7 1,3,5-TMB Concentrations vs Time

4/26/2016

3/27/2016
9102/9z/Z
1/27/2016
12/28/2015
11/28/2015
Date

4/26/2016

MW-10
MTBE Concentrations vs Time

120 - ${ }^{R^{2}=0.044}$									
100									
80									
40 (40									
20									
0									
7/1/2015	7/31/2015	8/30/2015	9/29/2015	10/29/2015	11/28/2015	12/28/2015	1/27/2016	2/26/2016	3/27/2016

APPENDIX N

Quick Domenico Model Output

APPENDIX 0

 SWLOAD5 Model Output| METHOD FO | R ESTIMATNG FL | OW, AVERAG | CONCE | NTRATIO | AND MASS | LOADING | SURFACE | WATER FR | OM GROUND | WATER | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project: | Herr Foods, In | | | | | | | | | | | | | |
| Date: | 5/5/2016 | | | | | | | | | | PA DEP | ARTMENT | | |
| Contaminant: | Benzene | | | Prepared by | | EGD | | | | OF | VIRONMEN | NTAL PROT | CTION | |
| SOURCE | | | | | | | | | | | SWLO | AD5B.XLS | | |
| CONC | Ax | Ay | Az | LAMBDA | SOURCE | SOURCE | | | | | METHOD FOR | R ESTIMA | | |
| (units) | (ft) | (ft) | (ft) | | WIDTH | THICKNES | Time | | | A | AMINANT LOA | ADING TO | URFACE | |
| ug/ | >. 0001 | $\geqslant .0001$ | $>=.0001$ | day-1 | (ft) | (ft) | (days) | | | | | | | |
| 2,419 | 3 | 0.3 | 1.00E-05 | 0.00006 | 40 | 10 | $1.00 \mathrm{E}+99$ | | | | P.A. Dome | nico (1987) | | |
| | | | | | | | | | | | dified to Incla | lude Retard | | |
| Hydraulic | Hydraulic | | Soil Bulk | | Frac. | Retard- | V | | | | | | | |
| Cond | Gradient | Porosity | Density | KOC | Org. Carb. | ation | ($\left.=\mathrm{K}^{*} \mathrm{l} / \mathrm{n}^{*} \mathrm{R}\right)$ | | | | | | | |
| (ft/day) | (ft/ft) | (dec. frac.) | ($\mathrm{g} / \mathrm{cm}^{\prime}$ | | | (R) | (ft/day) | | | | | | | |
| $2.46 \mathrm{E}+00$ | 0.018 | 0.08 | 1.788 | 58 | 1.18E-02 | 16.29634 | 0.0339647 | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | -56.05 | -44.84 | -33.63 | -22.42 | -11.21 | 0 | 11.21 | 22.42 | 33.63 | 44.84 | 56.05 |
| Edge Criterio | ((ug/l) | 5 | 0 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| Higest mo | deled conc. | 1233.61 | -1.02 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| | | | -2.04 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| SURFACE W | ATER LOADING | RID | -3.06 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| Distance to S | Stream (ft) | 300 | -4.08 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| Plume View | Width (ft) | 112.1 | -5.1 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| Plume View D | Depth (ft) | 10.2 | -6.12 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| | | | -7.14 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| | | | -8.16 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| PENTOX | NEEDED | | -9.18 | 5.14706 | 45.763685 | 221.0339 | 610.61325 | 1047.78307 | 1233.61106 | 1047.7831 | 610.61325 | 221.03385 | 45.76368 | 5.14706 |
| | | | -10.2 | 0.02528 | 0.2247746 | 1.085638 | 2.9991108 | 5.14633035 | 6.05905005 | 5.1463303 | 2.9991108 | 1.0856381 | 0.224775 | 0.02528 |
| | | | | | | | | | | | | | | |
| | | | | Average | Groundwat | ter Concen | tration | 421.223 | ug/l | | | | | |
| | | | | | | | | | | | | | | |
| | | | | Plume F | low | | | 0.00059 | Cts | 0.00038 | IVGD | | | |
| | | | | | | | | | | | | | | |
| | | | | Mass Lo | ading to | Stream | | 603974.28 | ug/day | | | | | |

METHOD FOR	R ESTIMATNG	N, AVER	CONC	TRATION	NDMASS	OADING	SURFACE	WATER FR	OM GROUND	WATER				
Project:	Herr Foods, 1													
Date:	5/5/2016										PA DEP	ARTMENT		
Contaminant:	MTBE			Prepared by		EGD				OF En	IRONMEN	TAL PROT	CTION	
SOURCE											SWLO	D3B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					THOD F	R ESTIMA		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNES				COMTA	INANT L	ADING TO	JRFACE	
ug/	> 00001	$>.0001$	$>=.0001$	day-1	(ft)	(ft)	(days)							
160	3	0.3	1.00E-05	0.00025	40	10	1.00E+99				A. Do	co (1987)		
											fied to In	lude Retarda		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	($\left.=\mathrm{K}^{*} / \mathrm{l} \mathrm{n}^{*} \mathrm{R}\right)$							
(ft/day)	(ft/ft)	(dec. frac.)	($\mathrm{g} / \mathrm{cm}^{\text {/ }}$			(R)	(ft/day)							
$2.46 \mathrm{E}+00$	0.018	0.08	1.788	12	1.18E-02	4.16476	0.1329008							
				-30	-24	-18	-12	-6	0	6	12	18	24	30
Edge Criterion	(ug / l)	5	0	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
Higest mod	deled conc.	78.8673	-1.01	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
			-2.02	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
SURFACE WA	ATER LOADING G	RID	-3.03	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
Distance to St	Stream (ft)	300	-4.04	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
Plume View W	Width (ft)	60	-5.05	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
Plume View D	Depth (ft)	10.1	-6.06	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
			-7.07	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
			-8.08	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
PENTOX N	NEEDED		-9.09	20.80683	34.896401	50.84066	65.357818	75.3402492	78.8673206	75.340249	65.357818	50.840656	34.8964	20.80683
			-10.1	2.04641	3.4321588	5.000321	6.4281245	7.40992456	7.7568219	7.4099246	6.4281245	5.0003209	3.432159	2.04641
				Average	Groundwat	ter Concen	tration	47.8504	ug/l					
				Plume F	Ow			0.00031	cts	0.0002	VGD			
				Mass Loa	ading to	Stream		36362.97	ug/day					

APPENDIX P PENTOXSD Model Output

PENTOXSD

Modeling Input Data

Stream Code	RMI	Elevat (ft)		$\begin{aligned} & \text { inage } \\ & \text { rea } \\ & \text { i mi) } \end{aligned}$	Slope	PWS With (mgd)		Apply FC							
6840	1.44	495.00		0.04	0.00000	0.00		\checkmark							
Stream Data															
$\begin{aligned} & \text { LFY } \\ & \text { (cfsm) } \end{aligned}$		Trib Flow (cfs)	Stream Flow (cfs)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Rch Velocity (fps)	Rch Trav Time (days)	$\begin{aligned} & \text { Tributar } \\ & \text { Hard } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\frac{\mathrm{ry}}{\mathrm{pH}}$	\quad Stream Hard $(\mathrm{mg} / \mathrm{L})$	pH	$\begin{aligned} & \text { Analysi } \\ & \text { Hard } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\frac{\mathrm{is}}{\mathrm{n}} \mathrm{H}$	
Q7-10	0.1	0	0.00116	0	1.5	0	0	0	100	7	0	0	0		0
Qh		0	0.0083	0	3.3	0	0	0	100	7	0	0	0		0
Discharge Data															
Name		PermitNumber			Permitted Disc Flow	Design Disc Flow (mgd)	Reserve Factor	$\begin{aligned} & \text { AFC } \\ & \text { PMF } \end{aligned}$	$\begin{aligned} & \mathrm{CFC} \\ & \text { PMF } \end{aligned}$	THH PMF	$\begin{aligned} & \text { CRL } \\ & \text { PMF } \end{aligned}$	Disc Hard	Disc pH		
GW Di	scharge	0		E-05	0	0	0	0	0	0	0	100	7		
Parameter Data															
Parameter N		Disc Conc ($\mu \mathrm{g} / \mathrm{L}$)			Trib Conc ($\mu \mathrm{g} / \mathrm{L}$)	Disc Daily CV	Disc Hourly CV	Steam Conc ($\mu \mathrm{g} / \mathrm{L}$)	Stream CV	Fate Coef	FOS	Crit Mod	Max Disc Conc ($\mu \mathrm{g} / \mathrm{L}$)		
BENZENE		421.223			30	0.5	50.5	0	0	0	0	1	0		
MTBE*		47.8504			4	0.5	50.5	0	0	0	0	1	0		

PENTOXSD Analysis Results
Recommended Effluent Limitations

PENTOXSD Analysis Results

Hydrodynamics

SWP Basin			Stream Code:		Stream Name:						
07K			6840		NORTHEAST CREEK						
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	$\begin{aligned} & \text { CMT } \\ & (\mathrm{min}) \end{aligned}$
Q7-10 Hydrodynamics											
1.440	0.0012		00.0012	0.00005	0.0138	0.0736	1.5	20.389	0.0110	7.9983	1.2
0.000	0.0059		00.0059	NA	0	0	0	0	0	0	NA
			Qh Hydrodynamics								
1.440	0.0083		0.0083	0.00005	0.0138	0.0781	3.3	42.236	0.0324	2.716	5.74
0.000	0.29		$0 \quad 0.29$	NA	0	0	0	0	0	0	NA

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number
1.44	GW Discharge	01

AFC										
Q7-10:	CCT (min)	1.2	PMF Stream Conc ($\mu \mathrm{g} / \mathrm{L}$)	Stream CV	Analysis pH		7	Analysis Hardness		100
	Parameter				Trib Conc ($\mu \mathrm{g} / \mathrm{L}$)	Fate Coef		WQC ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { WQ } \\ \mathrm{Obi} \\ (\mu \mathrm{~g} / \mathrm{L}) \end{gathered}$	WLA ($\mu \mathrm{g} / \mathrm{L}$)
	BENZENE		0	0	0	0		640	640	14351.33
	MTBE*		0	0	0	0		NA	NA	NA

CFC									
Q7-10:	CCT (min)	1.2	PMF	1	Analysis pH 7		Analysis Hardness		100
	Parameter		Stream Conc. ($\mu \mathrm{g} / \mathrm{L}$)	Stream CV	Trib Conc. ($\mu \mathrm{g} / \mathrm{L}$)	Fate Coef	$\begin{aligned} & \text { WQC } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	WQ Obj ($\mu \mathrm{g} / \mathrm{L}$)	WLA ($\mu \mathrm{g} / \mathrm{L}$)
	BENZENE		0	0	0	0	130	130	2915.114
	MTBE*		0	0	0	0	NA	NA	NA

THH										
Q7-10:	CCT (min)	1.2	PMF	NA	Analysis pH		NA	Analysis Hardness		NA
	Parameter		Stream Conc ($\mu \mathrm{g} / \mathrm{L}$)	Stream CV	Trib Conc ($\mu \mathrm{g} / \mathrm{L}$)	Fate Coef		$\begin{aligned} & \text { WQC } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	$\begin{gathered} \text { WQ } \\ \text { Obj } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	WLA ($\mu \mathrm{g} / \mathrm{L}$)
	BENZENE		0	0	0	0		NA	NA	NA
	MTBE*		0	0	0	0		20	20	448.479

Flow Statistics Ungaged Site Report

Date: Tues Feb 16,2016 4:41:11 PM GMT-5
Study Area: Pennsylvania
NAD 1983 Latitude: $39.7449 \quad(394442)$
NAD 1983 Longitude: $-76.0189 \quad(-760108)$
Drainage Area: 0.0369 mi2
2001 NLCD Impervious: 11.0 percent

Low Flow Basin Characteristics

100\% Low Flow Region 1 (0.0369 mi2)

Parameter	Value	Regression Equation Valid Range	
		Min	Max
Drainage Area (square miles)	0.0369 (below min value 4.78)	4.78	1150
Mean Basin Slope degrees (degrees)	2.1	1.7	6.4
Depth to Rock (feet)	5.1	4.13	5.21
Percent Urban (percent)	6.0	0	89

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Mean/Base-flow Basin Characteristics			
100\% Statewide Mean and Base Flow (0.0369 mi2)			
Parameter	Value	Regression Equation Valid Range	
		Min	Max
Drainage Area (square miles)	0.0369 (below min value 2.26)	2.26	1720
Mean Basin Elevation (feet)	531.8	130	2700
Mean Annual Precipitation (inches)	45.0	33.1	50.4
Percent Carbonate (percent)	0.0	0	99
Percent Forest (percent)	25.0	5.1	100
Percent Urban (percent)	6.0	0	89

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Peak Flow Basin Characteristics			
100\% Peak Flow Region 2 (0.0369 mi 2$)$			
Parameter	Value	Regression Equation Valid Range	
		Min	Max
Drainage Area (square miles)	0.0369 (below min value 2.02)	2.02	1150
Mean Basin Elevation (feet)	531.8	113	901
Percent Carbonate (percent)	0.0	0	67
Percent Urban (percent)	6.0	0	94
Percent Storage (percent)	0.0	0	3.6

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flow Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
M7D2Y	0.00391	ft3/s				
M30D2Y	0.00604	$\mathrm{ft3} / \mathrm{s}$				
M7D10Y	0.00116	$\mathrm{ft3} / \mathrm{s}$				
M30D10Y	0.00195	$\mathrm{ft3} / \mathrm{s}$				
M90D10Y	0.00464	$\mathrm{ft3} / \mathrm{s}$				

http: //pubs.usgs.gov/sir/2006/5130/ (http://pubs.usgs.gov/sir/2006/5130/)
Stuckey_M.H._ 2006_ Low-flow_ base-flow_ and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130_84 p.

Mean/Base-flow Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
QA	0.0486	$\mathrm{ft3} / \mathrm{s}$				
QAH	0.0083	$\mathrm{ft} 3 / \mathrm{s}$				
BF10YR	0.0167	$\mathrm{ft} 3 / \mathrm{s}$				
BF25YR	0.0144	$\mathrm{ft3} / \mathrm{s}$				
BF50YR	0.0132	$\mathrm{ft} 3 / \mathrm{s}$				

http://pubs.usgs.gov/sir/2006/5130/ (http://pubs.usgs.gov/sir/2006/5130//)
Stuckey_M.H._ 2006_Low-flow_ base-flow_ and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130_84 p.

Peak Flow Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
PK2	16.8	ft3/s				
PK5	37.2	$\mathrm{ft3} / \mathrm{s}$				
PK10	56.1	$\mathrm{ft3} / \mathrm{s}$				
PK50	113	ft3/s				
PK100	145	$\mathrm{ft3} / \mathrm{s}$				
PK500	242	$\mathrm{ft3} / \mathrm{s}$				

http://pubs.usgs.gov/sir/2008/5102/ (http://pubs.usgs.gov/sir/2008/5102/)
Roland_M.A._ and Stuckey_M.H._ 2008_Regression equations for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2008-5102_ 57p.
Accessibility FOIA Privacy Policies and Notices
U.S. Department of the Interior | U.S. Geological Survey

URL: http://streamstatsags.cr.usgs.gov/v3_beta/FTreport.htm
Page Contact Information: StreamStats Help
News

Flow Statistics Ungaged Site Report
Date: Tues Feb 16, 2016 4: 28:03 PM GMT-5
Study Area: Pennsylvania
NAD 1983 Latitude: 39.7315 (3943 53)
NAD 1983 Longitude: -76.0035 (-76 00 13)
Drainage Area: 0.98 mi 2
2001 NLCD Impervious: 4.0 percent

Low Flow Basin Characteristics			
100\% Low Flow Region 1 (0.98 mi2)			
Parameter	Value	Regression Equation Valid Range	
		Min	Max
Drainage Area (square miles)	0.98 (below min value 4.78)	4.78	1150
Mean Basin Slope degrees (degrees)	2.0	1.7	6.4
Depth to Rock (feet)	3.7 (below min value 4.13)	4.13	5.21
Percent Urban (percent)	3.0	0	89

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Mean/Base-flow Basin Characteristics			
100\% Statewide Mean and Base Flow (0.98 mi2)			
Parameter	Value	Regression Equation Valid Range	
		Min	Max
Drainage Area (square miles)	0.98 (below min value 2.26)	2.26	1720
Mean Basin Elevation (feet)	474.2	130	2700
Mean Annual Precipitation (inches)	45.0	33.1	50.4
Percent Carbonate (percent)	0.0	0	99
Percent Forest (percent)	38.0	5.1	100
Percent Urban (percent)	3.0	0	89

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Peak Flow Basin Characteristics			
100\% Peak Flow Region 2 (0.98 mi2)			
Parameter	Value	Regression Equation Valid Range	
		Min	Max
Drainage Area (square miles)	0.98 (below min value 2.02)	2.02	1150
Mean Basin Elevation (feet)	474.2	113	901
Percent Carbonate (percent)	0.0	0	67
Percent Urban (percent)	3.0	0	94
Percent Storage (percent)	0.0	0	3.6

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flow Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
M7D2Y	0.024	ft3/s				
M30D2Y	0.0441	$\mathrm{ft3} / \mathrm{s}$				
M7D10Y	0.00592	$\mathrm{ft3} / \mathrm{s}$				
M30D10Y	0.012	$\mathrm{ft3} / \mathrm{s}$				
M90D10Y	0.0347	$\mathrm{ft3} / \mathrm{s}$				

http: //pubs.usgs.gov/sir/2006/5130/ (http://pubs.usgs.gov/sir/2006/5130/)
Stuckey_M.H._ 2006_ Low-flow_ base-flow_ and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130_84 p.

Mean/Base-flow Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
QA	1.34	ft3/s				
QAH	0.29	$\mathrm{ft3} / \mathrm{s}$				
BF10YR	0.5	$\mathrm{ft} 3 / \mathrm{s}$				
BF25YR	0.44	$\mathrm{ft3} / \mathrm{s}$				
BF50YR	0.4	$\mathrm{ft3/s}$				

http://pubs.usgs.gov/sir/2006/5130/ (http://pubs.usgs.gov/sir/2006/5130/)
Stuckey_M.H._ 2006_Low-flow_ base-flow_ and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130_84 p.

Peak Flow Statistics						
Statistic	Value	Unit	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
					Min	Max
PK2	162	$\mathrm{ft3} / \mathrm{s}$				
PK5	323	$\mathrm{ft3} / \mathrm{s}$				
PK10	465	$\mathrm{ft3} / \mathrm{s}$				
PK50	876	$\mathrm{ft3} / \mathrm{s}$				
PK100	1100	$\mathrm{ft3} / \mathrm{s}$				
PK500	1760	$\mathrm{ft3} / \mathrm{s}$				

http://pubs.usgs.gov/sir/2008/5102/ (http://pubs.usgs.gov/sir/2008/5102/)
Roland_M.A._ and Stuckey_M.H._2008_Regression equations for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2008-5102_ 57p.
Accessibility FOIA Privacy Policies and Notices
U.S. Department of the Interior | U.S. Geological Survey

URL: http://streamstatsags.cr.usgs.gov/v3_beta/FTreport.htm
Page Contact Information: StreamStats Help
News
http://streamstatsags.cr.usgs.gov/v3 beta/FTreport.htm?rcode=PA\&workspaceID=PA2016021614251378300... 2/16/2016

APPENDIX Q

PaGWIS Well Data

PA STATE AGENCIES
ONLINE SERVICES

PaGWIS Records

Geological Survey

About the Survey
Classroom
Collecting
Economic Resources
Geology of PA
Geologic Hazards
Groundwater
Library
Web-Mapping
Application
Publications and
Digital Data
GeoLinks
Contact the Survey

Radial Search

This retrieval approximates a radial search around a fixed location. the results will include wells in the "corners" of this figure.
Enter the coordinates of the center in decimal-degree format and the radius of the search in miles. All fields must be filled in to perform the search. The longitude must be a negative number.
Multiple Criteria Polygon Search Radial Search

$$
\begin{array}{rl|}
\text { Longitude }: & -76.019284 \\
\text { Latitude }: & 39.744938 \\
\text { Radius in Miles }: & 0.25 \\
\hline
\end{array}
$$

> | Preview List | Create List | Clear Selections |
| :--- | :---: | :---: |
| "Preview List" creates a list which contains links to individual well information. | | |
| You can choose to create a comma separated list from the preview. | | |
| "Create List" creates a comma separated list without viewing the selection first. | | |
| If you choose to open the file it may open in Excel if you have Microsoft Office installed. | | |

Search DCNR \rightarrow go

Total Records Returned : 13 Records Click on the column headers to sort the Search Results.

$\frac{\text { PA }}{\frac{\text { Well }}{\underline{I D}}}$	Driller	Driller Ref	Date Drilled	Owner	County	Municipality	Image
479728	BROWN BROS DRILLING INC	200890	11/3/2008	UNION FIRE COMPANY	CHESTER	WEST NOTTINGHAM TWP.	
114278	K.L. MADRON WELL DRILLING, LLC		3/1/1982	CHENK	CHESTER	WEST NOTTINGHAM TWP.	
114285	R WALTER SLAUCH \& SONS		2/8/1979	PORTER W	CHESTER	WEST NOTTINGHAM TWP.	
114284	R WALTER SLAUCH \& SONS		9/1/1978	NOTTINGHAM CANNING	CHESTER	WEST NOTTINGHAM TWP.	
114355	BROWN BROS DRILLING INC		1/1/1971	SCARFO DOMONIC	CHESTER	WEST NOTTINGHAM TWP.	
8738	R WALTER SLAUCH \& SONS		2/7/1968	HERR'S POTATO CHIPS	CHESTER	WEST NOTTINGHAM TWP.	
114347	R WALTER SLAUCH \& SONS		1/1/1968	HERR POTATO INC	CHESTER	WEST NOTTINGHAM TWP.	
8748	R WALTER SLAUCH \& SONS		11/30/1967	HERR'S POTATO CHIPS	CHESTER	WEST NOTTINGHAM TWP.	
8746	R WALTER SLAUCH \& SONS		10/30/1967	HERR'S POTATO CHIPS	CHESTER	WEST NOTTINGHAM TWP.	
114348	R WALTER SLAUCH \& SONS		1/1/1967	HERR POTATO INC	CHESTER	WEST NOTTINGHAM TWP.	
114349	R WALTER SLAUCH \& SONS		1/1/1967	HERR POTATO INC	CHESTER	WEST NOTTINGHAM TWP.	
8736	R WALTER SLAUCH \& SONS		7/28/1966	BOULDEN, J A	CHESTER	WEST NOTTINGHAM TWP.	
114350	R WALTER SLAUCH \& SONS		1/1/1966	BOULDEN JOHN	CHESTER	WEST NOTTINGHAM TWP.	

WATER WELL DETAILS

Well Driller: R WALTER SLAUCH \& SONS
Driller License: 0176
Type of Activity:

Date Drilled: 2/7/1968

Owner: HERR'S POTATO CHIPS
Address of Well:
Zipcode:
County: CHESTER
Municipality: WEST NOTTINGHAM TWP.
Coordinate Method:
Quadrangle: RISING SUN
Latitude: 39.74583
Longitude: -76.01944

Well Depth $(f t): 246$
Depth to Bedrock (ft):
Well Yield (gpm): 50
Static Water Level: 0 (ft below land surface)
Length of Yield Test: 8 (minutes)

Use of Well: WITHDRAWAL

Well Finish: OPEN HOLE
Did Not Encounter Bedrock:
Yield Measure Method:
Water level after yield test: 60
(ft below land surface)
Saltwater Zone ($f t$):

Use of Water: INDUSTRIAL

DRILLER'S LOG

UNIT TOP UNIT BOTTOM DESCRIPTION OF UNITS PENETRATED

BOREHOLE

CASING

Casing 1:
Top: $\mathbf{0}$ Bottom: 70 Diameter: 6 Material: UNKNOWN

Seal(Grout) 1:
Top: Bottom: Type:

SCREEN/SLOT

WELL LINER

PACKER

WATER BEARING ZONE

Zone 1:	Top:	$\mathbf{2 2 0}$	Bottom:	Yield:
Zone 2:	Top:	$\mathbf{2 4 6}$	Bottom:	Yield:

WATER WELL DETAILS

Well Driller: R WALTER SLAUCH \& SONS
Driller License: 0176
Type of Activity: New Well

Date Drilled: 1/1/1968

$$
\text { PA Well ID: } \mathbf{1 1 4 3 4 7}
$$

Driller Well ID:
Local Permit \#:
Original Well By: UNKNOWN
Drilling Method:

Owner: HERR POTATO INC

Address of Well:
Zipcode:
County: CHESTER
Municipality: WEST NOTTINGHAM TWP.
Coordinate Method:
Quadrangle: RISING SUN
Latitude: 39.74444
Longitude: -76.02

Well Depth $(f t)$: 246
Depth to Bedrock (ft): $\mathbf{6 0}$
Well Yield (gpm): $\mathbf{5 0}$
Static Water Level:
(ft below land surface)
Length of Yield Test: $\mathbf{8}$
(minutes)
Use of Well: WITHDRAWAL

Well Finish:
Did Not Encounter Bedrock:
Yield Measure Method:
Water level after yield test: (ft below land surface)

Saltwater Zone ($f t$):

Use of Water: INDUSTRIAL

DRILLER'S LOG

UNIT TOP UNIT BOTTOM DESCRIPTION OF UNITS PENETRATED

BOREHOLE

CASING

Casing 1:

Top: $\mathbf{0}$ Bottom: 70 Diameter: 6 Material:
Top:
Bottom: Type:

SCREEN/SLOT

WELL LINER

PACKER

WATER BEARING ZONE				
Zone 1:	Top:	$\mathbf{1 0}$	Bottom:	Yield:
Zone 2:	Top:	$\mathbf{7 0}$	Bottom:	Yield:
Zone 3:	Top:	$\mathbf{2 2 0}$	Bottom:	Yield:

WATER WELL DETAILS

Well Driller: R WALTER SLAUCH \& SONS
Driller License: 0176
Type of Activity:

Date Drilled: 11/30/1967

Owner: HERR'S POTATO CHIPS
Address of Well:
County: CHESTER
Municipality: WEST NOTTINGHAM TWP.
Coordinate Method:
Quadrangle: RISING SUN

Well Depth $(f f)$: 225
Depth to Bedrock (ft):
Well Yield (gpm): 10
Static Water Level: 30
(ft below land surface)
Length of Yield Test:
(minutes)
Use of Well: WITHDRAWAL

PA Well ID: 8748
Driller Well ID:
Local Permit \#:
Original Well By: UNKNOWN
Drilling Method: CABLE TOOL

DRILLER'S LOG
UNIT TOP UNIT BOTTOM DESCRIPTION OF UNITS PENETRATED

BOREHOLE

CASING

Casing 1:
Top: $\mathbf{0}$ Bottom: 119 Diameter: 6 Material: UNKNOWN

Seal(Grout) 1:

Top: Bottom: Type:

SCREEN/SLOT

WELL LINER

PACKER

WATER BEARING ZONE

Zone 1:	Top:	$\mathbf{2 0 0}$	Bottom:	Yield:
Zone 2:	Top:	$\mathbf{2 2 5}$	Bottom:	Yield:

WATER WELL DETAILS

Well Driller: R WALTER SLAUCH \& SONS
Driller License: 0176
Type of Activity:

Date Drilled: 10/30/1967

Owner: HERR'S POTATO CHIPS
Address of Well:
County: CHESTER
Municipality: WEST NOTTINGHAM TWP.
Coordinate Method:
Quadrangle: RISING SUN

Well Depth $(f t): 283$
Depth to Bedrock ($f t$):
Well Yield (gpm): 8
Static Water Level: -1
(ft below land surface)
Length of Yield Test: 4 (minutes)

Use of Well: WITHDRAWAL

$$
\text { PA Well ID: } 8746
$$

Driller Well ID:
Local Permit \#:
Original Well By: UNKNOWN
Drilling Method: CABLE TOOL

Zipcode:

Latitude: $\mathbf{3 9 . 7 4 7 7 8}$
Longitude: -76.01917

Well Depth (ft): 283	Well Finish: OPEN HOLE
Depth to Bedrock (ft):	Did Not Encounter Bedrock:
Well Yield (gpm): $\mathbf{8}$	Yield Measure Method:
Static Water Level: -1 (ft below land surface)	Water level after yield test: 199 (ft below land surface)
Length of Yield Test: 4 (minutes)	Saltwater Zone (ft):
Use of Well: WITHDRAWAL	Use of Water: INDUSTRIAL

DRILLER'S LOG
UNIT TOP UNIT BOTTOM DESCRIPTION OF UNITS PENETRATED

BOREHOLE

CASING

Casing 1:

Top: 0 Bottom: 67 Diameter: 6 Material: UNKNOWN

Seal(Grout) 1:

Top: Bottom: Type:

SCREEN/SLOT

WELL LINER

PACKER

WATER BEARING ZONE

Zone 1:	Top:	$\mathbf{2 5 0}$	Bottom:	Yield:
Zone 2:	Top:	$\mathbf{2 8 3}$	Bottom:	Yield:

WATER WELL DETAILS

Well Driller: R WALTER SLAUCH \& SONS
Driller License: 0176
Type of Activity: New Well

Date Drilled: 1/1/1967

PA Well ID: 114348
Driller Well ID:
Local Permit \#:
Original Well By: UNKNOWN
Drilling Method:

Owner: HERR POTATO INC

Address of Well:
Zipcode:
County: CHESTER
Municipality: WEST NOTTINGHAM TWP.
Coordinate Method:
Quadrangle: RISING SUN
Latitude: 39.74556
Longitude: -76.02

Well Depth (ft): 283
Depth to Bedrock ($f t$): $\mathbf{6 0}$
Well Yield (gpm): 8
Static Water Level: 1 (ft below land surface)

Length of Yield Test: 4 (minutes)

Use of Well: WITHDRAWAL

Well Finish:
Did Not Encounter Bedrock:
Yield Measure Method:
Water level after yield test: (fi below land surface)

Saltwater Zone ($f t$):

Use of Water: INDUSTRIAL

DRILLER'S LOG

UNIT TOP UNIT BOTTOM DESCRIPTION OF UNITS PENETRATED

BOREHOLE

CASING

Casing 1:
Top: $\mathbf{0}$ Bottom: 67 Diameter: 6 Material:

Seal(Grout) 1:
Top: Bottom: Type:

SCREEN/SLOT

WELL LINER

PACKER

WATER BEARING ZONE				
Zone 1:	Top:	$\mathbf{6 0}$	Bottom:	Yield:
Zone 2:	Top:	$\mathbf{2 5 0}$	Bottom:	Yield:

WATER WELL DETAILS

Well Driller: R WALTER SLAUCH \& SONS
Driller License: 0176
Type of Activity: New Well

Date Drilled: 1/1/1967

PA Well ID: 114349
Driller Well ID:
Local Permit \#:
Original Well By: UNKNOWN
Drilling Method:

Owner: HERR POTATO INC

Address of Well:
Zipcode:
County: CHESTER
Municipality: WEST NOTTINGHAM TWP.
Coordinate Method:
Quadrangle: RISING SUN
Latitude: 39.74778
Longitude: -76.01861

Well Depth $(f t)$: 225
Depth to Bedrock (ft): $\mathbf{1 1 5}$
Well Yield (gpm): $\mathbf{1 0}$
Static Water Level: 30
(ft below land surface)
Length of Yield Test: 5
(minutes)
Use of Well: WITHDRAWAL

Well Finish:
Did Not Encounter Bedrock:
Yield Measure Method:
Water level after yield test: (ft below land surface)

Saltwater Zone (ft):

Use of Water: INDUSTRIAL

DRILLER'S LOG

UNIT TOP UNIT BOTTOM DESCRIPTION OF UNITS PENETRATED

BOREHOLE

CASING
Casing 1:
Top: $\mathbf{0}$ Bottom: 119 Diameter: 6 Material:

Seal(Grout) 1:

Top: Bottom: Type:

SCREEN/SLOT

WELL LINER

PACKER

WATER BEARING ZONE				
Zone 1:	Top:	$\mathbf{7 0}$	Bottom:	Yield:
Zone 2:	Top:	$\mathbf{2 0 0}$	Bottom:	Yield:

APPENDIX R
 Ecological Risk Assessment

MEMORANDUM

TO: Herr Foods, Inc.
FROM: Thomas R. Eby, RETTEW Associates, Inc.
DATE: June 10,2016
PROJECT NAME: Herr Foods, Inc. - Ecological Risk Assessment PROJECT NO. 101722001
SUBJECT: Ecological Risk Assessment

INTRODUCTION

This Ecological Risk Assessment was prepared to evaluate the potential effects of a petroleum release on ecological receptors at the Herr Foods, Inc. (Herr's) manufacturing facility, located at 273 Old Baltimore Pike in West Nottingham Township, Chester County, Pennsylvania. The 13.8 -acre property is owned and operated by Herr's and appears on the Rising Sun, MD-PA United States Geological Survey (USGS) 7.5-minute quadrangle (Attachment A, Figure 1). The property has been used historically for snack food manufacturing since the 1950s.

The petroleum release occurred at the facility truck garage, located on the southern portion of the property. The truck garage was constructed in 1978 and remains in use for the maintenance and fueling of Herr's fleet vehicles. An underground storage tank (UST) system installed during construction in 1978 was used for the storage of diesel fuel and unleaded gasoline. During UST system closure in 1997, a subsurface release of diesel fuel and unleaded gasoline was discovered that impacted soil and groundwater at the property.

Site characterization was conducted by RETTEW during 2015 and 2016 to delineate the extent of soil and groundwater impacts resulting from the release. Site characterization findings indicated that groundwater discharges to surface water downgradient of the subject property on an adjacent, separate parcel owned by Herr's. Discharging groundwater supports a wetland, which forms the headwater to an unnamed tributary (UNT) to North East Creek. Benzene and MTBE have been detected in surface water and sediment in the northern portion of the wetland area. Benzene is classified as a compound of potential ecological concern (CPEC) by the Pennsylvania Department of Environmental Protection (PADEP).

Fate and transport analysis showed that surface water will continue to be impacted by dissolved benzene and MTBE in groundwater into the future as described in the Revised Site Characterization Report (SCR). Applicable surface water quality standards were developed for benzene and MTBE using the PADEP's PENTOXSD model. The maximum average MTBE concentration at steady state ($47.9 \mu \mathrm{~g} / \mathrm{L}$) is not expected to exceed applicable water quality criteria; however, the maximum average benzene concentration at steady state ($421.2 \mu \mathrm{~g} / \mathrm{L}$) is expected to exceed the calculated Cancer Risk Level (CRL) waste load allocation (WLA, or $185 \mu \mathrm{~g} / \mathrm{L}$) for the UNT to North East Creek ($185 \mu \mathrm{~g} / \mathrm{L}$). Steady state discharge of benzene is expected to meet the calculated Acute Fish Criteria (AFC) WLA ($2,915 \mu \mathrm{~g} / \mathrm{L}$) and Chronic Fish Criteria (CFC) WLA ($14,351 \mu \mathrm{~g} / \mathrm{L}$) water quality criteria protective of fish and aquatic life that may live in the UNT to North East Creek.

Herr's proposes to remediate the release to meet the Site-Specific Standard for groundwater under Act 2. As a condition of remediation standard attainment, a site-specific ecological risk assessment was performed in accordance with the process outlined in the PADEP Act 2 Technical Guidance Manual (TGM) Section IV.H and the PADEP Statewide Ecological Screening Process to evaluate eco-exposure to groundwater and substances (benzene and MTBE) addressed by Herr's under the Act 2 Site-Specific standard.

INVESTIGATIVE METHODS

The evaluation included field identification of wetlands, habitat types and vegetation present in the area of plume discharge (MW-11) and surrounding areas within a 1,000-foot radius of MW-11, comprising the Ecological Risk Study Area. A search of the Pennsylvania Natural Diversity Inventory (PNDI) was also conducted to identify species and habitats of concern within the study area. The northern portion of the wetland area, where petroleum impacted surface water and sediment were identified, was compared to a reference area on the southern portion of the wetland area to assess whether "substantial impact" has resulted from the release. Substantial impact is defined by the TGM as a difference of greater than 20 percent in the density of species of concern, or greater than 50 percent difference in the diversity or the extent of habitats of concern. The evaluation also included a bog turtle habitat screening, since the property is located in Chester County where bog turtle populations and habitat are known to occur.

An on-site evaluation was conducted on May 11 and May 12, 2016 by qualified wetland biologists. The presence/absence wetland investigation followed the protocols described in the 2012 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0) and the 1987 Corps of Engineers Wetland Delineation Manual. This methodology is based on a three parameter approach involving indicators of hydrophytic vegetation, hydric soils, and wetland hydrology to identify and delineate wetlands.

INVESTIGATIVE FINDINGS

RETTEW's review of existing documentation and field investigation identified three wetland areas, one pond, and two watercourses among the various upland habitats within the Ecological Risk Study Area. Refer to Figure 2 located in Attachment A for the location of these resources. Attachment B contains photo documentation of all the habitats identified in the Ecological Risk Study Area.

Wetlands

Three wetland areas and one pond were identified within the Ecological Risk Study Area. The two wetlands east of the railroad were palustrine emergent (PEM) wetlands, and the wetland west of the railroad was a complex consisting of PEM, palustrine scrub-shrub (PSS), and palustrine unconsolidated bottom (PUB) wetlands. The pond is a manmade farm pond located along the eastern edge of the study area. The PEM wetland located in the cattle pasture east of the railroad was located outside the riparian corridor to the northeast. This wetland's hydrology was primarily fed by groundwater discharging from the base of the railroad grade and the dominant vegetation consisted of Eleocharis sp. (spike-rush), Juncus effusus (lamp rush), and Agrostis gigantea (black bent). The PEM wetland located within the riparian corridor, east of the railroad, drained to the UNT to North East Creek to the south. This wetland's hydrology was primarily fed by groundwater and the dominant vegetation consisted of Symplocarpus foetidus (skunk cabbage), Phalaris arundinacea (reed canary grass), and Impatiens capensis (spotted touch-me-not).

The wetland complex located west of the railroad is where the PEM wetland of potential concern and reference PEM wetland is located, in addition to the PSS and PUB portions. As previously mentioned, the area of plume discharge containing MTBE and benzene is located in the northern, downgradient portion of this wetland complex and is referenced as the PEM wetland of potential concern for the purpose of this report. The reference portion of this wetland is the PEM portion directly south and upgradient of the PEM wetland of potential concern, and is not affected by the contaminated groundwater discharge. This wetland complex is primarily fed by groundwater
and the dominant vegetation consists of S. foetidus, Impatiens capensis, Carex sp. (sedge), and Viburnum dentatum (southern arrowwood). This wetland complex drains north to the UNT to North East Creek.

Streams

Two regulated stream channels were identified within the Ecological Risk Study Area. Both stream channels are UNT's to North East Creek. The main stem of this UNT starts west of the railroad grade in the center of the Ecological Risk Study Area and is fed by the wetland complex to the south and a culvert from the north, which conveys stormwater runoff. This stream channel flows southeast through the Ecological Risk Study Area. The second stream channel flows south along the eastern border of the study area, eventually flowing into the main stem UNT. These UNT's to North East Creek have an assigned Pennsylvania Code, Title 25, Chapter 93, Water Quality Standard designation of Trout Stocking, Migratory Fishes (TSF, MF). The Pennsylvania Fish and Boat Commission (PFBC) does not list these UNTs to North East Creek as streams known to support naturally reproducing trout.

The main stem of the UNT to North East Creek is a perennial stream with a moderate to low gradient. The water flow during the site investigation was approximately four feet wide and three inches deep. The streambed consisted primarily of gravel and silt with some cobbles and sand present. The streambanks were well vegetated with some areas showing signs of erosion.

Upland Habitats

A variety of upland habitats are located throughout the Ecological Risk Study Area including upland forest, a scrubshrub/forested riparian corridor, cattle pasture, and maintained lawns. Herr's facilities, including paved parking lots and buildings, and a railroad right-of-way which bisects the site, are also located in the study area.

The upland forest is a mixed hardwood deciduous forest with dominant vegetative species including Liriodendron tulipifera (tuliptree), Acer rubrum (red maple), Fagus grandifolia (American beech), and Quercus alba (northern white oak) in the tree stratum, Lindera benzoin (northern spicebush) and Viburnum sp. in the shrub stratum, and Dennstaedtia punctilobula (hay-scented fern) in the herbaceous stratum.

The scrub-shrub/forested riparian corridor did contain some small fringe PEM wetlands along the banks of the UNT to North East Creek, but mainly consisted of upland habitat. A variety of vegetation species were present in this habitat type, and the dominant vegetative species included Salix nigra (black willow), Juglans nigra (black walnut), and Quercus palustris (pin oak) in the tree stratum, Rosa multiflora (rambler rose) and Rubus allegheniensis (common blackberry) in the shrub stratum, and P. arundinacea and Alliaria petiolata (garlic mustard) in the herbaceous stratum.

The cattle pastures are located in the southeastern portion of the study area and the dominant vegetative species included Lolium perenne (perennial rye grass) and Festuca sp. (fescue grass). The maintained lawn areas dominant vegetative species included Poa pratensis (Kentucky blue grass). The location of these habitats throughout the Ecological Risk Study Area are depicted on the aerial basemap (Attachement A, Figure 2).

PNDI Results

In order to identify species and habitats of potential concern within the Ecological Risk Study Area, a PNDI online search was completed by RETTEW on May 16, 2016 (Project Search ID: PNDI-603772). The PNDI Review Receipt indicated further review was necessary to determine potential impacts to a variety of special concern species
under the jurisdiction of the PA Department of Conservation and Natural Resources (DCNR) and an endangered species under the jurisdiction of the PA Fish and Boat Commission (PFBC). Shortly after the PNDI online search was completed, DCNR sent RETTEW a clearance letter with a conclusion of "no impact anticipated" regarding this project, dated May 16, 2016.

Additional information regarding the project was submitted to the PFBC for review and comment regarding the endangered species under their jurisdiction, which could potentially include fish, amphibians, and aquatic life. As previously stated, surface water is expected to meet the calculated AFC WLA and CFC WLA water quality criteria protective of fish and aquatic life. The PFBC response can be provided under separate cover upon receipt.

The PNDI results indicate that no species or habitats of concern were identified in the Ecological Risk Study Area. The PNDI receipt and agency clearance letters are provided in Attachment \mathbf{C}.

Although no potential impacts were identified on the PNDI search reciept for species under the jurisdiction of the U.S. Fish and Wildlife Service (USFWS), Chester County is known to host the threatened bog turtle (Glyptemys muhlenbergii) and its habitat. As part of the Ecological Risk Assessment, Jeremy Hite, a RETTEW qualified bog turtle surveyor, investigated the Ecological Risk Study Area for bog turtle habitat on May 12, 2016. All three wetland areas within the study area contain the perameters necessary for bog turtle habitat (hydrology, mucky soils, and vegetation) and were considered suitable habitat for bog turtles. However, no bog tutles were found during the investigation.

Wetland of Potential Concern

The PEM wetland where the groundwater plume discharge containing MTBE and benzene is located is depicted on Figure 2 in Attachment A as the "PEM Wetland of Potential Concern". This wetland did experience recent disturbance during the installation of groundwater monitoring wells. Disrupted sediment and vegetation from the drill rig were still present during the time of the investigation. It was noted that this ecological disturbance was not a result of the contaminated groundwater discharge into the wetland and was disregarded during the investigation.

The vegetation within the wetland of potential concern did not show signs of stress, discoloration, stunted growth, deformities, or death. The vegetation appeared to be in a similar growth stage when compared to the vegetation in the PEM reference wetland, directly south and upgradient of the contaminated groundwater discharge. The only non-native soil and sediment materials observed were a result of the recent drill rig disturbance. Typha angustifolia (narrow leaf cattail) is the only invasive species observed during the investigation. It was present in the wetland of potential concern and not the reference wetland; however, it did not appear to be crowding out the other vegetation at the time of the investigation. The aerial vegetative percent cover between the wetlands were very similar. However, the wetland of potential concern had a greater abundance of different species when compared to the reference wetland. Seven different species had a significant presence in the wetland of potential concern, compared to only four species observed in the reference wetland.

The ecological value of the wetland of potential concern is similar to the reference wetland. The only observed ecological benefit that the reference wetland contained over the wetland of potential concern was through its surrounding habitat. Since the reference wetland is surrounded by forest, the tree canopy provides additional cover and shade to the wetland resulting in cooler surface water and sediment temperatures, which could be a benefit for fauna activity. Since the wetland of potential concern is located closer to the Herr's facilities and directly adjacent to developed maintained lawn and parking areas, it is not surrounded by forest and doesn't receive this ecological benefit.

CONTAMINANT FATE AND TRANSPORT

As described in the Revised SCR, surface water and sediment is affected by the diffuse flow of groundwater to offsite wetland areas. Because benzene and MTBE have relatively low partitioning coefficients, they tend to partition into water easily and have a low affinity to sorb to soil. This suggests that the benzene and MTBE detected in sediment are more indicative of impacts to pore water. In addition, the source area is covered by buildings (the truck garage) and impervious paving as described in the Revised SCR; therefore, the sediment impacts are not likely the result of source erosion. It appears that the primary ecological risk associated with the release is exposure to discharging groundwater at the surface water interface, and surface water.

Benzene does not undergo significant partitioning or accumulate in sediment, nor does it bioaccumulate in plants or animals ${ }^{1}$. Benzene is known to biodegrade in the environment. Once in groundwater, MTBE resists degradation compared to other gasoline components like benzene. In surface water, MTBE is not expected to bioaccumulate in aquatic organisms ${ }^{2}$. Because benzene and MTBE do not bioaccumulate, they are not known to have an adverse effect on the food chain or present a food-chain exposure hazard. A list of compounds that EPA Region 3 considers to be bioaccumulative is presented on Table 4-2 in the guidance document Bioaccumulative Testing and Interpretation for the Purpose of Sediment Quality Assessment, Status and Needs, EPA-823-R-00-001, February 2000. Benzene and MTBE are not listed as bioaccumulative in this document.

PRELIMINARY EXPOSURE PATHWAY ANALYSIS

Present and future exposure pathways to surface water and sediment were evaluated for ecological receptors. Currently, there are no proposed plans to modify or redevelop the Herr's property. Land use is not expected to change in the future; therefore, current ecological exposure pathways are anticipated to remain unchanged into the near furture.

The ecological exposure pathway is characterized by diffuse groundwater discharge at the surface water interface with associated loading of dissolved benzene and MTBE to surface water. Dissolved benzene and MTBE are migrating with groundwater flow from the source area (the area of the petroleum release) to the final exposure pathway (groundwater-surface water interface and surface water) and to the receptors (terrestrial and aquatic ecological receptors).

Surface water impacts resulting from groundwater discharge were evaluated in the Revised SCR using PENTOXSD. Steady state discharge of benzene is expected to meet the calculated AFC WLA $(2,915 \mu \mathrm{~g} / \mathrm{L})$ and CFC WLA $(14,351$ $\mu \mathrm{g} / \mathrm{L}$) water quality criteria for fish and aquatic life in the UNT to North East Creek. The water quality standards calcuated for benzene and MTBE using PENTOXSD for aquatic life and aquatic habitat (AFC and CFC) are met, which are protective of fish. Because the AFC and CFC are met under steady state conditions, the exposure pathway for aquatic ecological receptors is acceptable.

The exposure pathway is complete for terrestrial ecological receptors. Terrestrial receptors are potentially exposed to the release via dermal contact, ingestion and root uptake. Ecotoxicity for terrestrial receptors is evaluated in the following section.

[^41]
PRELIMINARY ECOTOXICITY EVALUATION

As noted in the previous section, the AFC and CFC are met under steady state conditions for benzene and MTBE; therefore, the exposure pathway for aquatic ecological receptors is acceptable, and the ecological risk assessment for aquatic ecological receptors is satisfied. Terrestrial ecological receptors are the primary focus for further evaluation.

EPA Region 3 freshwater sediment screening ecotoxicological benchmarks were reviewed to assess ecological risk to terrestrial ecological receptors. Currently, EPA Region 3 does not have sediment screening benchmarks for benzene and MTBE. EPA Region 3 selected equilibrium partitioning values for contaminants with oil-water partitioning coefficients ($K_{\text {ow }}$) that fall into a specific range ($2.0<\log K_{o w}<6.0$). Benzene and MTBE generally fall outside of this range with low $\log K_{\text {ow }}$ values of 2.13 and 1.20 , respectively. Substances that have low partitioning coefficients generally prefer to remain in solution and have a low affinity to sorb to soil and sediment particles. As an alternative, the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRTs) sediment screening values were reviewed for organic substances in sediment and compared to detected benzene and MTBE concentrations in sediment as summarized in the following table.

Substance	Max. Detected Conc. in Sediment	Dutch Target Conc.	Dutch Intervention Conc.	EPA EcoTox Conc.
Benzene	$38 \mu \mathrm{~g} / \mathrm{kg}$	$10 \mu \mathrm{~g} / \mathrm{kg}$	$1,000 \mu \mathrm{~g} / \mathrm{kg}$	$57 \mu \mathrm{~g} / \mathrm{kg}$
MTBE	$160 \mu \mathrm{~g} / \mathrm{kg}$	NA	$100,000 \mu \mathrm{~g} / \mathrm{kg}$	NA

Notes:

1. Dutch Target and Intervention Values set forth in Ministry of Housing, Spatial Planning and the Environment (VROM), Lower House of Parliament, parliamentary proceedings 1988-1989, 21 137, No. 5.
2. EPA EcoUpdate EcoTox Thresholds.
3. $N A=$ Not applicable.

The maximum detected benzene concentration in sediment is below the screening values for intervention and ecological toxicity, and is slightly above the target concentration ($1 / 100$ of the intervention value or risk limit). The maximum detected MTBE concentration in sediment is below the only applicable screening value. The EPA EcoTox Thresholds have been set at concentrations above which there is sufficient concern regarding adverse ecological effects to warrant further site investigation. As previously stated, benzene and MTBE detected in sediment are more indicative of impacts to pore water and are not the result of source erosion. Based on the above comparison, the ecological risk associated with the maximum detected concentrations of benzene and MTBE in sediment (i.e., pore water) is characterized as low. It is noted that the benzene plume has not reached steady state and that benzene concentrations in discharging groundwater (and sediment) are expected to increase; however, the source will be remediated to meet the most stringent surface water quality standard (CRL WLA), thereby protecting terrestrial ecological receptors.

CONCLUSIONS

The findings of the Ecological Risk Assessment indicate that there is no substantial ecological risk associated with the release. The findings are summarized as follows:

- No species of concern were identified.
- No evidence of stressed, discolored or deformed vegetation was observed.
- Benzene and MTBE are not known to bioaccumulate and are not known to have a adverse effect on the food chain or present a food-chain exposure hazard.

Page 7 of 7
Herr Foods, Inc.
June 10, 2016
RETTEW Job No. 101722001

- The wetland of potential concern compared closely to the reference wetland with respect to the abundance and diversity of species present. No substantial ecological impacts were identified.
- The surface water quality standards presented in the Revised SCR are met and are protective of aquatic ecological receptors.
- Published sediment screening values indicate that the potential adverse effect of the release on terrestrial ecological receptors is low.
- No additional ecological risk assessment is warranted.

The results of the field investigation identified three wetland areas that contain suitable bog turtle habitat within the Ecological Risk Study Area. It is noted that bog turtles were not observed during the field investigation. Potential impacts of remediation on bog turtle habitat will be considered during the development of a Remedial Action Plan.

Prepared by:__Thmer. Shy_
Thomas R. Aby, Senior Environmental Scientist

Reviewed by: \qquad
Thomas J. Stich, Senior Environmental Scientist

H:\Projects\10172\101722001\NS\ERA Report\Memo-EcoAssessment-06-10-16.docx

ATTACHMENT A

SITE MAPPING

ATTACHMENT B

SITE PHOTOGRAPHS

Client: Herr Foods, Inc. Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township, Chester County, PA

Photo 1

Date Taken:
May 11, 2016

Photo Direction:

West

Comments:

View of truck garage on the Herr Foods, Inc. manufacturing facility and source of the underground storage tank petroleum release.

Photo 2

Date Taken: May 11, 2016

Photo Direction:

Southeast

Comments:

View of stream flowing out of the

PEM wetland of potential concern and culvert under the railroad grade.

Project Number:
101722001

Client: Herr Foods, Inc. Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township, Chester County, PA

Project Number:
101722001

Photo 3

Date Taken:
May 11, 2016

Photo Direction:

South

Comments:

View of PEM wetland of potential concern.

This is the area
where the groundwater discharges to surface water and feeds the PEM wetland.

Photo 4

Date Taken:
May 11, 2016

Photo Direction:

Northeast

Comments:

Another view of the
PEM wetland of potential concern.

Client: Herr Foods, Inc.
Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township, Chester County, PA

Photo 5
Date Taken:
May 11, 2016

Photo Direction:

North

Comments:

View of the upland forested habitat, south of the truck garage.

Photo 6

Date Taken:
May 11, 2016

Photo Direction:

North

Comments:

View of the PUB wetland adjacent to the railroad grade and surrounded by upland forest.

Client: Herr Foods, Inc.
Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township, Chester County, PA

Photo 7

Date Taken:

May 11, 2016

Photo Direction:

Northeast

Comments:

View of the reference
PEM wetland that is upgradient and directly south of the PEM wetland of potential concern. This wetland does not receive the contaminated groundwater discharge.

Photo 8

Date Taken:
May 11, 2016

Photo Direction:
North

Comments:

View of the PSS wetland adjacent to the reference PEM
wetland and surrounded by upland forest.

Client: Herr Foods, Inc.
Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township, Chester County, PA

Photo 9

Date Taken:
May 11, 2016

Photo Direction:

Southeast

Comments:

View of the PEM wetland within a cattle pasture, just east of the railroad and south of the UNT to Northeast Creek.

Photo 10

Date Taken:
May 11, 2016

Photo Direction:
Northwest

Comments:

Upstream view of the UNT to Northeast Creek and the scrubshrub riparian corridor in the southeastern portion of the study area.

Client: Herr Foods, Inc. Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township,
Chester County, PA

Photo 11

Date Taken:
May 11, 2016

Photo Direction:

Northwest
Comments:
View of the cattle pasture north of the UNT to Northeast

Creek.

Photo 12

Date Taken:

May 11, 2016

Photo Direction:

Northeast

Comments:

View of the retention basin in the eastern portion of the study area.

Client: Herr Foods, Inc. Project Name: Ecological Risk Assessment

Site Location: West Nottingham Township, Chester County, PA

Photo 13

Date Taken:

May 11, 2016

Photo Direction:

Southwest

Comments:

View of the scrub-
shrub/forested riparian corridor east of the UNT to Northeast Creek.

Photo 14

Date Taken:
May 11, 2016

Photo Direction:

Southeast

Comments:

View of PEM wetland east of the railroad grade and northeast of the UNT to Northeast Creek.

Client: Herr Foods, Inc. Project Name: Ecological Risk Assessment

Site Location: West
Project Number:
Nottingham Township,
101722001
Chester County, PA
Photo 15
Date Taken:
May 11, 2016

Photo Direction:

Northwest

Comments:

Upstream view of the UNT to Northeast Creek, just downstream of the culvert and railroad grade.

ATTACHMENT C

PNDI SEARCH RECIEPT AND AGENCY RESPONSES

1. PROJECT INFORMATION

Project Name: Herr Foods

Date of Review: 5/16/2016 10:06:43 AM
Project Category: Hazardous Waste Clean-up, Site Remediation, and Reclamation, Other
Project Area: $\mathbf{7 3 . 2 2}$ acres
County(s): Chester
Township/Municipality(s): WEST NOTTINGHAM
ZIP Code: 19362
Quadrangle Name(s): RISING SUN
Watersheds HUC 8: Chester-Sassafras; Lower Susquehanna
Watersheds HUC 12: North East Creek; Tweed Creek-Octoraro Creek
Decimal Degrees: 39.744832, -76.019582

2. SEARCH RESULTS

Agency	Results	Response
PA Game Commission	No Known Impact	No Further Review Required
PA Department of Conservation and	Potential Impact	FURTHER REVIEW IS REQUIRED, See Agency Response
Natural Resources	Potential Impact	FURTHER REVIEW IS REQUIRED, See Agency Response
U.S. Fish and Wildlife Service	No Known Impact	No Further Review Required

As summarized above, Pennsylvania Natural Diversity Inventory (PNDI) records indicate there may be potential impacts to threatened and endangered and/or special concern species and resources within the project area. If the response above indicates "No Further Review Required" no additional communication with the respective agency is required. If the response is "Further Review Required" or "See Agency Response," refer to the appropriate agency comments below. Please see the DEP Information Section of this receipt if a PA Department of Environmental Protection Permit is required.

Note that regardless of PNDI search results, projects requiring a Chapter 105 DEP individual permit or GP 5, 6, 7, 8, 9 or 11 in certain counties (Adams, Berks, Bucks, Carbon, Chester, Cumberland, Delaware, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Schuylkill and York) must comply with the bog turtle habitat screening requirements of the PASPGP.

Herr Foods

Project Boundary
Buffered Project Boundary

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,

Herr Foods

RESPONSE TO QUESTION(S) ASKED

Q1: Will the entire project occur within an existing building, parking lot, driveway, road, street, or maintained (periodically mowed) lawn?
Your answer is: Unknown

3. AGENCY COMMENTS

Regardless of whether a DEP permit is necessary for this proposed project, any potential impacts to threatened and endangered species and/or special concern species and resources must be resolved with the appropriate jurisdictional agency. In some cases, a permit or authorization from the jurisdictional agency may be needed if adverse impacts to these species and habitats cannot be avoided.

These agency determinations and responses are valid for two years (from the date of the review), and are based on the project information that was provided, including the exact project location; the project type, description, and features; and any responses to questions that were generated during this search. If any of the following change: 1) project location, 2) project size or configuration, 3) project type, or 4) responses to the questions that were asked during the online review, the results of this review are not valid, and the review must be searched again via the PNDI Environmental Review Tool and resubmitted to the jurisdictional agencies. The PNDI tool is a primary screening tool, and a desktop review may reveal more or fewer impacts than what is listed on this PNDI receipt. The jursidictional agencies strongly advise against conducting surveys for the species listed on the receipt prior to consultation with the agencies.

PA Game Commission

RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Department of Conservation and Natural Resources RESPONSE:

Further review of this project is necessary to resolve the potential impact(s). Please send project information to this agency for review (see WHAT TO SEND).

DCNR Species: (Note: The Pennsylvania Conservation Explorer tool is a primary screening tool, and a desktop review may reveal more or fewer species than what is listed below. After desktop review, if a botanical survey is required by DCNR, we recommend the DCNR Botanical Survey Protocols, available here: http://www.gis.dcnr.state.pa.us/hgiser/PNDI_DCNR.aspx.)

Scientific Name	Common Name	Current Status	Proposed Status	Survey Window
Amblyscirtes vialis	Common Roadside Skipper	Special Concern Species*	Special Concern Species*	One brood from March-July; a partial second brood up to September in the south.
Apodrepanulatrix liberaria	a geometrid moth	Special Concern Species*	Special Concern Species*	
Artace cribraria	Dot-lined White Moth	Special Concern Species*	Special Concern Species*	
Atrytonopsis hianna	Dusted Skipper	Special Concern Species*	Special Concern Species*	adults in flight May to early June
Caripeta aretaria	Southern Pine Looper Moth	Special Concern Species*	Special Concern Species*	

Scientific Name	Common Name	Current Status	Proposed Status	Survey Window
Catocala umbrosa		Special Concern Species*	Special Concern Species*	Catocala umbrosa flies as a single generation with moths on the wing from early April in the southern portions (peak flight in June) of its range through to August in the North (peak flight mid to late July).

Erastria coloraria	Broad-lined Erastria Moth	Special Concern Species*	Special Concern Species*	
Hemileuca maia	Barrens Buckmoth	Special Concern Species*	Special Concern Species*	One brood from SeptemberDecember
Hypagyrtis esther	Esther Moth	Special Concern Species*	Special Concern Species*	
Lagoa crispata	Black-waved Flannel Moth	Special Concern Species*	Special Concern Species*	May-October
Xestia elimata	Southern Variable Dart Moth	Special Concern Species*	Special Concern Species*	Fall?
Zale curema	A Zale Moth	Special Concern Species*	Special Concern Species*	
Zale submediana	A Zale Moth	Special Concern Species*	Special Concern Species*	May to August

PA Fish and Boat Commission

RESPONSE:

Further review of this project is necessary to resolve the potential impact(s). Please send project information to this agency for review (see WHAT TO SEND).

PFBC Species: (Note: The Pennsylvania Conservation Explorer tool is a primary screening tool, and a desktop review may reveal more or fewer species than what is listed below.)

Scientific Name	Common Name	Current Status
Sensitive Species**	Endangered	

U.S. Fish and Wildlife Service RESPONSE:

No impacts to federally listed or proposed species are anticipated. Therefore, no further consultation/coordination under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq. is required. Because no take of federally listed species is anticipated, none is authorized. This response does not reflect potential Fish and Wildlife Service concerns under the Fish and Wildlife Coordination Act or other authorities.

[^42]
WHAT TO SEND TO JURISDICTIONAL AGENCIES

If project information was requested by one or more of the agencies above, upload* or email* the following information to the agency(s). Instructions for uploading project materials can be found here. This option provides the applicant with the convenience of sending project materials to a single location accessible to all three state agencies. Alternatively, applicants may email or mail their project materials (see AGENCY CONTACT INFORMATION).
*Note: U.S. Fish and Wildlife Service requires applicants to mail project materials to the USFWS PA field office (see AGENCY CONTACT INFORMATION). USFWS will not accept project materials submitted electronically (by upload or email).

Check-list of Minimum Materials to be submitted:

Project narrative with a description of the overall project, the work to be performed, current physical characteristics of the site and acreage to be impacted.

A map with the project boundary and/or a basic site plan(particularly showing the relationship of the project to the physical features such as wetlands, streams, ponds, rock outcrops, etc.)

In addition to the materials listed above, USFWS REQUIRES the following

SIGNED copy of a Final Project Environmental Review Receipt

The inclusion of the following information may expedite the review process.

Color photos keyed to the basic site plan (i.e. showing on the site plan where and in what direction each photo was taken and the date of the photos)
___Information about the presence and location of wetlands in the project area, and how this was determined (e.g., by a qualified wetlands biologist), if wetlands are present in the project area, provide project plans showing the location of all project features, as well as wetlands and streams.

4. DEP INFORMATION

The Pa Department of Environmental Protection (DEP) requires that a signed copy of this receipt, along with any required documentation from jurisdictional agencies concerning resolution of potential impacts, be submitted with applications for permits requiring PNDI review. Two review options are available to permit applicants for handling PNDI coordination in conjunction with DEP's permit review process involving either T\&E Species or species of special concern. Under sequential review, the permit applicant performs a PNDI screening and completes all coordination with the appropriate jurisdictional agencies prior to submitting the permit application. The applicant will include with its application, both a PNDI receipt and/or a clearance letter from the jurisdictional agency if the PNDI Receipt shows a Potential Impact to a species or the applicant chooses to obtain letters directly from the jurisdictional agencies. Under concurrent review, DEP, where feasible, will allow technical review of the permit to occur concurrently with the T\&E species consultation with the jurisdictional agency. The applicant must still supply a copy of the PNDI Receipt with its permit application. The PNDI Receipt should also be submitted to the appropriate agency according to directions on the PNDI Receipt. The applicant and the jurisdictional agency will work together to resolve the potential impact(s). See the DEP PNDI policy at https://conservationexplorer.dcnr.pa.gov/content/resources.

5. ADDITIONAL INFORMATION

The PNDI environmental review website is a preliminary screening tool. There are often delays in updating species status classifications. Because the proposed status represents the best available information regarding the conservation status of the species, state jurisdictional agency staff give the proposed statuses at least the same consideration as the current legal status. If surveys or further information reveal that a threatened and endangered and/or special concern species and resources exist in your project area, contact the appropriate jurisdictional agency/agencies immediately to identify and resolve any impacts.

For a list of species known to occur in the county where your project is located, please see the species lists by county found on the PA Natural Heritage Program (PNHP) home page (www.naturalheritage.state.pa.us). Also note that the PNDI Environmental Review Tool only contains information about species occurrences that have actually been reported to the PNHP.

6. AGENCY CONTACT INFORMATION

PA Department of Conservation and Natural Resources

Bureau of Forestry, Ecological Services Section
400 Market Street, PO Box 8552
Harrisburg, PA 17105-8552
Email: RA-HeritageReview@pa.gov
Fax:(717) 772-0271
PA Fish and Boat Commission
Division of Environmental Services
450 Robinson Lane, Bellefonte, PA 16823
Email: RA-FBPACENOTIFY@pa.gov
U.S. Fish and Wildlife Service

Pennsylvania Field Office
Endangered Species Section
110 Radnor Rd; Suite 101
State College, PA 16801
NO Faxes Please

PA Game Commission
Bureau of Wildlife Habitat Management
Division of Environmental Planning and Habitat Protection
2001 Elmerton Avenue, Harrisburg, PA 17110-9797
Email: RA-PGC_PNDI@pa.gov
NO Faxes Please

7. PROJECT CONTACT INFORMATION

Name: Thomas Eby
Company/Business Name: Rettew Associates, Inc.
Address: 3020 Columbia Ave.
City, State, Zip: Lancaster, PA 17603
Phone:(717) 207-7359 Fax:(717) 394-1063
Email:_teby@rettew.com

8. CERTIFICATION

I certify that ALL of the project information contained in this receipt (including project location, project size/configuration, project type, answers to questions) is true, accurate and complete. In addition, if the project type, location, size or configuration changes, or if the answers to any questions that were asked during this online review change, I agree to re-do the online environmental review.

pennsylvania
DEPARTMENT OF CONSERVATION
and natural resources
BUREAU OF FORESTRY
May 16, 2016
PNDI Number: PNDI-603772
Thomas Aby
Rettew, Inc.
3020 Columbia Avenue
Lancaster, PA 37212
Email: teby@rettew.com (hard copy not to follow)

Re: Herr Foods
 West Nottingham Township, Chester County, PA

Dear Mr. Eby,
Thank you for the submission of the Pennsylvania Natural Diversity Inventory (PNDI) Environmental Review Environmental Review Receipt Number PNDI-603772 for review. PA Department of Conservation and Natural Resources screened this project for potential impacts to species and resources of concern under DCNR's responsibility, which includes plants, terrestrial invertebrates, natural communities, and geologic features only.

No Impact Anticipated

PNDI records indicate species or resources under DCNR's jurisdiction located in the vicinity of the project. However, based on the photos that you have submitted, the information you submitted concerning the nature of the project, the immediate location, and our detailed resource information, DCNR has determined that no impact is likely. No further coordination with our agency is needed for this project.

DCNR also recommends the following steps to help prevent the spread of invasive plant species and to encourage the use of native plants:

- Avoid using seed mixes that include invasive plant species if the project requires re-vegetating the area
(http://www.ernstseed.com/seed-mixes/). Please also attempt to use weed-free straw or hay mixes when possible. A complete list of all Pennsylvania invasive plant species can be found here:
http://www.denr.state.pa.us/cs/groups/public/documents/document/denr_20026634.pdf.
- The area of disturbance should be minimized to the fullest extent that would allow for this project; this will help to lessen the area of indirect disturbance to nearby natural areas.

This response represents the most up-to-date review of the PNDI data files and is valid for two (2) years only. If project plans change or more information on listed or proposed species becomes available, our determination may be reconsidered. Should the proposed work continue beyond the period covered by this letter, please resubmit the project to this agency as an "Update" (including an updated PNDI receipt, project narrative and accurate map). As a reminder, this finding applies to potential impacts under DCNR's jurisdiction only. Visit the PNHP website for directions on contacting the Commonwealth's other resource agencies for environmental review.

Should you have any questions or concerns, please contact Frederick Sechler, Jr., Ecological Information Specialist, by phone (717-705-2819) or via email (c-frsechle@pa.gov).

Sincerely,

Greg Podniesinski, Section Chief
Natural Heritage Section, DCNR Bureau of Forestry

ATTACHMENT E

PROFESSIONAL QUALIFICATIONS

Jeremy T. Hite - Mr. Hite has a bachelor's degree in Wildlife and Fisheries Science from the Pennsylvania State University. He is currently involved in developing a Bog Turtle (Glyptemys muhlenbergii) Habitat Conservation Plan in Lancaster County, PA and New Castle County, DE. He is a qualified bog turtle surveyor for the state of PA and has six years of experience in searching and assessing different wetland environments for bog turtles as a technician for the Penn State University and as an environmental consultant. Through his employment as Research Technician at the Penn State Cooperative Wetlands Center he has been trained in and has helped development various protocols in assessing stream, wetlands, and riparian areas across the Mid-Atlantic Region. This research also included the sampling of streams and wetlands for macroinvertebrates and other herpetofauna. Some of these projects include Bog Turtle (Gleptemys muhlenbergii), Wood Turtle (Gleptemys insculpta), Eastern Massassauga (Sistrurus catenatus catenatus), Stream-sided salamanders (Plethodon spp.), benthic macroinvertebrates, and River Otter (Lutra canadensis) surveys. His responsibilities include leading field crews, field data collection, data management, filling out permits, meeting coordination, and landowner contacts.

Thomas R. Eby, Senior Environmental Scientist - Mr. Eby has a bachelor's degree in biology from York College of Pennsylvania and has over eight years of experience in field ecology and wetland biology. He has completed several vegetation and wetland certification courses at Rutgers University. He has received training to delineate wetlands with the procedures described in the 1987 Corps of Engineers Wetland Delineation Manual and the regional supplements. Since with RETTEW, Mr. Eby's primary role has been to manage phases within the Natural Sciences service area for various natural gas clients in both the Marcellus and Utica Shale regions. Some of his experience includes midstream pipeline projects, water sourcing projects, managing field crews, PADEP Ch. 105 compliance, USACE Nationwide Permit compliance, agency coordination, threatened and endangered species coordination/surveys, wetland delineation, and aquatic resources reporting.

Thomas J. Stich - Mr. Stich has a bachelor's degree in biology from Mansfield University and a master's degree in applied ecology and conservation biology from Frostburg State University. He has received training to delineate wetlands utilizing the U.S. Army Corps of Engineers Wetland Delineation Manual and the 2012 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region. Mr. Stich has over 15 years of experience delineating tidal and non-tidal wetlands in Pennsylvania, Maryland, and Virginia, and has certification as a forest stand delineator and forest conservation planner in Maryland.

[^0]: ${ }^{1}$ W.D. Sevon, 2000, Map 13, Physiographic Provinces of Pennsylvania, Pennsylvania Bureau of Topographic and Geologic Survey, Harrisburg, Pennsylvania.
 ${ }^{2}$ Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvev.nrcs.usda.gov/app/ accessed [November 3, 2014].
 ${ }^{3}$ Sloto, R., 1994, Geology, Hydrology, and Ground-Water Quality of Chester County, Pennsylvania, Chester County Water Resources Authority, Water Resource Report 2, West Chester, Pennsylvania.

[^1]: ${ }^{4}$ D.J. Low, D.J. Hippe and D. Yannacci, 2002, Geohydrology of Southeastern Pennsylvania, United States Geological Survey, WaterResources Investigations Report 00-4166.

[^2]: ${ }^{5}$ F.G. Driscoll, 1986, Groundwater and Wells, Johnson Division, St. Paul, Minnesota.

[^3]: ${ }^{6}$ D.J. Low, D.J. Hippe and D. Yannacci, 2002, Geohydrology of Southeastern Pennsylvania, United States Geological Survey, WaterResources Investigations Report 00-4166.

[^4]: ${ }^{7}$ 2004, How To Evaluate Alternative Cleanup Technologies For Underground Storage Tanks: A Guide For Corrective Action Plan Reviewers, United States Environmental Protection Agency, Document No. EPA 510-R-04-002.
 ${ }^{8}$ L. Bruce, T. Miller and B. Hockman, 1991, Solubility Versus Equilibrium Saturation of Gasoline Compounds: A Method to Estimate Fuel/Water Partition Coefficient Using Solubility or Koc, Amoco Corporation, Tulsa, Oklahoma.

[^5]: ${ }^{9}$ D.J. Low, D.J. Hippe and D. Yannacci, 2002, Geohydrology of Southeastern Pennsylvania, United States Geological Survey, WaterResources Investigations Report 00-4166.

[^6]: ${ }^{10}$ Pennsylvania Department of Environmental Protection, eMapPA, Available online at http://www.depgis.state.pa.us/emappa/, accessed [May 13, 2016].

[^7]: Name of Company Performing Site Assessment

[^8]: Name of Company Performing Site Assessment

[^9]: Name of Company Performing Site Assessment

[^10]:
 to unworn falsification to authorities), that the information provided herein is true, accurate and complete to the beat of my knowledge and belial.

[^11]: U-Indicates Compound is not Detected
 B - Indicates Compound is Present in the Blank
 J-Indicates Compound is Detected Below the PQL
 E-Indicates that the Result is Estimated because it is Above Calibration Range D - Indicates the Result is from Dilution

[^12]: *MS and / or MSD recoveries were outside control limits, but the lab control sample recoveries met criteria.

[^13]: Original: Regional Office - Nomistown, Wilkes Barre, Harrisburg. Williamsport, Pittsburgh, or Meadville
 Copy: Owner
 Copy: DeP Division of Storage Tanks, P.O. Box 8763, Harrisburg, PA 17105-8763
 Copy: inepfetor

[^14]: Origina: Regianal Ofice- Norrstown, Wikes Barte, Hanisburg, Willamsport, Pittsburgh, or Meadville
 Copy: Owner
 Ccpy: DEP, Dhision of Starage Tanks, P.O. Box 8763, Harisburg, PA 17105-8763
 Copy: inspector

[^15]: Original: Regional Offer- Norristown, Wilkes Barre, Harrisburg, Williamsport, Pittsburgh, or Meadville
 Copy:
 Copy:
 Copy:
 DEP, Division of Storage Tanks, P.O. Box 8763, Harrisburg, PA 17105-8763 Inspector

[^16]: Original: Regional Ohter-Norristown, Wides Barre, Harrisburg, Williamsport, Pittsburgh, or Meadville
 Copy. Owner
 Copy: Owing
 Copy: DEPARNiven of Storage Tanks, P.O. Box 8763, Harrisburg, PA 17105-8763
 Copy. Inspector

[^17]: Original: Regional Office - Norristown, Wilkes Barre, Harrisburg, Williarnsport, Pittsburgh, or Meadvilte
 Copy:
 Copy
 Ot P enteron of Storage Tanks, P.O. Box 8763, Harrisburg, PA 17105-8763
 inspection:

[^18]: Original: Regienat Office - Morristown, Wilkes Barre, Harrisburg, Williamsport, Pittsburgh; or Meadville
 Copy: Owner
 Copy DEP, Division of Storage Tanks, P.O. Box 8763; Harrisburg, PA 17105-8763
 Copy: Inspector

[^19]: *- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
 (2) The unspiked result was more than four times the spike added.

[^20]: *- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
 (2) The unspiked result was more than four times the spike added.

[^21]: WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

[^22]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of YSI 556

[^23]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of YSI 556

[^24]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of YSI 556

[^25]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of YSI 556

[^26]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of YSI 556

[^27]: 5072398
 Deborah Hannum

[^28]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of YSI 556

[^29]:

[^30]:
 5100575
 Deborah Hannum

[^31]:

[^32]: *Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of multiparameter meter

[^33]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of multiparameter meter

[^34]: * Not to exceed $500 \mathrm{ml} / \mathrm{min}$
 ** Resolution accuracy of multiparameter meter

[^35]: *- Outside of specification

[^36]: *- Outside of specification

[^37]: *- Outside of specification

[^38]: *- Outside of specification

[^39]: General Comments: Rec'd 1 bag of Summa parts

[^40]: *- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
 (2) The unspiked result was more than four times the spike added.

 P\#\#\#\#\#\# is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

[^41]: ${ }^{1}$ 2009, Benzene TEACH Chemical Summary, U.S. EPA Toxicity and Exposure Assessments for Children's Health, TEACH Database Archive Document.
 ${ }^{2}$ Occurrence of the Gasoline Additive MTBE in Shallow Ground Water in Urban and Agricultural Areas, USGS Fact Sheet, Available online at http://sd.water.usgs.gov/nawga/pubs/factsheet/fs114.95/fact.html, Accessed May 17, 2016.

[^42]: * Special Concern Species or Resource - Plant or animal species classified as rare, tentatively undetermined or candidate as well as other taxa of conservation concern, significant natural communities, special concern populations (plants or animals) and unique geologic features.
 ** Sensitive Species - Species identified by the jurisdictional agency as collectible, having economic value, or being susceptible to decline as a result of visitation.

