

#### **REPORTING PERIOD:**

January 1, 2017 to March 31, 2017

#### CONTACTS:

- Project Manager: Mr. David W. Swetland, P.G., Converse Consultants, State College, PA (814-234-3223) (dswetland@conveseconsultants.com)
- Owner Contact: Mr. George Korb, Chief Engineer, Woodloch Pines Inc., Hawley, PA (570) 878-1810

#### **QUARTERLY ACTIVITY SUMMARY:**

January 2017: System maintenance checks and monitoring. Monthly system sample collected January 30th.

- February 2017: System maintenance checks and monitoring. Carbon change on the 23<sup>rd</sup>, quarterly sampling and system sample collected on the 24<sup>th</sup>.
- March 2017: System maintenance and checks and monitoring. Noise reduction measures installed and system sample collected on the 21<sup>st</sup>.

#### **ON-GOING FIELD ACTIVITIES:**

| Well Gauging:                            | Twice per month for area of treatment cell. Quarterly for other monitoring wells. |
|------------------------------------------|-----------------------------------------------------------------------------------|
| Manual Bailing for Product Recovery:     | No product present during most recent event.                                      |
| Groundwater Sampling:                    | Quarterly.                                                                        |
| Remedial System Operation & Maintenance: | DPE System Operating. See REMEDIATION SYSTEM below.                               |
| Remedial System Sampling Date(s):        | January 30, 2017, February 24, 2017, March 21, 2017.                              |
| Additional Activities:                   | See below for all activities.                                                     |

#### QUARTERLY GROUNDWATER SAMPLING DATA SUMMARY:

| Groundwater Sampling Date(s):                                | February 24, 2017                                                                                                    |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Separate Phase Liquid (SPL) Measurement:                     | Oil/Water Interface Probe.                                                                                           |
| SPL Thickness:                                               | No SPL measured in any monitoring well.                                                                              |
| SPL Recovery Amounts:<br>Quarterly/Cumulative Total to Date: | 0.0/0.0                                                                                                              |
| Groundwater Sampling Methods:                                | Low-flow purge method                                                                                                |
| Monitoring Wells Sampled:                                    | MW-1R through MW-22 (except MW-6 that was previously destroyed).                                                     |
| Recovery Wells Sampled:                                      | None                                                                                                                 |
| Laboratory Analysis:                                         | PADEP 2008 Unleaded Gasoline Short List Compounds.                                                                   |
| Groundwater Sample Results:                                  | See comments below, Appendix B: Table 2, and trend graphs.                                                           |
| Depth to Groundwater:                                        | 0.00 feet (MW-9) to 10.95 (MW-19) feet below top of casing. (see Table 1).                                           |
| Groundwater Flow Direction:                                  | Radial away from groundwater mounding in the area of MW-4; primarily west and southeast (see Appendix A: Figure 5C). |



Hydraulic Gradient:

0.024

#### Comments:

Laboratory data for February 2016 indicate a general decrease in constituent concentrations of benzene, TMBs, naphthalene, toluene and ethylbenzene in impacted monitoring wells when compared to the previous quarter. As presented on Appendix B: Table 2, compounds of concern (COCs) were identified at concentrations that exceed the RMSC SHSs at the following monitoring wells:

| Monitoring Well MW-1:  | 1,2,4-TMB (470 µg/L), 1,3,5-TMB (140 µg/L), Benzene (4500 µg/L), Toluene (2400 µg/L), MTBE (65 µg/L), Ethylbenzene (810µg/L) Naphthalene (160 µg/L)                          |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring Well MW-2:  | 1,2,4-TMB (170 μg/L), 1,3,5-TMB (37 μg/L), Benzene (32 μg/L)                                                                                                                 |
| Monitoring Well MW-3:  | 1,2,4-TMB (31 μg/L), Benzene (50 μg/L), MTBE (38 μg/L)                                                                                                                       |
| Monitoring Well MW-5R: | 1,2,4-TMB (1,700 µg/L), 1,3,5-TMB (430 µg/L), Benzene (2,300 µg/L), Toluene (4,200 µg/L) Ethylbenzene (2,700 µg/L), Xylenes (total) (11,000 µg/L) and Naphthalene (410 µg/L) |
| Monitoring Well MW-7:  | 1,2,4-TMB (43 μg/L), 1,3,5-TMB (<25 μg/L), Benzene (4,100 μg/L), MTBE (81 μg/L), Naphthalene (100 μg/L)                                                                      |
| Monitoring Well MW-9:  | Benzene (240 µg/L)                                                                                                                                                           |
| Monitoring Well MW-10: | Benzene (14 µg/L)                                                                                                                                                            |

Contaminant concentrations in peripheral monitoring wells have shown a decreasing trend in contaminant concentrations over the past few quarters. Contaminant concentrations in source area monitoring wells were consistent in February 2017 compared to historical data. It is too soon to expect to see reductions in dissolved phase hydrocarbons within the treatment cell due to the operation of the remedial system. As the volume of water treated by the remedial system is small compared to treatment of vapor, additional time and/or additional drawdown of the water table will be required.

The results from this quarter show an increase in contaminant concentrations in MW-1R and MW-3. This could be a byproduct of the remedial system being operational. As the DPE extracts groundwater and soil vapor it also can bring higher concentrations of contaminants to the area that are then processed by the system.

Contaminant trends in monitoring wells MW-9 and MW-10 show an overall upward trend compared to initial results however a downward trend is observed for the most recent quarters.

Analyte concentration trend graphs are included in Appendix B.

#### Variances:

None noted.

**<u>REMEDIATION SYSTEM</u>**: As documented in the previous quarterly report, Converse completed the installation and testing of the remedial system in December 2016. The dual phase extraction (DPE) remedial system was started on December 29, 2016.

Samples of the influent and effluent groundwater (as well as between the carbon tanks) processed by the DPE were collected on a monthly basis to ensure the functionality of the system. The data is summarized on the attached Table 3. A carbon change of the first tank was performed on the 23<sup>rd</sup> of February after tests revealed that the first carbon canister was spent.



The winter season has been wet and not overly cold so water levels and groundwater recovery rates have been higher compared to conditions that were measured during construction of the system in the summer and fall. During the first quarter of 2017 the system has treated approximately 110,000 gallons of impacted groundwater during 81 days of operation (approximately 1930 hours). System downtime is attributable to the maintenance events, the groundwater sampling event, the carbon changeout, and several brief outages. System operation is summarized below:

| Operating Period:                           | January 1, 2017 through March 31, 2017             |
|---------------------------------------------|----------------------------------------------------|
| System Operating Time:                      | 1,930 hours or 81 days (total run time)            |
| Total Water Treated:                        | 111,000 gallons                                    |
| Overall Average Water Flow Rate:            | 0.96 gpm                                           |
| Total Vapor Treated:                        | 41,688,000 scf                                     |
| Average Vapor Flow Rate:                    | 360 scfm                                           |
| Estimated Total Liquid Phase Contaminants R | emoved: 2316 lbs of hydrocarbons                   |
| Estimated Total Vapor Phase Contaminants R  | emoved: 30 lbs of hydrocarbons                     |
| SPL Recovered:                              | 0 gallons                                          |
| Liquid Phase Carbon Disposed:               | 0 lbs (200 lbs awaiting pick-up)                   |
| Vapor Phase Carbon Disposed:                | 0 lbs (1,200 lbs from 2016 is awaiting change-out) |

**<u>SYSTEM DRAWDOWN</u>**: During remedial system operation Converse has monitored water levels in the treatment cell to assess the drawdown created by the DPE.

Water levels collected over February 23 and 24 (quarterly sampling event) show that when the system is running the recorded drawdown in the monitored wells is between 0.2' and 0.3' lower than static depth to water. A chart of water levels in the piezometers and monitoring wells is included in Appendix B. The current DPE system is not capable of maintaining the low water levels that were observed during drought conditions in the fall of 2016. As drawdown, or an alternative means of enhancing mass transfer from the saturated zone soils, is critical for a timely and efficient remediation, Converse is preparing plans to increase the efficiency of remedial measures.

MW-7 had an anomalous water level reading on the 11<sup>th</sup> of January where the water level was about six (6) feet higher than the levels recorded before or after that date. This was presumably related to snowmelt from snow that is plowed into the area of MW-7.

**<u>SYSTEM VACUUM</u>**: During remedial system operation Converse monitors system vacuum in the shed and at the well heads. In March 2017, Converse collected additional vacuum data from the monitoring points in the treatment cell in an attempt to measure the extent of vacuum influence.

The remediation system typically operates at a vacuum of 10 to 14.5 inches of mercury (inHg). Vacuum measured at the well heads is typically between 80 and 120 inches of water column (IWC). Vacuum levels at the well heads are sufficient to simultaneously extract water and soil vapor from each of the DPE well heads. DPE well heads DPE-3 and MW-4 were not utilized during the winter months due to vapor pathway short circuiting. Rehabilitation of the well heads for DPE-3 and MW-4 will be addressed as part of the proposed measures to increase system efficiency that was discussed in the previous section.

Vacuum readings were collected in late March from P-2, P-3, MW-2, MW-5R, and MW-7. Locations P-1 and MW-3 were covered with snow plies and were not accessible. The water level in monitoring well MW-2 was above the top of screen so no valid reading was recorded. Monitoring points P-2 and P-3 were within the zone of vacuum extraction. Monitoring points MW-5R and MW-7 showed no evidence of vacuum influence on the day of



monitoring. Vacuum data is shown on the tables in Appendix B.

**NOISE REDUCTION ACTIVITIES:** On March 21, 2017 Converse installed sound reduction materials inside the treatment shed.

Sound dampening foam was attached to the walls and two sound dampening curtains were installed around the rotary lobe blower. Compared to earlier decibel readings taken in January the noise levels were reduced by about 10 decibels in all areas with the exception of the location of the Cat-Ox. The Cat-Ox is now the primary source of the noise. As use of the Cat-Ox is temporary, Converse has no current plans to reduce the noise from the Cat-Ox. Ox.

#### PLANNED ACTIVITIES:

Well Gauging: Manual Bailing for Product Recovery: Groundwater Sampling: Remedial System Operation & Maintenance: Remedial System Sampling Date(s): Additional: June 2017 Not planned June 2017 At least twice per month Monthly Additional remedial measures to increase drawdown are being planned.

#### **APPENDICES:**

#### Appendix A

Figure 1: Site Location Map Figure 2: Property Plan Figure 3: DPE System Schematic Figure 5F: Groundwater Elevation Contour Map February 2017 Figure 6F: Dissolved Benzene Isoconcentration Map February 2017 Figure 7F: Dissolved MTBE Isoconcentration Map February 2017 Figure 8F: Dissolved Naphthalene Isoconcentration Map February 2017 Figure 9F: Dissolved 1,2,4-TMB Isoconcentration Map February 2017 Figure 10F: Dissolved 1,3,5-TMB Isoconcentration Map February 2017

#### Appendix B

Table 1: Groundwater Elevations Table 2: Groundwater Analytical Summary DPE System Summary Tables Trend Graphs

#### Appendix C:

Chain of Custody Documents and Laboratory Reports

#### NOTES:

The first Quarter 2017 hydraulic gradient was calculated using the groundwater elevation at monitoring well MW-4 (1297.61 feet) minus the groundwater elevation at monitoring well MW-18 (1290.49 feet) divided by the horizontal distance (~300 feet) from monitoring well MW-4 to monitoring well MW-18.

#### **REFERENCES:**

Act 2, 1995. Pennsylvania Act 2 of 1995: Land Recycling and Environmental Remediation Standards Act (35 P.S. 6026)

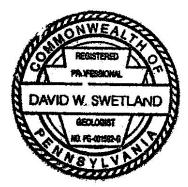


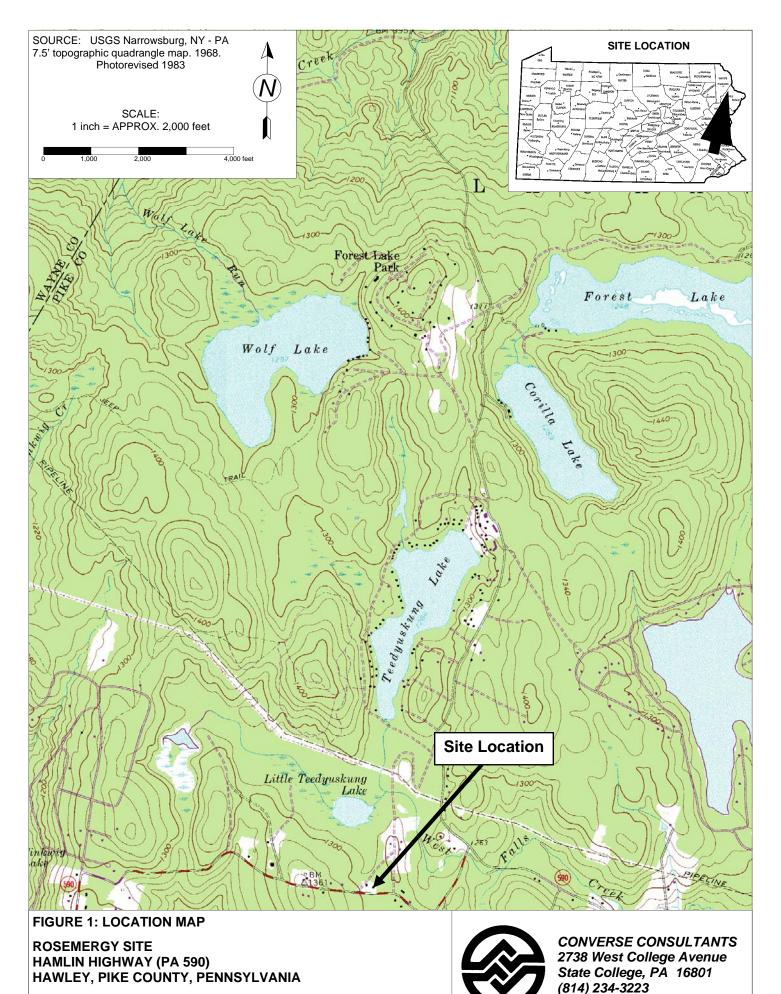
Act 32, 1989. Pennsylvania Act 32 of 1989: Storage Tank and Spill Prevention Act (35 P.S. '6021)

§245, 25 Pennsylvania Code Chapter 245 (§245). Subchapter D: Corrective Action Process for Owners and Operators of Storage Tanks and Storage Tank Facilities and Other Responsible Parties

§250, 25 PA Code Chapter 250 (§250): Administration of the Land Recycling Program

Converse, 2013. Work Plan, Additional Supplemental Site Characterization, PAUSTIF Claim #2011-0082(S), Former Rosemergy's Convenience Store, 1623 Route 590, Hawley, Pike County, Pennsylvania, September 23, 2014, Converse Consultants, State College, PA.


Converse, 2014. Site Characterization Report, Former Rosemergy's Store/Garage, PAUSTIF Claim #2011-0082(S), 1623 Route 590, Hawley, Lackawaxen Twp., Pike County, Pennsylvania, August 7, 2014, Converse Consultants, State College, PA.


PADEP, 1998. Technical Document, Closure Requirements for Underground Storage Tank Systems, PADEP 253-4500-601, December 1998.

PADEP, 2002. Land Recycling Program Technical Guidance Manual, PADEP 253-0300-100, May 4, 2002: with amended 2008.

PAGWIS, 2010. Pennsylvania Groundwater Information System, Pennsylvania Department of Conservation and Natural Resources (<u>http://www.dcnr.state.pa.us/topogeo/groundwater/PaGWIS/PaGWISMenu.asp?c=t</u>)

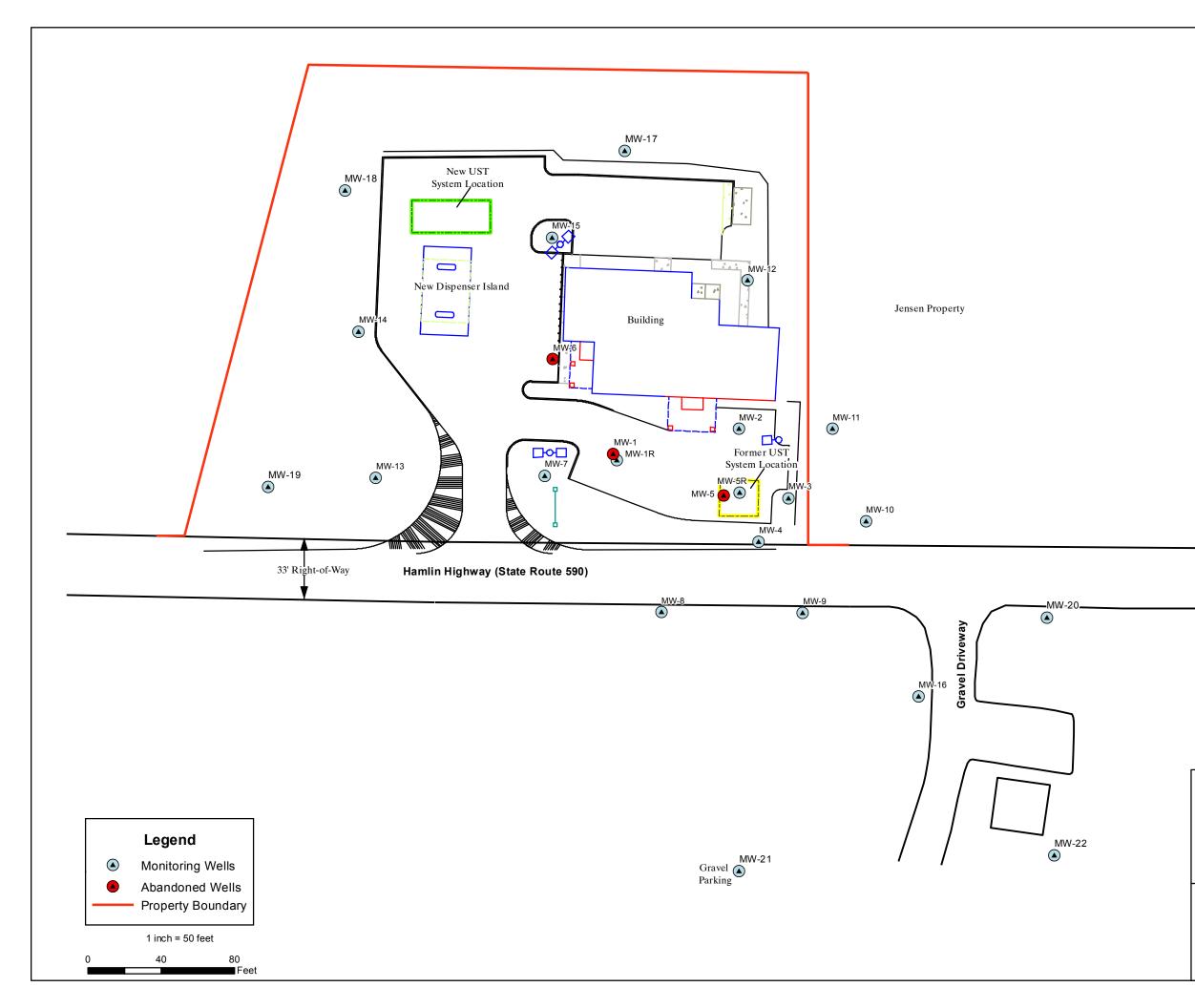
PG SEAL





Converse Project Number 11-17829-01

Revised 01/09/13



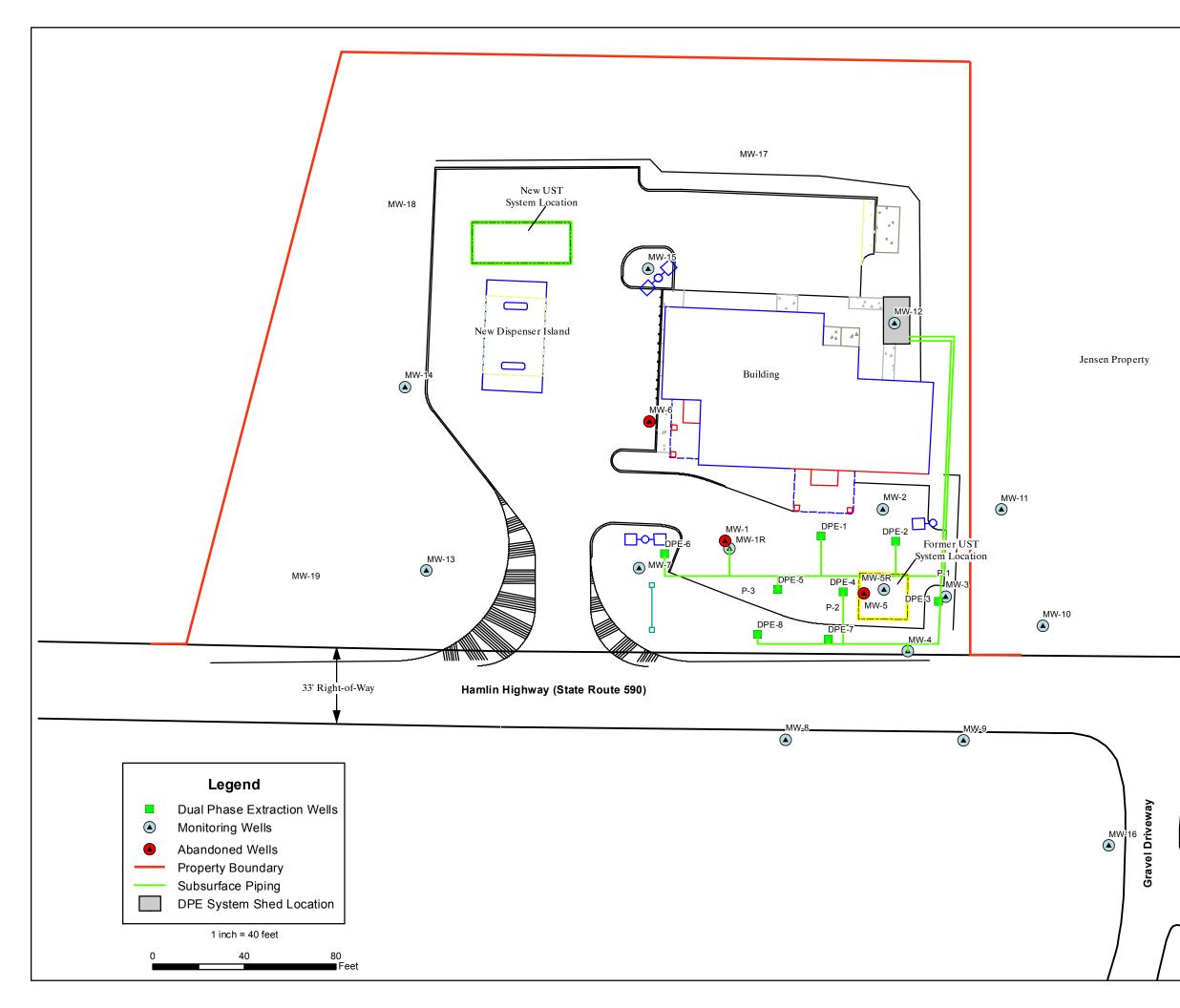




FIGURE 2: SITE PLAN

DECEMBER 2015 FORMER ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-01







Converse Consultants 2738 West College Avenue State College, PA 16801

Converse Project Number 11-17788-01

JUNE 2016 BLUESTONE - ROSEMERGY SITE HAWLEY, PENNSYLVANIA

MW-20

FIGURE 3: DPE SYSTEM SCHEMATICS



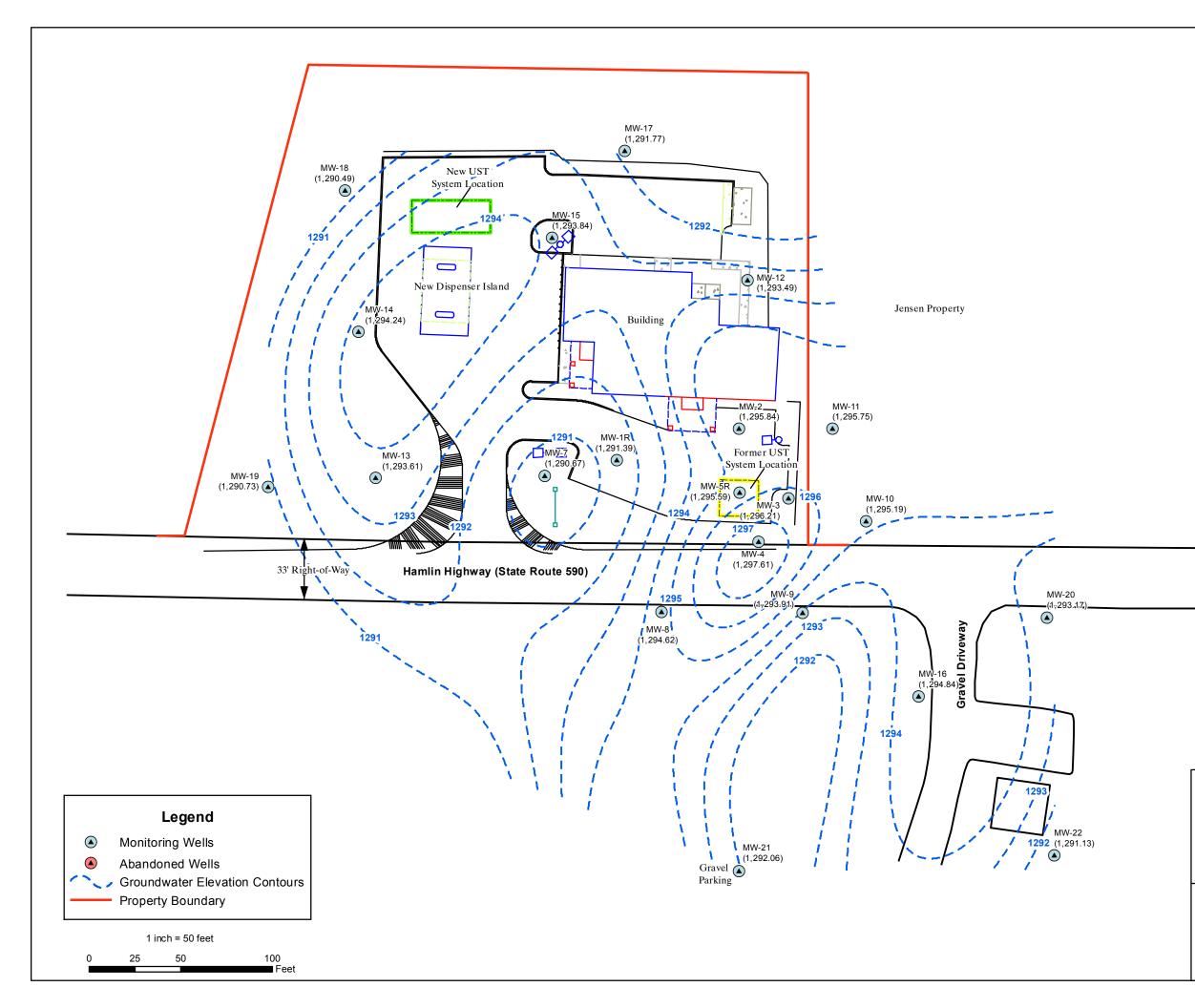


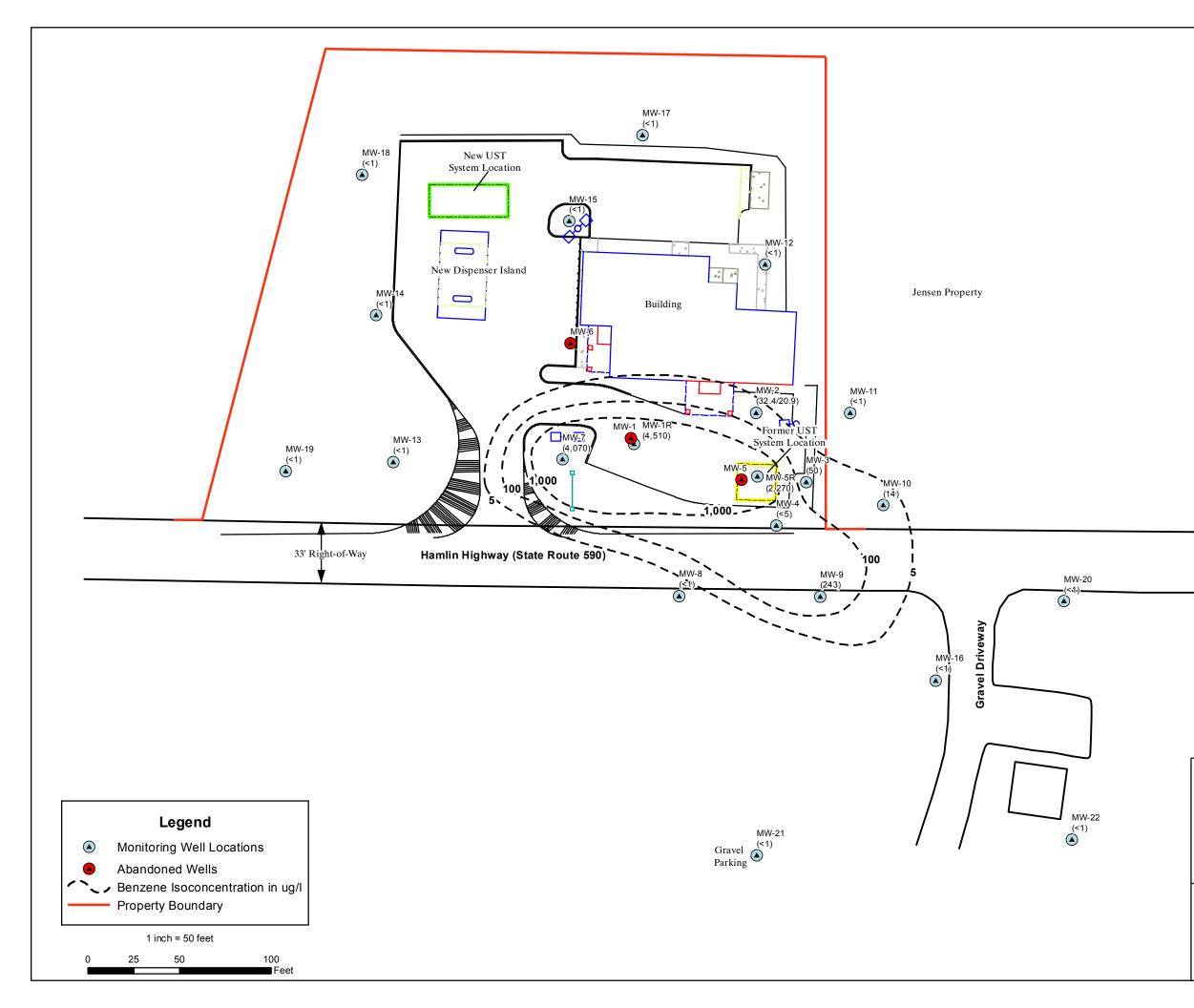



FIGURE 5A: GROUNDWATER CONTOUR MAP

FEBRUARY 2017 FORMER ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-01





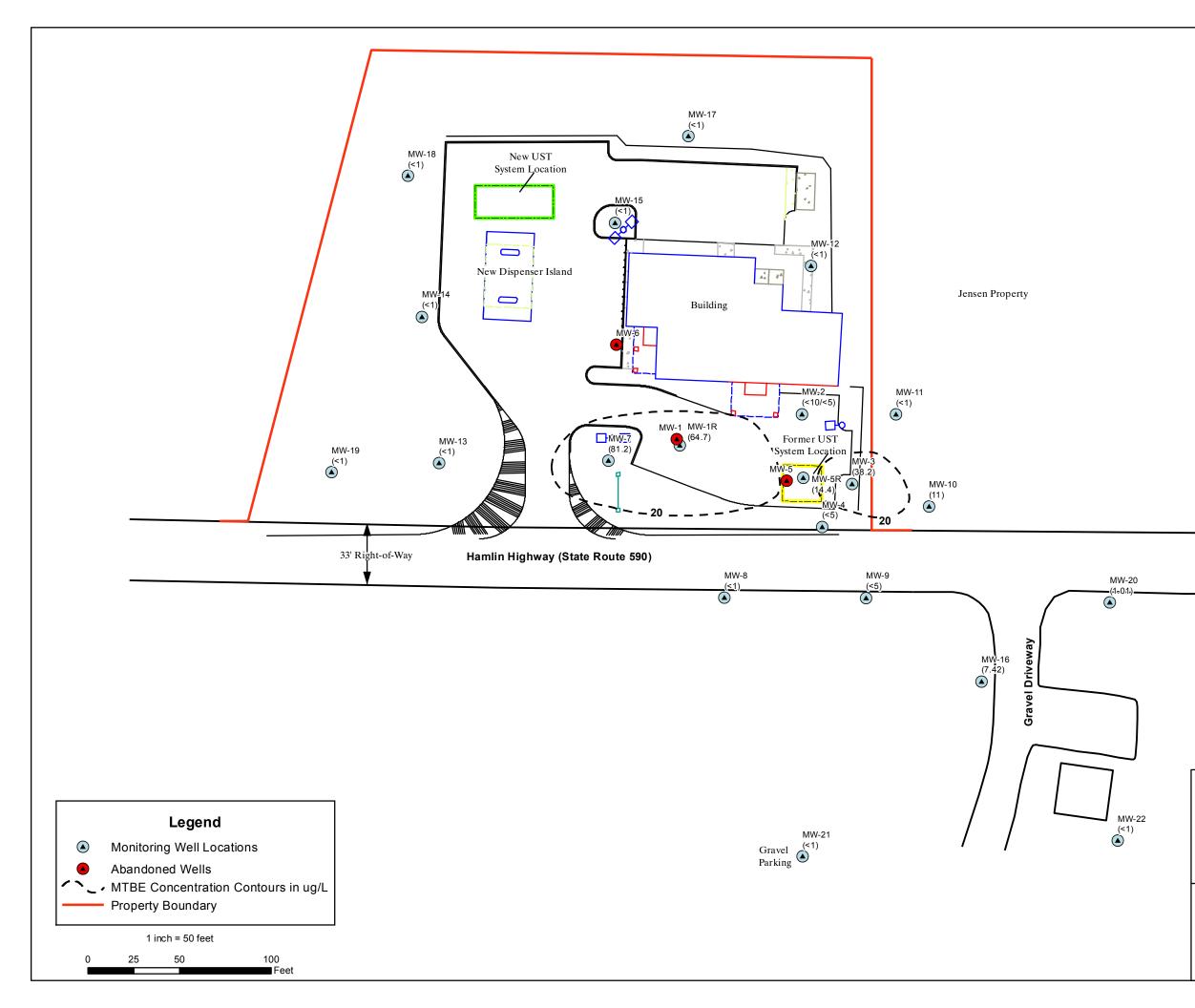




FIGURE 6A: DISSOLVED BENZENE

FEBRUARY 2017 BLUESTONE - ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-03







FEBRUARY 2017 BLUESTONE - ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-01



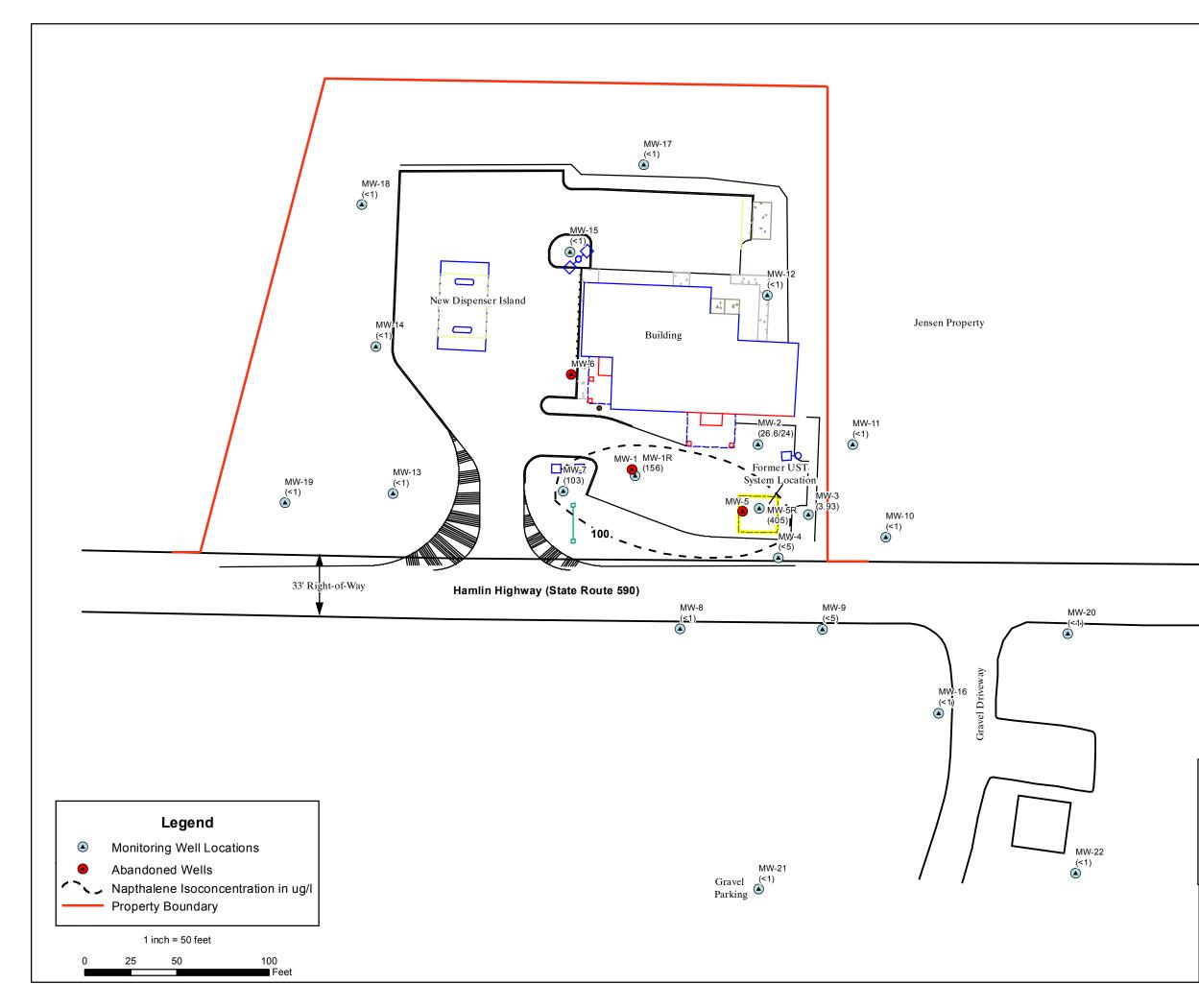





FIGURE 8A: DISSOLVED NAPTHALENE

FEBRUARY 2017 BLUESTONE - ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-01



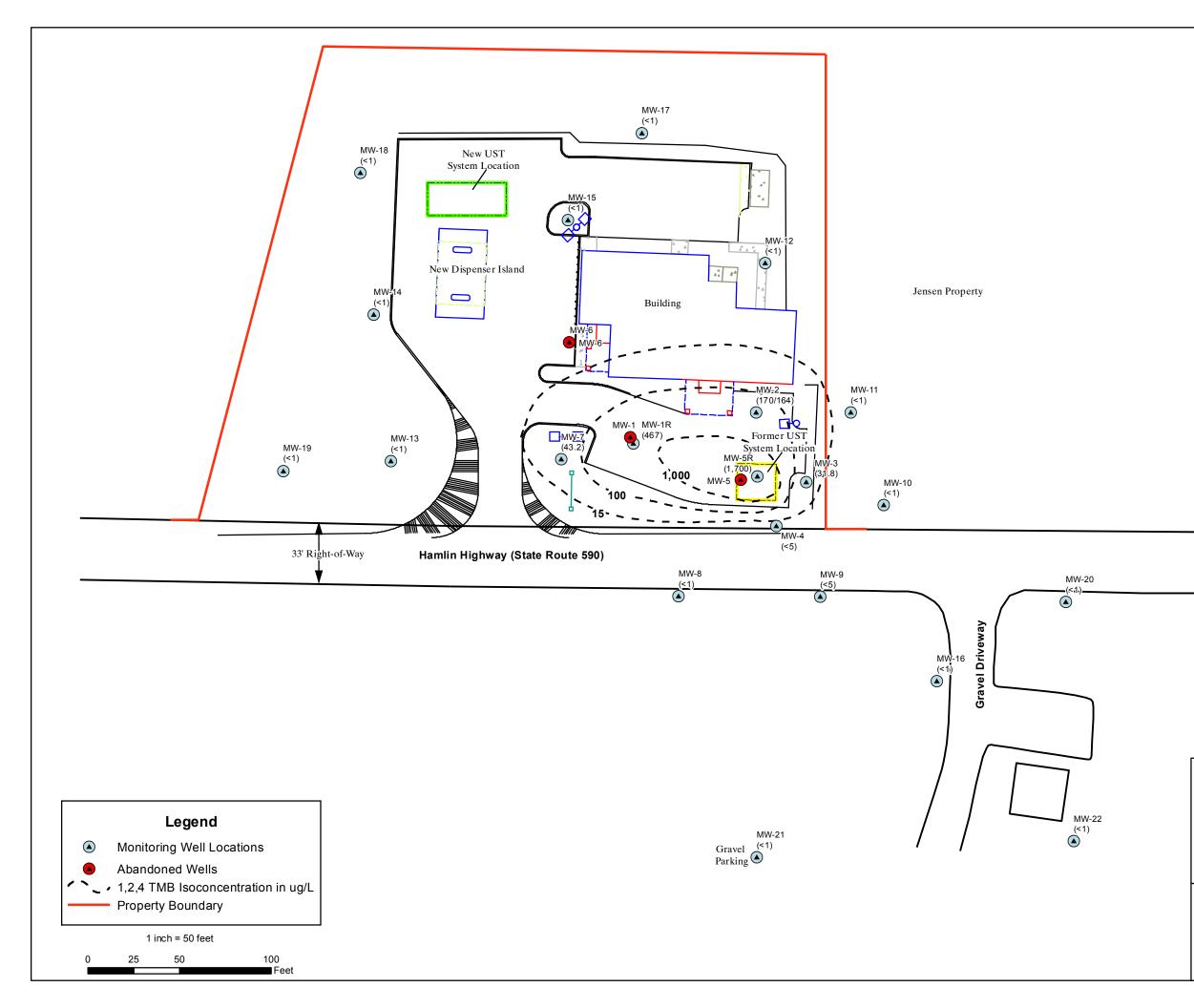





FIGURE 9A: DISSOLVED 1,2,4 TMB ISOCONCENTRATION MAP

FEBRUARY 2017 BLUESTONE - ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-01



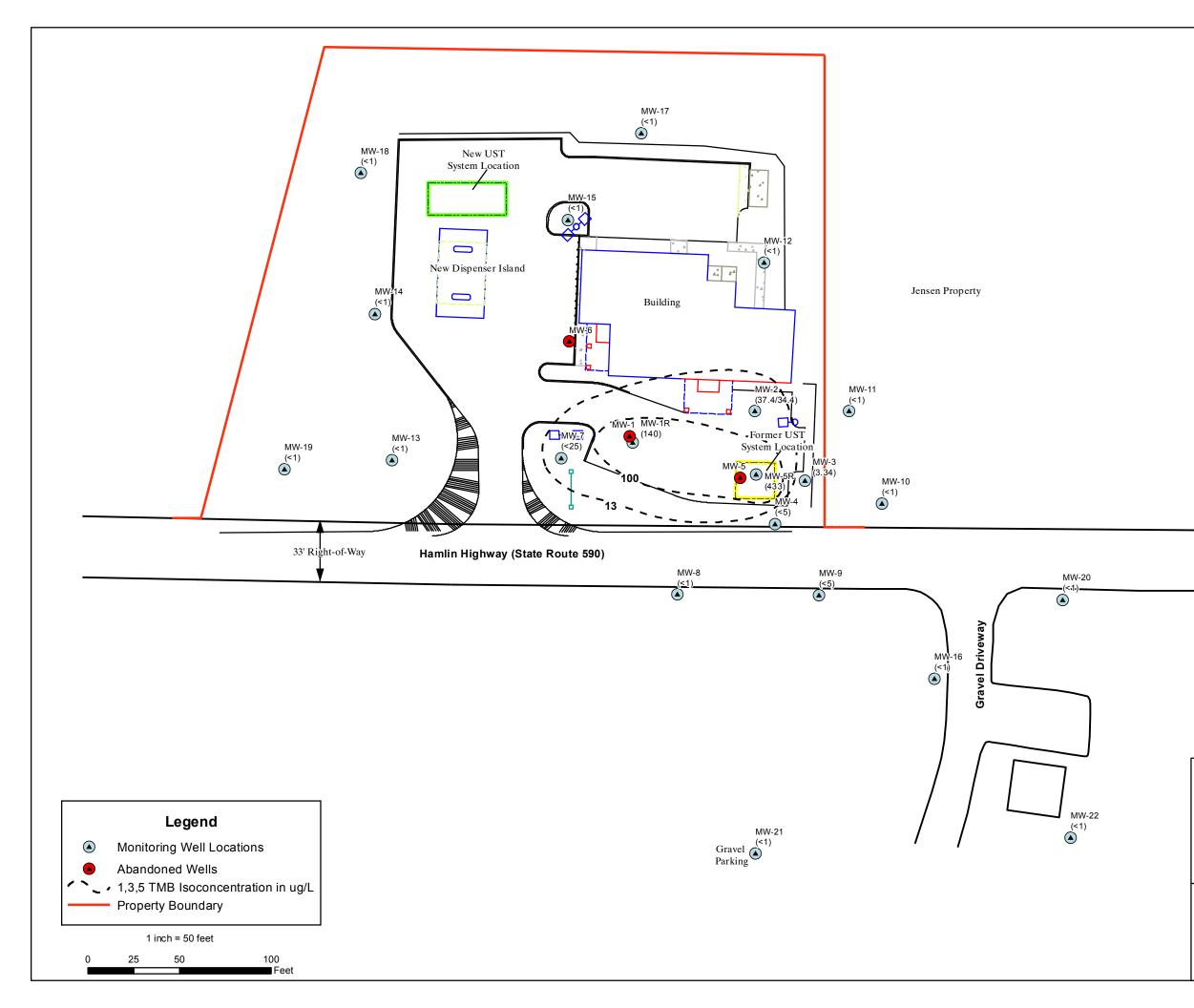





FIGURE 10A: DISSOLVED 1,3,5 TMB ISOCONCENTRATION MAP

FEBRUARY 2017 BLUESTONE - ROSEMERGY SITE HAWLEY, PENNSYLVANIA

Converse Project Number 11-17788-01



|       | TABLE 1<br>GROUNDWATER ELEVATION DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |         |       |         |          |       |         |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|----------|-------|---------|--|--|--|--|--|--|
| WELL  | TWD                                                                                                                         | SI      | TOCG  | TOC     | DATE     | DTW   | GW ELEV |  |  |  |  |  |  |
| MW-1  | 14.70                                                                                                                       | 3-14.7  | -0.48 | 1300.57 | 5/8/12   | 5.30  | 1295.27 |  |  |  |  |  |  |
| (2)   |                                                                                                                             |         |       |         | 6/17/12  | 6.52  | 1294.05 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 5/14/13  | IA    | IA      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/11/13 | AB    | AB      |  |  |  |  |  |  |
| MW-1R | 14.61                                                                                                                       | 4-14.61 | -0.28 | 1298.25 | 11/8/13  | 10.89 | 1287.36 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/11/13 | 9.90  | 1288.35 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 2/4/14   | 7.82  | 1290.43 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 3/7/14   | 7.73  | 1290.52 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 4/29/14  | NS    | NC      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 6/12/14  | 6.35  | 1291.90 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 9/17/14  | 7.49  | 1290.76 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/3/14  | 7.44  | 1290.81 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 3/25/15  | 5.00  | 1293.25 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 6/25/15  | 5.16  | 1293.09 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 8/26/15  | 7.52  | 1290.73 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 11/12/15 | NS    | NS      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/9/15  | 6.21  | 1292.04 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 1/14/16  | 5.39  | 1292.86 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 3/30/16  | 5.41  | 1292.84 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 6/23/16* | 3.39  | 1294.86 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 9/21/16  | 9.10  | 1289.15 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/8/16  | 7.84  | 1290.41 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 2/24/17  | 6.86  | 1291.39 |  |  |  |  |  |  |
| MW-2  | 14.40                                                                                                                       | 3-14.4  | -0.67 | 1299.67 | 5/8/12   | 3.18  | 1296.49 |  |  |  |  |  |  |
| (2)   |                                                                                                                             |         |       |         | 6/17/12  | 5.61  | 1294.06 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 5/14/13  | 3.51  | 1296.16 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 11/8/13  | 8.62  | 1291.05 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/11/13 | 5.70  | 1293.97 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 2/4/14   | NS    | NC      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 3/7/14   | 4.87  | 1294.80 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 4/29/14  | NS    | NC      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 6/12/14  | NS    | NC      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 9/17/14  | 5.27  | 1294.40 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/3/14  | 3.31  | 1296.36 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 3/25/15  | 2.80  | 1296.87 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 6/25/15  | 3.17  | 1296.50 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 8/26/15  | 4.50  | 1295.17 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 11/12/15 | NS    | NS      |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 12/9/15  | 3.85  | 1295.82 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 1/14/16  | 3.17  | 1296.50 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 3/30/16  | 3.65  | 1296.02 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 6/23/16* | 5.04  | 1294.63 |  |  |  |  |  |  |
|       |                                                                                                                             |         |       |         | 9/21/16  | 6.75  | 1292.92 |  |  |  |  |  |  |

|  |  | 2/24/17 | 3.83 | 1295.84 |
|--|--|---------|------|---------|
|  |  |         |      |         |
|  |  | 12/8/16 | 4.45 | 1295.22 |
|  |  | 5/21/10 | 0.70 | 1202.02 |

|             | TABLE 1         GROUNDWATER ELEVATION DATA         FORMER ROSEMERGY'S CONVENIENT STORE         1623 ROUTE 590         HAWLEY, PA         11-17788-03 |         |       |         |                                |                      |                               |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|--------------------------------|----------------------|-------------------------------|--|--|--|--|--|--|
| WELL        | TWD                                                                                                                                                  | SI      | TOCG  | TOC     | DATE                           | DTW                  | GW ELEV                       |  |  |  |  |  |  |
| MW-3<br>(2) | 14.21                                                                                                                                                | 3-14.21 | -0.37 | 1298.61 | 5/8/12<br>6/17/12<br>5/14/13   | 2.13<br>3.45<br>2.71 | 1296.48<br>1295.16<br>1295.90 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 11/8/13<br>12/11/13<br>2/4/14  | 6.73<br>3.82<br>NS   | 1291.88<br>1294.79<br>NC      |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 3/7/14<br>4/29/14<br>6/12/14   | NS<br>NS<br>3.49     | NC<br>NC<br>1295.12           |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 9/17/14<br>12/3/14             | 4.14<br>2.18         | 1294.47<br>1296.43            |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 3/25/15<br>6/25/15<br>8/26/15  | 2.14<br>2.15<br>3.69 | 1296.47<br>1296.46<br>1294.92 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 11/12/15<br>12/9/15            | 2.13<br>2.67         | 1296.48<br>1295.94            |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 1/14/16<br>3/30/16<br>6/23/16* | 3.02<br>2.97<br>3.28 | 1295.59<br>1295.64<br>1295.33 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 9/21/16<br>12/8/16             | 3.97<br>1.45         | 1294.64<br>1297.16            |  |  |  |  |  |  |
| MW-4<br>(2) | 14.56                                                                                                                                                | 3-14.56 | -0.56 | 1299.05 | 2/24/17<br>5/8/12<br>6/17/12   | 2.40<br>2.45<br>3.96 | 1296.21<br>1296.60<br>1295.09 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 5/14/13<br>11/8/13<br>12/11/13 | 3.19<br>7.36<br>4.41 | 1295.86<br>1291.69<br>1294.64 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 2/4/14<br>3/7/14               | NS<br>NS             | NC<br>NC                      |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 4/29/14<br>6/12/14             | NS<br>3.64           | NC<br>1295.41                 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 9/17/14<br>12/3/14<br>3/25/15  | 4.20<br>1.52<br>1.70 | 1294.85<br>1297.53<br>1297.35 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 6/26/15<br>8/26/15             | 2.34<br>3.71         | 1296.71<br>1295.34            |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 11/12/15<br>12/9/15<br>1/14/16 | 1.53<br>3.40<br>3.72 | 1297.52<br>1295.65<br>1295.33 |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 3/30/16<br>6/23/16*            | 2.97<br>4.55         | 1296.08<br>1294.5             |  |  |  |  |  |  |
|             |                                                                                                                                                      |         |       |         | 9/21/16<br>12/8/16             | 4.85<br>1.8          | 1294.2<br>1297.25             |  |  |  |  |  |  |

|  |  |  | 2,21,11 | 1.1.1 | 1201.01 |
|--|--|--|---------|-------|---------|
|  |  |  | 2/24/17 | 1.44  | 1297.61 |
|  |  |  | 12/0/10 | 1.0   | 1297.25 |

|       |       | GROU    |        | BLE 1<br>R ELEVATI  |                     |              |                    |
|-------|-------|---------|--------|---------------------|---------------------|--------------|--------------------|
|       | 1     |         |        |                     | ENIENT STO          | RE           |                    |
|       |       |         | 1623 F | OUTE 590            |                     |              |                    |
|       |       |         |        | /LEY, PA<br>7788-03 |                     |              |                    |
| WELL  | TWD   | SI      | TOCG   | тос                 | DATE                | DTW          | GW ELEV            |
| MW-5  | 14.68 | 3-14.68 | -0.26  | 1299.36             | 5/8/12              | 2.65         | 1296.71            |
| (2)   |       |         |        |                     | 6/17/12             | 3.90         | 1295.46            |
|       |       |         |        |                     | 5/14/13             | 3.18         | 1296.18            |
|       |       |         |        |                     | 11/8/13             | 7.82         | 1291.54            |
|       |       |         |        |                     | 12/11/13            | 4.42         | 1294.94            |
|       |       |         |        |                     | 2/4/14              | NS           | NC                 |
|       |       |         |        |                     | 3/7/14              | 3.83         | 1295.53            |
|       |       |         |        |                     | 4/29/14             | NS           | NC                 |
|       |       |         |        |                     | 3/25/15             | 2.78         | 1296.58            |
|       |       |         |        |                     | 6/25/15             | 3.30         | 1296.06            |
|       |       |         |        |                     | 8/26/15             | 4.50         | 1294.86            |
|       |       |         |        |                     | 11/12/15<br>12/9/15 | NS<br>3.92   | NS<br>1295.44      |
|       |       |         |        |                     | 1/14/16             | 3.92<br>4.11 | 1295.44            |
|       |       |         |        |                     | 3/30/16             | 3.66         | 1295.20            |
|       |       |         |        |                     | 6/23/16*            | 4.24         | 1295.12            |
|       |       |         |        |                     | 9/21/16             | 6.32         | 1293.04            |
|       |       |         |        |                     | 12/8/16             | 4.06         | 1295.30            |
| MW-5R |       |         |        |                     | 2/24/17             | 3.77         | 1295.59            |
| MW-6  | 15.30 | 3-15.3  | -0.51  | 1301.21             | 5/8/12              | 5.74         | 1295.47            |
| (2)   |       |         |        |                     | 6/17/12             | 7.98         | 1293.23            |
|       |       |         |        |                     | 5/14/13             | 6.08         | 1295.13            |
|       |       |         |        |                     | 11/8/13             | AB           | AB                 |
| MW-7  | 14.99 | 5-14.99 | -0.57  | 1298.58             | 11/8/13             | 12.48        | 1286.10            |
|       |       |         |        |                     | 12/11/13            | 12.59        | 1285.99            |
|       |       |         |        |                     | 2/4/14              | NS           | NC                 |
|       |       |         |        |                     | 3/7/14              | NS           | NC                 |
|       |       |         |        |                     | 4/29/14             | NS           | NC                 |
|       |       |         |        |                     | 6/12/14             | 7.73         | 1290.85            |
|       |       |         |        |                     | 9/17/14<br>12/3/14  | 9.19<br>9.16 | 1289.39<br>1289.42 |
|       |       |         |        |                     | 3/25/15             | 9.10<br>6.60 | 1209.42            |
|       |       |         |        |                     | 6/25/15             | 7.07         | 1291.50            |
|       |       |         |        |                     | 8/26/15             | 9.27         | 1289.31            |
|       |       |         |        |                     | 11/12/15            | NS           | NS                 |
|       |       |         |        |                     | 12/9/15             | 7.82         | 1290.76            |
|       |       |         |        |                     | 1/14/16             | 5.99         | 1292.59            |
|       |       |         |        |                     | 3/30/16             | 7.25         | 1291.33            |
|       |       |         |        |                     | 6/23/16*            | 8.14         | 1290.44            |
|       |       |         |        |                     | 9/21/16             | 11.07        | 1287.51            |
|       |       |         |        |                     | 12/8/16             | 10.90        | 1287.68            |
|       |       |         |        |                     | 2/24/17             | 7.91         | 1290.67            |
| MW-8  | 14.62 | 4-14.62 | -0.39  | 1295.27             | 11/8/13             | 6.24         | 1289.03            |
|       |       |         |        |                     | 12/11/13            | 3.14         | 1292.13            |
|       |       |         |        |                     | 2/4/14              | 3.52         | 1291.75            |
|       |       |         |        |                     | 3/7/14<br>4/29/14   | 3.05<br>NS   | 1292.22<br>NC      |
|       |       |         |        |                     | 4/29/14<br>6/12/14  | 2.80         | NC<br>1292.47      |
|       |       |         |        |                     | 6/12/14<br>9/17/14  | 2.80<br>3.06 | 1292.47            |
|       |       |         |        |                     | 9/17/14<br>12/3/14  | 3.00<br>1.68 | 1292.21            |
|       |       |         |        |                     | 3/25/15             | 2.67         | 1293.59            |
|       |       |         |        |                     | 6/25/15             | 2.43         | 1292.84            |
|       |       |         |        |                     | 8/26/15             | 3.22         | 1292.05            |
|       |       |         |        |                     | 11/12/15            | NS           | NS                 |
|       |       |         |        |                     | 12/9/15             | 2.46         | 1292.81            |
|       |       |         |        |                     | 1/14/16             | 2.02         | 1293.25            |
|       |       |         |        |                     | 3/30/16             | 2.24         | 1293.03            |
|       |       |         |        |                     | 6/23/16*            | 3.79         | 1291.48            |
|       |       |         |        |                     | 9/21/16             | 4.45         | 1290.82            |
|       |       |         |        |                     | 12/8/16             | 2.35         | 1292.92            |
|       |       |         |        |                     | 2/24/17             | 0.65         | 1294.62            |

|       | TABLE 1<br>GROUNDWATER ELEVATION DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |           |       |         |                     |              |                    |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------|---------|---------------------|--------------|--------------------|--|--|--|--|--|
| WELL  | TWD                                                                                                                         | SI        | TOCG  | тос     | DATE                | DTW          | GW ELEV            |  |  |  |  |  |
| MW-9  | 14.65                                                                                                                       | 4-14.62   | -0.37 | 1293.91 | 11/8/13             | 3.96         | 1289.95            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/11/13            | 1.14         | 1292.77            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 2/4/14              | 1.82         | 1292.09            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/7/14              | 1.12         | 1292.79            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 4/29/14<br>6/12/14  | NS<br>1.43   | NC<br>1292.48      |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 0/12/14<br>9/17/14  | 1.43         | 1292.40            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/3/14             | 0.81         | 1293.10            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/25/15             | 0.40         | 1293.51            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 6/25/15             | 0.62         | 1293.29            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 8/26/15             | 1.23         | 1292.68            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 11/12/15            | 0.08         | 1293.83            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/9/15<br>1/14/16  | 0.50<br>0.20 | 1293.41<br>1293.71 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 1/21/16             | 0.20         | 1293.01            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/30/16             | 0.85         | 1293.06            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 6/23/16*            | 2.54         | 1291.37            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 9/21/16             | 2.96         | 1290.95            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/8/16             | 1.78         | 1292.13            |  |  |  |  |  |
|       | 44.05                                                                                                                       | 5 4 4 9 5 | 0.44  | 4007.04 | 2/24/17             | 0.00         | 1293.91            |  |  |  |  |  |
| MW-10 | 14.25                                                                                                                       | 5-14.25   | -0.41 | 1297.61 | 11/8/13<br>12/11/13 | NI<br>NI     | NC<br>NC           |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 2/4/14              | 3.13         | 1294.48            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/7/14              | 2.72         | 1294.89            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 4/29/14             | NS           | NC                 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 6/12/14             | 3.04         | 1294.57            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 9/17/14             | 3.84         | 1293.77            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/3/14             | 2.14         | 1295.47            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/25/15<br>6/26/15  | 2.09<br>2.60 | 1295.52<br>1295.01 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 8/27/15             | 2.00<br>3.46 | 1293.01            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 11/12/15            | NS           | NS                 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/9/15             | 2.83         | 1294.78            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 1/14/16             | 2.33         | 1295.28            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/30/16             | 2.52         | 1295.09            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 6/23/16*            | 3.81         | 1293.80            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 9/21/16<br>12/8/16  | 4.00<br>2.80 | 1293.61<br>1294.81 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 2/24/17             | 2.42         | 1295.19            |  |  |  |  |  |
| MW-11 | 14.73                                                                                                                       | 5-14.73   | -0.25 | 1298.35 | 11/8/13             | NI           | NC                 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/11/13            | NI           | NC                 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 2/4/14              | 3.68         | 1294.67            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/7/14              | 3.22         | 1295.13            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 4/29/14<br>6/12/14  | NS<br>3.47   | NC<br>1294.88      |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 9/17/14             | 3.47<br>4.01 | 1294.88            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/3/14             | 3.16         | 1295.19            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/25/15             | 4.00         | 1294.35            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 6/26/15             | 2.83         | 1295.52            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 8/27/15             | 4.44         | 1293.91            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 11/12/15            | NS<br>2.52   | NS                 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/9/15<br>1/14/16  | 2.52<br>2.11 | 1295.83<br>1296.24 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 3/30/16             | 2.11<br>2.94 | 1296.24<br>1295.41 |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 6/23/16*            | 2.94<br>4.50 | 1293.85            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 9/21/16             | 6.14         | 1292.21            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 12/8/16             | 3.89         | 1294.46            |  |  |  |  |  |
|       |                                                                                                                             |           |       |         | 2/24/17             | 2.60         | 1295.75            |  |  |  |  |  |

|          |       | GROL<br>FORMER R | JNDWATE<br>OSEMERG<br>1623 R<br>HAW | BLE 1<br>R ELEVATIONYS CONVE<br>OUTE 590<br>/LEY, PA<br>7788-03 |                     | RE             |                    |
|----------|-------|------------------|-------------------------------------|-----------------------------------------------------------------|---------------------|----------------|--------------------|
| WELL     | TWD   | SI               | TOCG                                | тос                                                             | DATE                | DTW            | GW ELEV            |
| MW-12    | 14.65 | 4-14.65          | -0.81                               | 1297.44                                                         | 11/8/13             | 9.40           | 1288.04            |
|          |       |                  |                                     |                                                                 | 12/11/13            | 5.46           | 1291.98            |
|          |       |                  |                                     |                                                                 | 2/4/14              | 5.55           | 1291.89            |
|          |       |                  |                                     |                                                                 | 3/7/14              | 5.18           | 1292.26            |
|          |       |                  |                                     |                                                                 | 4/29/14             | NS             | NC                 |
|          |       |                  |                                     |                                                                 | 6/12/14             | 4.93           | 1292.51            |
|          |       |                  |                                     |                                                                 | 9/17/14             | 5.44           | 1292.00            |
|          |       |                  |                                     |                                                                 | 12/3/14             | 3.72           | 1293.72            |
|          |       |                  |                                     |                                                                 | 3/25/15<br>6/25/15  | 3.80<br>3.70   | 1293.64<br>1293.74 |
|          |       |                  |                                     |                                                                 | 8/26/15             | 5.20           | 1293.74            |
|          |       |                  |                                     |                                                                 | 11/12/15            | NS             | NS                 |
|          |       |                  |                                     |                                                                 | 12/9/15             | 4.23           | 1293.21            |
|          |       |                  |                                     |                                                                 | 1/14/16             | 3.66           | 1293.78            |
|          |       |                  |                                     |                                                                 | 3/30/16             | 4.09           | 1293.35            |
|          |       |                  |                                     |                                                                 | 6/23/16*            | 5.35           | 1292.09            |
|          |       |                  |                                     |                                                                 | 9/21/16             | 6.14           | 1291.30            |
|          |       |                  |                                     |                                                                 | 12/8/16             | 4.66           | 1292.78            |
| MW-13    | 14.93 | 5.75-14.93       | -0.2                                | 1303.84                                                         | 2/24/17<br>11/8/13  | 3.95           | 1293.49            |
| 10100-13 | 14.95 | 5.75-14.95       | -0.2                                | 1303.04                                                         | 12/11/13            |                |                    |
|          |       |                  |                                     |                                                                 | 2/4/14              | ١              | WNI                |
|          |       |                  |                                     |                                                                 | 3/7/14              |                |                    |
|          |       |                  |                                     |                                                                 | 4/29/14             | 11.53          | 1292.31            |
|          |       |                  |                                     |                                                                 | 6/12/14             | 12.64          | 1291.20            |
|          |       |                  |                                     |                                                                 | 9/17/14             | 11.34          | 1292.50            |
|          |       |                  |                                     |                                                                 | 12/3/14             | 13.77          | 1290.07            |
|          |       |                  |                                     |                                                                 | 3/25/15             | DRY            | DRY                |
|          |       |                  |                                     |                                                                 | 6/25/15             | 11.74          | 1292.10            |
|          |       |                  |                                     |                                                                 | 8/26/15             | 15.65<br>NS    | 1288.19<br>NS      |
|          |       |                  |                                     |                                                                 | 11/12/15<br>12/9/15 | 12.72          | 1291.12            |
|          |       |                  |                                     |                                                                 | 1/14/16             | 10.69          | 1291.12            |
|          |       |                  |                                     |                                                                 | 3/30/16             | 12.08          | 1291.76            |
|          |       |                  |                                     |                                                                 | 6/23/16*            | 13.29          | 1290.55            |
|          |       |                  |                                     |                                                                 | 9/21/16             | DRY            | DRY                |
|          |       |                  |                                     |                                                                 | 12/8/16             | DRY            | DRY                |
|          |       |                  |                                     |                                                                 | 2/24/17             | 10.23          | 1293.61            |
| MW-14    | 18.65 | 5-18.65          | -0.3                                | 1304.54                                                         | 11/8/13             |                |                    |
|          |       |                  |                                     |                                                                 | 12/11/13<br>2/4/14  | ١              | WNI                |
|          |       |                  |                                     |                                                                 | 2/4/14<br>3/7/14    |                |                    |
|          |       |                  |                                     |                                                                 | 3/7/14<br>4/29/14   | 11.37          | 1293.17            |
|          |       |                  |                                     |                                                                 | 6/12/14             | 12.73          | 1291.81            |
|          |       |                  |                                     |                                                                 | 9/17/14             | 14.52          | 1290.02            |
|          |       |                  |                                     |                                                                 | 12/3/14             | 13.94          | 1290.60            |
|          |       |                  |                                     |                                                                 | 3/25/15             | 11.69          | 1292.85            |
|          |       |                  |                                     |                                                                 | 6/25/15             | 12.08          | 1292.46            |
|          |       |                  |                                     |                                                                 | 8/26/15             | 14.80          | 1289.74            |
|          |       |                  |                                     |                                                                 | 11/12/15            | NS             | NS                 |
|          |       |                  |                                     |                                                                 | 12/9/15             | 13.30          | 1291.24            |
|          |       |                  |                                     |                                                                 | 1/14/16             | 10.91          | 1293.63            |
|          |       |                  |                                     |                                                                 | 3/30/16<br>6/23/16* | 11.55          | 1292.99<br>1201.21 |
|          |       |                  |                                     |                                                                 | 6/23/16*<br>9/21/16 | 13.33<br>16.61 | 1291.21<br>1287.93 |
|          |       |                  |                                     |                                                                 | 9/21/16<br>12/8/16  | 10.38          | 1287.93            |
|          |       |                  |                                     |                                                                 | 2/24/17             | 10.30          | 1294.10            |

| GROUNDWATER ELEVATION DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |       |         |       |         |                     |              |                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-------|---------|-------|---------|---------------------|--------------|----------------|--|--|--|--|--|
| WELL                                                                                                             | TWD   | SI      | TOCG  | тос     | DATE                | DTW          | GW EL          |  |  |  |  |  |
| MW-15                                                                                                            | 14.86 | 5-14.86 | -0.3  | 1301.14 | 11/8/13             |              |                |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/11/13            | ,            | WNI            |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 2/4/14              |              | VVINI          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 3/7/14              |              | 1              |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 4/29/14             | 6.45         | 1294           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/12/14             | 8.41         | 1292           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 9/17/14             | 9.73         | 1291           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/3/14<br>3/25/15  | 9.34<br>7.37 | 1291.<br>1293. |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/25/15             | 7.68         | 1293           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 8/26/15             | 9.88         | 1291           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 11/12/15            | NS           | NS             |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/9/15             | 8.61         | 1292.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/14/16             | 7.20         | 1293.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/21/16             | 7.34         | 1293.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 3/30/16             | 8.04         | 1293.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/23/16*            | 7.10         | 1294.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 9/21/16             | 11.57        | 1289.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/8/16             | 10.91        | 1290.          |  |  |  |  |  |
|                                                                                                                  | 14.00 | E 11 CO | 0.2   | 1005.04 | 2/24/17             | 7.30         | 1293.          |  |  |  |  |  |
| MW-16                                                                                                            | 14.69 | 5-14.69 | -0.3  | 1295.24 | 11/8/13<br>12/11/13 |              |                |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 2/4/14              |              | WNI            |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 3/7/14              |              |                |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 4/29/14             | 0.71         | 1294.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/12/14             | 1.47         | 1293.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 9/17/14             | 2.52         | 1292.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/3/14             | 0.10         | 1295           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 3/25/15             | NS           | NS             |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/25/15             | 0.82         | 1294.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 8/26/15             | 1.64         | 1293           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 11/12/15            | NS           | NS             |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/9/15             | 0.75         | 1294           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/14/16<br>1/21/16  | 0.40<br>0.80 | 1294.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/21/16<br>3/30/16  | 0.80<br>0.50 | 1294.<br>1294. |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/23/16*            | 0.50<br>2.50 | 1294.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 9/21/16             | 4.13         | 1291.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/8/16             | 0.95         | 1294.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 2/24/17             | 0.40         | 1294.          |  |  |  |  |  |
| MW-17                                                                                                            | 15.00 | 3-15    | -0.24 | 1296.68 | 11/12/15            | 8.34         | 1288.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/9/15             | 5.72         | 1290.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/14/16             | 4.85         | 1291.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/21/16             | 5.01         | 1291.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 3/30/16             | 5.44         | 1291.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/23/16*<br>9/21/16 | 6.38<br>8.58 | 1290.<br>1288. |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 9/21/16<br>12/8/16  | 8.58<br>7.15 | 1288.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 2/24/17             | 4.91         | 1209.          |  |  |  |  |  |
| MW-18                                                                                                            | 17.95 | 3-18    | -0.31 | 1300.38 | 11/12/15            | 12.19        | 1288           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/9/15             | 11.09        | 1289           |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/14/16             | 9.15         | 1291.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 1/21/16             | 10.65        | 1289.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 3/30/16             | 10.38        | 1290.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 6/23/16*            | 11.60        | 1288.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 9/21/16             | 14.45        | 1285.          |  |  |  |  |  |
|                                                                                                                  |       |         |       |         | 12/8/16             | 13.98        | 1286.          |  |  |  |  |  |
|                                                                                                                  |       | 1       |       | 1       | 2/24/17             | 9.89         | 1290.          |  |  |  |  |  |

|       | F     |      | UNDWATE<br>OSEMERG<br>1623 R<br>HAW | ABLE 1<br>R ELEVATI<br>SY'S CONVE<br>COUTE 590<br>/LEY, PA<br>7788-03 | ON DATA<br>ENIENT STO | RE    |         |
|-------|-------|------|-------------------------------------|-----------------------------------------------------------------------|-----------------------|-------|---------|
| WELL  | TWD   | SI   | TOCG                                | TOC                                                                   | DATE                  | DTW   | GW ELEV |
| MW-19 | 16.56 | 2-17 | -0.47                               | 1301.68                                                               | 11/12/15              | 13.32 | 1288.36 |
|       |       |      |                                     |                                                                       | 12/9/15               | 12.22 | 1289.46 |
|       |       |      |                                     |                                                                       | 1/14/16               | NM    | NM      |
|       |       |      |                                     |                                                                       | 1/21/16               | 11.44 | 1290.24 |
|       |       |      |                                     |                                                                       | 3/30/16               | 11.98 | 1289.70 |
|       |       |      |                                     |                                                                       | 6/23/16*              | 14.02 | 1287.66 |
|       |       |      |                                     |                                                                       | 9/21/16               | DRY   | DRY     |
|       |       |      |                                     |                                                                       | 12/8/16               | DRY   | DRY     |
|       |       |      |                                     |                                                                       | 2/24/17               | 10.95 | 1290.73 |
| MW-20 | 14.47 | 3-15 | -0.26                               | 1294.17                                                               | 11/12/15              | 1.01  | 1293.16 |
|       |       |      |                                     |                                                                       | 12/9/15               | 1.42  | 1292.75 |
|       |       |      |                                     |                                                                       | 1/14/16               | 1.31  | 1292.86 |
|       |       |      |                                     |                                                                       | 1/21/16               | 1.01  | 1293.16 |
|       |       |      |                                     |                                                                       | 3/30/16               | 1.59  | 1292.58 |
|       |       |      |                                     |                                                                       | 6/23/16*              | 2.80  | 1291.37 |
|       |       |      |                                     |                                                                       | 9/21/16               | 4.82  | 1289.35 |
|       |       |      |                                     |                                                                       | 12/8/16               | 1.26  | 1292.91 |
|       |       |      |                                     |                                                                       | 2/24/17               | 1.00  | 1293.17 |
| MW-21 | 15.00 | 3-15 | -0.29                               | 1293.09                                                               | 11/12/15              | 1.04  | 1292.05 |
|       |       |      |                                     |                                                                       | 12/9/15               | 1.59  | 1291.50 |
|       |       |      |                                     |                                                                       | 1/14/16               | 2.12  | 1290.97 |
|       |       |      |                                     |                                                                       | 1/21/16               | 1.66  | 1291.43 |
|       |       |      |                                     |                                                                       | 3/30/16               | 1.24  | 1291.85 |
|       |       |      |                                     |                                                                       | 6/23/16*              | 3.48  | 1289.61 |
|       |       |      |                                     |                                                                       | 9/21/16               | 5.45  | 1287.64 |
|       |       |      |                                     |                                                                       | 12/8/16               | 1.48  | 1291.61 |
|       |       |      |                                     |                                                                       | 2/24/17               | 1.03  | 1292.06 |
| MW-22 | 14.90 | 3-15 | -0.44                               | 1291.48                                                               | 11/12/15              | 0.25  | 1291.23 |
|       |       |      |                                     |                                                                       | 12/9/15               | 0.79  | 1290.69 |
|       |       |      |                                     |                                                                       | 1/14/16               | 1.15  | 1290.33 |
|       |       |      |                                     |                                                                       | 1/21/16               | 0.82  | 1290.66 |
|       |       |      |                                     |                                                                       | 3/30/16               | 0.73  | 1290.75 |
|       |       |      |                                     |                                                                       | 6/23/16*              | 2.96  | 1288.52 |
|       |       |      |                                     |                                                                       | 9/21/16               | 6.22  | 1285.26 |
|       |       |      |                                     |                                                                       | 12/8/16               | 1.00  | 1290.48 |
|       |       |      |                                     |                                                                       | 2/24/17               | 0.35  | 1291.13 |

(2) = Diameter of Well Casing in Inches. TWD = Total Well Depth in feet below grade. SI = Screened Interval in feet below grade. TOCG = Top of Well Casing relative to Grade.

+ = Approximate feet above grade.

- = Approximate feet below grade.

DTW = Measured Depth to Groundwater from TOC.

GW ELEV = Calculated Groundwater Elevation.

NM = Well not measured. NA = Not Applicable.

IA = Inaccessible.

NS = Not Sampled.

TOC = Top of Well Casing. NI = Not Installed

AB = Abandoned or Destroyed

\*= See chain on custody for specific well dates

|                         |                     |        |        |               | -            |        |               |         |         |              |                |         |         |             |         |           |         |         |         |
|-------------------------|---------------------|--------|--------|---------------|--------------|--------|---------------|---------|---------|--------------|----------------|---------|---------|-------------|---------|-----------|---------|---------|---------|
|                         | Statewide<br>Health |        |        |               |              |        |               |         |         |              |                |         |         |             |         |           |         |         |         |
| Sample ID (Depth)       | Standards           | MW-1   | MW-1   | MW-1          | MW-1         | MW-1   | MW-1          | MW-1    | MW-1    | MW-1         | MW-1           | MW-1    | MW-1    | MW-1        | MW-1    | MW-1      | MW-1    | MW-1R   | MW-1R   |
|                         | Residential         |        |        |               |              |        |               |         |         |              |                |         |         |             |         |           |         |         |         |
| Sampling Date           | Groundwater         | 5/8/12 | 6/7/12 | 11/8/13       | 12/11/13     | 2/4/14 | 3/7/14        | 6/12/14 | 9/17/14 | 12/3/14      | 3/25/15        | 6/25/15 | 8/26/15 | 12/9/15     | 3/31/16 | 6/23/16   | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers       | Water  | Water  | Water         | Water        | Water  | Water         | Water   | Water   | Water        | Water          | Water   | Water   | Water       | Water   | Water     | Water   | Water   | Water   |
| Units                   | <2,500 TDS          | (ug/L) | (ug/L) | (ug/L)        | (ug/L)       | (ug/L) | (ug/L)        | (ug/L)  | (ug/L)  | (ug/L)       | (ug/L)         | (ug/L)  | (ug/L)  | (ug/L)      | (ug/L)  | (ug/L)    | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COMPO  | UNDS                |        |        |               |              |        |               |         |         |              |                |         |         |             |         |           |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | 1,030  | 736    | 310/646       | 643/625      | NS     | 618/662       | 365     | 389     | 792/594      | 279/294        | 265     | 300     | 270/297     | <50     | 54/59.5   | <50     | <10     | 140     |
| 1,2,4-Trimethylbenzene  | 15                  | 2,310  | 2,580  | 978/1,020     | 2,100/2,050  | NS     | 1,900/2,100   | 1,300   | 1,490   | 3,040/1,700  | 981/997        | 996     | 1,150   | 1,060/1,090 | <50     | 198/218   | <50     | <10     | 467     |
| Benzene                 | 5                   | 3,930  | 5,680  | 6,410/,6620   | 7,400/7,610  | NS     | 7,740/8,210   | 7,170   | 6,330   | 6290/8,530   | 4,500/4,600    | 4,230   | 6,250   | 3,480/4,130 | 85      | 1810/1780 | <50     | <10     | 4510    |
| Toluene                 | 1,000               | 13,600 | 10,900 | 15,700/16,100 | 9,960/10,000 | NS     | 12,900/14,500 | 10,200  | 5,860   | 7,980/13,900 | 5,620/5,830    | 4,490   | 6,030   | 6,820/6,910 | 94      | 1850/1860 | <50     | <10     | 2400    |
| Ethylbenzene            | 700                 | 2,450  | 2,720  | 1,540/1,580   | 2,380/2,350  | NS     | 2,710/2,760   | 1,770   | 2,480   | 4,530/2,740  | 1,650/1,650    | 1,390   | 1,700   | 1,180/1,310 | <50     | 333/368   | <50     | <10     | 806     |
| Xylenes (total)         | 10,000              | 11,800 | 12,200 | 8,980/9,060   | 5,550/5,390  | NS     | 14,000/14,400 | 8640    | 11,000  | 8,300/14,200 | 9,130/9,150    | 7,170   | 8,930   | 7380/8,110  | <100    | 1810/1960 | <100    | <20     | 2960    |
| Isopropylbenzene        | 840                 | 1,210  | 395    | 111/405       | 387/386      | NS     | 336/364       | 213     | 233     | 482/394      | 158/158        | 152     | 175     | 118/138     | <50     | <50       | <50     | <10     | 98      |
| Methyl tert-butyl ether | 20                  | 69     | <50    | 195/269       | 162/166      | NS     | <100/<100     | 82      | <100    | 1            | <50/<50        | <50     | <50     | <50/5.8     | <50     | <50       | <50     | <10     | 65      |
| Naphthalene             | 100                 | 881    | 276    | 265/693       | 424/450      | NS     | 194/209       | 254     | 319     | 652/696      | <b>107/</b> 99 | 239     | 252     | 322/313     | <50     | 75/83.5   | <50     | <10     | 156     |

| Sample ID (Depth)       | Statewide<br>Health<br>Standards | MW-2    | MW-2    | MW-2    | MW-2     | MW-2   | MW-2    | MW-2    | MW-2            | MW-2    | MW-2    | MW-2    | MW-2    | MW-2    | MW-2    | MW-2    | MW-2    | MW-2    | MW-2    |
|-------------------------|----------------------------------|---------|---------|---------|----------|--------|---------|---------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                         | Residential                      | 10100-2 | 10100-2 | 10100-2 | 10100-2  |        | 10100-2 | 10100-2 | 10100-2         | 10100-2 | 10100-2 | 10100-2 | 10100-2 | 10100-2 | 10100-2 | 10100-2 | 10100-2 | 10100-2 | 10100-2 |
| Sampling Date           | Groundwater                      | 5/8/12  | 6/17/12 | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14  | 6/12/14 | 9/17/14         | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 12/9/15 | 3/31/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers                    | Water   | Water   | Water   | Water    | Water  | Water   | Water   | Water           | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS                       | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)          | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COMPOU | UNDS                             |         |         |         |          |        |         |         |                 |         |         |         |         |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                               | 635     | 687     | 406     | 406      | NS     | 255     | NS      | 112/195         | 201     | <5      | <5      | 49.5    | 15      | 146     | 36      | 251     | 234     | 37/34   |
| 1,2,4-Trimethylbenzene  | 15                               | 1,820   | 1,940   | 1,200   | 1,110    | NS     | 612     | NS      | 279/585         | 721     | 16      | 29      | 244     | 116     | 458     | 291     | 809     | 963     | 170/164 |
| Benzene                 | 5                                | 791     | 272     | 273     | 164      | NS     | 115     | NS      | 50/1,040        | 1,320   | 23      | 42      | 310     | 78      | 886     | 399     | 876     | 529     | 32/21   |
| Toluene                 | 1,000                            | 1,520   | 1,460   | 958     | 514      | NS     | 298     | NS      | 3090/3,83       | 5,720   | 16      | 44      | 1,130   | 127     | 3,790   | 1,110   | 4520    | 3100    | 60/53   |
| Ethylbenzene            | 700                              | 765     | 752     | 828     | 634      | NS     | 391     | NS      | 424/ <b>831</b> | 1,330   | 18      | 38      | 337     | 107     | 690     | 382     | 1120    | 1170    | 110/104 |
| Xylenes (total)         | 10,000                           | 4,060   | 3,470   | 1,380   | 875      | NS     | 586     | NS      | 1070/2,110      | 3,060   | 30      | 50      | 868     | 120     | 1910    | 715     | 3300    | 3070    | 196/181 |
| Isopropylbenzene        | 840                              | 1,020   | 246     | 3,227   | 255      | NS     | 153     | NS      | 97.1/190        | 187     | <5      | 9.4     | 59      | 33      | 113     | <5      | 210     | 188     | 37/32   |
| Methyl tert-butyl ether | 20                               | 32.6    | <20     | <50     | <10      | NS     | <10     | NS      | <10/27.7        | 32.7    | <5      | <5      | <5      | <5      | <5      | <5      | <5      | <10     | <10/<5  |
| Naphthalene             | 100                              | 898     | 145     | 240     | 265      | NS     | 160     | NS      | 159/344         | 235     | 15      | 31      | 46      | 37      | 146     | 55      | 266     | 232     | 27/24   |

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

WD - Well Destroyed

# TABLE 2 GROUNDWATER ANALYTICAL DATA FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

# TABLE 2 (Continued) GROUNDWATER ANALYTICAL DATA FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

|                         |                                  |        |         |         |          |        |        | 11      | 1-17788-0 | 3       |         |         |         |          |         |         |         |         |         |         |
|-------------------------|----------------------------------|--------|---------|---------|----------|--------|--------|---------|-----------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Statewide<br>Health<br>Standards | MW-3   | MW-3    | MW-3    | MW-3     | MW-3   | MW-3   | MW-3    | MW-3      | MW-3    | MW-3    | MW-3    | MW-3    | MW-3     | MW-3    | MW-3    | MW-3    | MW-3    | MW-3    | MW-3    |
| Sampling Date           | Groundwater                      | 5/8/12 | 6/17/12 | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14 | 6/12/14 | 9/17/14   | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 11/13/15 | 12/9/15 | 3/31/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | <b>Used Aquifers</b>             | Water  | Water   | Water   | Water    | Water  | Water  | Water   | Water     | Water   | Water   | Water   | Water   | Water    | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS                       | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L) | (ug/L) | (ug/L)  | (ug/L)    | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COMPO  | UNDS                             |        |         |         |          |        |        |         |           |         |         |         |         |          |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                               | <10    | <10     | <5      | <2       | NS     | NS     | <10     | 22.4      | <10     | <5      | <1      | 3.4     | 1.5      | <1      | 3.7     | <1      | <1      | <1      | 3.3     |
| 1,2,4-Trimethylbenzene  | 15                               | <10    | <10     | 5.2     | <2       | NS     | NS     | 38.5    | 87.1      | 10      | <5      | <1      | 13      | 6.1      | 1.8     | 13      | <1      | <1      | <1      | 32      |
| Benzene                 | 5                                | 273    | 236     | 91      | 88       | NS     | NS     | 788     | 476       | 318     | 2.4     | <1      | 207     | 82.4     | <1      | 189     | 3.5     | <1      | <1      | 50      |
| Toluene                 | 1,000                            | 86     | <10     | <5      | <2       | NS     | NS     | 62.8    | 109       | <10     | <5      | <1      | 12      | 13       | <1      | 54      | 3.3     | <1      | <1      | 6.5     |
| Ethylbenzene            | 700                              | 12     | <10     | <5      | 3.2      | NS     | NS     | 56.8    | 145       | 11      | <5      | <1      | 15      | 20       | 1.1     | 43      | 1.5     | <1      | <1      | 43      |
| Xylenes (total)         | 10,000                           | 49     | <20     | <10     | 7.2      | NS     | NS     | 122     | 541       | <20     | <10     | <2      | 39      | 28       | <2      | 62      | 4.2     | <2      | <2      | 38      |
| Isopropylbenzene        | 840                              | <10    | 11      | 13      | 6.9      | NS     | NS     | 44      | 50        | 18      | <5      | <1      | 35      | 11       | <1      | 28      | <1      | <1      | <1      | 16      |
| Methyl tert-butyl ether | 20                               | 768    | 684     | 375     | 348      | NS     | NS     | 1,180   | 1,190     | 2,560   | 30.9    | <1      | 636     | 419      | <1      | 397     | <1      | <1      | <1      | 38      |
| Naphthalene             | 100                              | <10    | <10     | <5      | 2.5      | NS     | NS     | <10     | 26        | 18      | <5      | <1      | 4.7     | 1.6      | <1      | 4.3     | <1      | <1      | <1      | 3.9     |

|                         | Statewide<br>Health  |        |         |         |          |        |        |         |         |         |         |         |         |          |         |         |         |         |         |         |
|-------------------------|----------------------|--------|---------|---------|----------|--------|--------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards            | MW-4   | MW-4    | MW-4    | MW-4     | MW-4   | MW-4   | MW-4    | MW-4    | MW-4    | MW-4    | MW-4    | MW-4    | MW-4     | MW-4    | MW-4    | MW-4    | MW-4    | MW-4    | MW-4    |
| Sampling Date           | Groundwater          | 5/8/12 | 6/17/12 | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 11/13/15 | 12/9/15 | 3/31/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | <b>Used Aquifers</b> | Water  | Water   | Water   | Water    | Water  | Water  | Water   | Water   | Water   | Water   | Water   | Water   | Water    | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS           | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COMPO  | UNDS                 |        |         |         |          |        |        |         |         |         |         |         |         |          |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                   | 594    | 590     | 736     | NS       | NS     | NS     | 358     | 128     | 5.15    | 1.2     | 1.9     | 131     | 8.2      | 55      | 58      | 24      | 47      | <5      | <5      |
| 1,2,4-Trimethylbenzene  | 15                   | 1,400  | 2,210   | 2,000   | NS       | NS     | NS     | 1,250   | 445     | 14.1    | 2.0     | 4.9     | 473     | 20.1     | 175     | 214     | 62.7    | 119     | <5      | <5      |
| Benzene                 | 5                    | 4,120  | 2,460   | 3,040   | NS       | NS     | NS     | 301     | 225     | 2,130   | 6.6     | 4.3     | 75      | 7.3      | 36      | 25      | 95      | 142     | <5      | <5      |
| Toluene                 | 1,000                | 19,700 | 9,210   | 2,860   | NS       | NS     | NS     | 2,060   | 864     | 66      | 10      | 11      | 304     | 15       | 148     | 150     | 181     | 248     | <5      | <5      |
| Ethylbenzene            | 700                  | 1,420  | 2,000   | 2,290   | NS       | NS     | NS     | 1,050   | 452     | 87      | 2.9     | 4.2     | 390     | 8.4      | 139     | 207     | 92      | 127     | <5      | <5      |
| Xylenes (total)         | 10,000               | 9,440  | 10,400  | 5,540   | NS       | NS     | NS     | 4,720   | 2,070   | 62      | 13      | 21      | 1,650   | 41       | 623     | 870     | 301     | 515     | <10     | <10     |
| Isopropylbenzene        | 840                  | 728    | 228     | 433     | NS       | NS     | NS     | 178     | 66      | 44      | <1      | <1      | 88.4    | 2.4      | 22      | 33      | 12      | 21      | <5      | <5      |
| Methyl tert-butyl ether | 20                   | 15     | <50     | 56.9    | NS       | NS     | NS     | <20     | <20     | 11      | <1      | <1      | <1      | <1       | <5      | <5      | <2      | <5      | <5      | <5      |
| Naphthalene             | 100                  | 1,090  | 244     | 604     | NS       | NS     | NS     | 205     | 74      | 20      | <1      | <1      | 94      | 1.9      | 18      | 32      | 14      | 21      | <5      | <5      |

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

# TABLE 2 (Continued)

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |        | R ROSEME |        | TICAL DATA<br>IVENIENT S<br>90<br>HAWLE<br>11-177 | TORE<br>Y, PA |               |        |        |               |        |        |        |        |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|----------|--------|---------------------------------------------------|---------------|---------------|--------|--------|---------------|--------|--------|--------|--------|
| Sample ID (Depth)       | pling Date Groundwater 5/8/12 6/17/12 11/8/13 12/11/13 2/4/14 3/7/14 6/12/14 3/25/15 6/25/15 8/26/15 12/9/15 3/31/16 6/23/16 9/21/16 12/8/16 2/24/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |        |          |        |                                                   |               |               |        |        |               |        |        | MW-5   |        |
| Sampling Date           | mple ID (Depth)         Standards         MW-5         MW-5         MW-5         MW-5         MW-5R         MW-5R |        |        |        |        |          |        |                                                   |               |               |        |        |               |        |        |        |        |
| Matrix                  | <b>Used Aquifers</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water  | Water  | Water  | Water  | Water    | Water  | Water                                             | Water         | Water         | Water  | Water  | Water         | Water  | Water  | Water  | Water  |
| Units                   | <2,500 TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L)   | (ug/L) | (ug/L)                                            | (ug/L)        | (ug/L)        | (ug/L) | (ug/L) | (ug/L)        | (ug/L) | (ug/L) | (ug/L) | (ug/L) |
| VOLATILE ORGANIC COM    | IPOUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |          |        |                                                   |               |               |        |        |               |        |        |        |        |
| 1,3,5-Trimethylbenzene  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155    | 15     | <10    | <2     | NS       | <2     | WD                                                | 437           | 388/370       | 430    | 434    | 355/347       | 378    | 415    | 562    | 433    |
| 1,2,4-Trimethylbenzene  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 427    | 36     | 14     | <2     | NS       | <2     | WD                                                | 1,680         | 1,510/2,460   | 1,670  | 1,700  | 1,360/1,320   | 1,470  | 1,790  | 2,260  | 1,700  |
| Benzene                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14     | 4.3    | 90     | 2.4    | NS       | <2     | WD                                                | 3,960         | 5,450/11,200  | 6,210  | 4,690  | 4,790/4,670   | 445    | 4,610  | 4,120  | 2,270  |
| Toluene                 | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116    | 14     | <10    | <2     | NS       | <2     | WD                                                | 13,600        | 16,600/33,700 | 17,500 | 18,200 | 14,100/12,000 | 450    | 13,000 | 9,530  | 4,200  |
| Ethylbenzene            | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107    | 15     | 81     | <2     | NS       | <2     | WD                                                | 2,740         | 2,430/4,420   | 3,110  | 2,500  | 2,350/2,300   | 1,980  | 2,680  | 2,570  | 2,710  |
| Xylenes (total)         | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 403    | 39     | <20    | <4     | NS       | <4     | WD                                                | 9,460         | 10,900/20,800 | 14,100 | 12,200 | 10,300/10,100 | 6,440  | 12,400 | 11,500 | 11,100 |
| Isopropylbenzene        | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52     | <10    | 25     | <2     | NS       | <2     | WD                                                | 197           | 1             | 186    | 170    | 154           | 220    | 176    | 225    | 185    |
| Methyl tert-butyl ether | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5     | <10    | 13     | 2.8    | NS       | <2     | WD                                                | 34            | <50/35        | <50    | <50    | <100          | <50    | 14     | <25    | 14     |
| Naphthalene             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94     | <10    | <10    | <2     | NS       | <2     | WD                                                | 331           | 376/436       | 316    | 443    | 349/330       | 485    | 477    | 545    | 405    |

|                         | Statewide<br>Health  |        |         |        |
|-------------------------|----------------------|--------|---------|--------|
| Sample ID (Depth)       | Standards            | MW-6   | MW-6    | MW-6   |
| Sampling Date           | Groundwater          | 5/8/12 | 6/17/12 | 3/7/14 |
| Matrix                  | <b>Used Aquifers</b> | Water  | Water   | Water  |
| Units                   | <2,500 TDS           | (ug/L) | (ug/L)  | (ug/L) |
| VOLATILE ORGANIC CON    | /IPOUNDS             |        |         |        |
| 1,3,5-Trimethylbenzene  | 13                   | <1     | <1      | AB     |
| 1,2,4-Trimethylbenzene  | 15                   | <1     | <1      | AB     |
| Benzene                 | 5                    | <1     | 1.2     | AB     |
| Toluene                 | 1,000                | <1     | 2.6     | AB     |
| Ethylbenzene            | 700                  | <1     | <1      | AB     |
| Xylenes (total)         | 10,000               | <2     | <2      | AB     |
| Isopropylbenzene        | 840                  | <1     | <1      | AB     |
| Methyl tert-butyl ether | 20                   | <1     | <1      | AB     |
| Naphthalene             | 100                  | <1     | <1      | AB     |

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

# TABLE 2 (Continued) GROUNDWATER ANALYTICAL DATA FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |        |        |         |         | 11-17788 | -03     |         |             |           |           |         |         |         |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------|--------|---------|---------|----------|---------|---------|-------------|-----------|-----------|---------|---------|---------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semale ID (Death) Statewide NUV 7 NU |         |          |        |        |         |         |          |         |         |             |           |           |         |         |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Health<br>ample LD (Depth)Health<br>StandardsNW-7NW-7NW-7NW-7NW-7NW-7NW-7NW-7NW-7NW-7NW-7NW-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM-7NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |          |        |        |         |         |          |         |         |             |           |           |         |         |         |         |
| Sample ID (Depth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-7    | MW-7     | MW-7   | MW-7   | MW-7    | MW-7    | MW-7     | MW-7    | MW-7    | MW-7        | MW-7      | MW-7      | MW-7    | MW-7    | MW-7    | MW-7    |
| Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14 | 6/12/14 | 9/17/14 | 12/3/14  | 3/25/15 | 6/25/15 | 8/26/2015   | 12/9/2015 | 3/30/2016 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Used Aquifers</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water   | Water    | Water  | Water  | Water   | Water   | Water    | Water   | Water   | Water       | Water     | Water     | Water   | Water   | Water   | Water   |
| Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2,500 TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ug/L)  | (ug/L)   | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)      | (ug/L)    | (ug/L)    | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| atrixUsed AquifersWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWater< |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |        |        |         |         |          |         |         |             |           |           |         |         |         |         |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ViscUsed AquifersWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWater </td <td>&lt;25</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |        |        |         |         |          |         |         |             |           |           |         |         | <25     |         |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.2     | 6.4      | NS     | NS     | 40      | 153     | 300      | 50      | 61      | 238/229     | 48        | 199       | 308     | 578     | 316     | 43      |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,480   | 5,100    | NS     | NS     | 390     | 2,200   | 6,120    | 884     | 582     | 4,780/4,540 | 917       | 2320      | 4,600   | 6,860   | 4,360   | 4070    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63      | 55       | NS     | NS     | <20     | 66      | 296      | 300     | 193     | 279/275     | 157       | 767       | 980     | 716     | 117     | 59      |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34      | 31       | NS     | NS     | <20     | 299     | 800      | 120     | 91      | 436/438     | 97        | 391       | 612     | 1120    | 726     | 231     |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32      | 33       | NS     | NS     | 97      | 436     | 1,120    | 293     | 314     | 876/849     | 222       | 1010      | 1,700   | 2,510   | 793     | 87      |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43      | 55       | NS     | NS     | <20     | 52      | 167      | <25     | <25     | 85/91       | 23        | 68        | 99      | 177     | 133     | 103     |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 546     | 449      | NS     | NS     | <20     | 48      | 192      | <25     | <25     | 75/73       | 16        | 16        | 32      | 62      | 72.5    | 81      |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44      | 79       | NS     | NS     | <20     | 65      | 222      | <25     | <25     | 134/127     | 33        | 107       | 193     | 281     | 208     | 103     |

|                         | Statewide<br>Health  |         |          |        |        |         |         |         |         |         |         |         |           |         |         |         |         |
|-------------------------|----------------------|---------|----------|--------|--------|---------|---------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards            | MW-8    | MW-8     | MW-8   | MW-8   | MW-8    | MW-8    | MW-8    | MW-8    | MW-8    | MW-8    | MW-8    | MW-8      | MW-8    | MW-8    | MW-8    | MW-8    |
| Sampling Date           | Groundwater          | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 12/9/15 | 3/30/2016 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | <b>Used Aquifers</b> | Water   | Water    | Water  | Water  | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water     | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS           | (ug/L)  | (ug/L)   | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)    | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COM    | IPOUNDS              |         |          |        |        |         |         |         |         |         |         |         |           |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                   | <2      | <1       | NS     | <1     | <1      | 5.2     | 1.3     | 1.6     | 1.5     | 2.2     | <1      | <1        | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                   | <2      | <1       | NS     | <1     | <1      | 19      | 4.1     | 5.4     | 5.5     | 7.5     | 2.7     | <1        | <1      | <1      | <1      | <1      |
| Benzene                 | 5                    | <2      | <1       | NS     | <1     | <1      | 8.8     | 2.1     | 15      | 7.1     | 10      | 1.6     | 3.4       | <1      | 8.3     | <1      | <1      |
| Toluene                 | 1,000                | <2      | <1       | NS     | <1     | <1      | 13      | 3.6     | 35      | 19      | 22      | 8.1     | <1        | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                  | <2      | <1       | NS     | <1     | <1      | 19      | 3.6     | 7.5     | 5.1     | 6.9     | 2.1     | <1        | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000               | < 4     | <2       | NS     | <2     | <2      | 91      | 17      | 37      | 27      | 34      | 11      | <2        | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                  | <2      | <1       | NS     | <1     | <1      | 2.6     | <1      | <1      | <1      | <1      | <1      | <1        | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether | 20                   | 2.7     | <1       | NS     | <1     | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1        | <1      | <1      | <1      | <1      |
| Naphthalene             | 100                  | <2      | <1       | NS     | <1     | <1      | 3.6     | 1.2     | 1.0     | <1      | <1      | <1      | <1        | <1      | <1      | <1      | <1      |

NS - Not Sampled

All concentrations in micrograms per liter (ug/L) WD - Well Destroyed

# TABLE 2 (Continued) GROUNDWATER ANALYTICAL DATA FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

|                         | Statewide<br>Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |        |        |        |        |        |        |        |        |        |         |         |         |         |         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MW-9    | MW-9    | MW-9    | MW-9    | MW-9    |
| Sampling Date           | Bate         Groundwater         11/8/13         12/11/13         2/4/14         3/7/14         6/12/14         9/17/14         12/3/14         3/25/15         6/25/15         8/26/14           Used Aquifers         Water         Water |        |        |        |        |        |        |        |        |        |        |        |        |        | 3/30/16 | 6/23/16 | 9/21/16 | 12/6/16 | 2/24/17 |
| Matrix                  | Used Aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ug/L) |         |         |         |         |         |
| VOLATILE ORGANIC COM    | IPOUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |        |        |        |        |        |        |        |        |        |        |        |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2     | <1     | NS     | <1     | <1     | 8.7    | 7.7    | <10    | 41     | 24     | 15     | 15     | 17     | 36      | <25     | <5      | <5      | <5      |
| 1,2,4-Trimethylbenzene  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2     | <1     | NS     | <1     | <1     | 36     | <5     | <10    | 65     | 24     | 12     | 17     | 10     | 34      | 26      | <5      | <5      | <5      |
| Benzene                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13     | 17     | NS     | 96     | 58     | 83     | 19     | 853    | 1050   | 1590   | 1210   | 1510   | 1600   | 1660    | 857     | 387     | 500     | 243     |
| Toluene                 | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <2     | <1     | NS     | <1     | 2.2    | 40     | <5     | 81     | 178    | 113    | 112    | 116    | 97     | 210     | 214     | 28      | 19      | 8.9     |
| Ethylbenzene            | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2     | <1     | NS     | 3.2    | 2.0    | 41     | 9.7    | 66     | 152    | 175    | 251    | 265    | 244    | 284     | 152     | 81      | 67      | 25      |
| Xylenes (total)         | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <4     | <2     | NS     | <2     | <2     | 165    | 17.4   | 66     | 298    | 153    | 73     | 99     | 67     | 208     | 184     | 17      | <10     | <10     |
| Isopropylbenzene        | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2     | <1     | NS     | 5.5    | 5.7    | 9.9    | <5     | 39     | 83     | 77     | 93     | 97     | 90     | 102     | 54      | 37      | 39      | 26      |
| Methyl tert-butyl ether | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8      | 2.9    | NS     | 9.4    | 5.9    | 5.1    | <5     | 11     | <10    | <10    | <10    | <10    | <10    | <25     | <25     | <5      | <5      | <5      |
| Naphthalene             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2     | <1     | NS     | <1     | <1     | 8.1    | <5     | 15     | 69     | 36     | 61     | 84     | 79     | 87      | 63      | 16      | 8.5     | <5      |

|                         | Statewide<br>Health |         |          |        |        |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------------------|---------------------|---------|----------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards           | MW-10   | MW-10    | MW-10  | MW-10  | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   | MW-10   |
| Sampling Date           | Groundwater         | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/27/15 | 12/9/15 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers       | Water   | Water    | Water  | Water  | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS          | (ug/L)  | (ug/L)   | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COM    | IPOUNDS             |         |          |        |        |         |         |         |         |         |         |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | WNI     | WNI      | <2     | <1     | <1      | <1      | 1.7     | <1      | 1.1     | 1.4     | <1      | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                  | WNI     | WNI      | <2     | <1     | <1      | <1      | 4.8     | 2.6     | 5.0     | 4.5     | <1      | <1      | <1      | <1      | <1      | <1      |
| Benzene                 | 5                   | WNI     | WNI      | <0.24  | <1     | <1      | <1      | 13      | 14      | 50      | 27      | 33      | 11      | 15      | 1.0     | 1.7     | 14      |
| Toluene                 | 1,000               | WNI     | WNI      | <2     | <1     | <1      | <1      | 14      | 15      | 10      | 5.7     | <1      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                 | WNI     | WNI      | <2     | <1     | <1      | <1      | 7.2     | 3.7     | 3.2     | 3.4     | <1      | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000              | WNI     | WNI      | <4     | <2     | <2      | <2      | 32      | 17      | 16      | 15      | <2      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                 | WNI     | WNI      | <2     | <1     | <1      | <1      | 1.2     | <1      | 6.1     | 3.5     | 4.9     | 1.4     | 3.2     | 1.3     | <1      | 3.2     |
| Methyl tert-butyl ether | 20                  | WNI     | WNI      | <2     | <1     | <1      | 12      | 13      | 24      | 116     | 106     | 106     | 17      | 24      | 11      | 5.9     | 11      |
| Naphthalene             | 100                 | WNI     | WNI      | <2     | NS     | <1      | <1      | 1.0     | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

# TABLE 2 (Continued) GROUNDWATER ANALYTICAL DATA

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                            |       |       | FORMER R | 1623 R<br>HAW | Y'S CONVE<br>OUTE 590<br>'LEY, PA<br>7788-03 | _     | ORE   |       |       |       |       |       |         |       |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------|-------|-------|----------|---------------|----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|---------|-------|
| Sample ID (Depth)       | Statewide<br>Health<br>Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW-11 | MW-11                                                                                                      | MW-11 | MW-11 | MW-11    | MW-11         | MW-11                                        | MW-11 | MW-11 | MW-11 | MW-11 | MW-11 | MW-11 | MW-11 | MW-11   | MW-11 |
| Sampling Date           | Groundwater         11/8/13         12/11/13         2/4/14         3/7/14         6/12/14         9/17/14         12/3/14         3/25/15         6/25/15         8/27/15         12/10/15         3/30/16         6/23/16         9/21/16         12/8/16         2/8/16         12/8/16         2/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16         12/8/16 |       |                                                                                                            |       |       |          |               |                                              |       |       |       |       |       |       |       | 2/24/17 |       |
| Matrix                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water | ater Water |       |       |          |               |                                              |       |       |       |       |       |       |       |         |       |
| Units                   | Used Aquifers       Water                                                                                                                                         |       |                                                                                                            |       |       |          |               |                                              |       |       |       |       |       |       |       | (ug/L)  |       |
| VOLATILE ORGANIC COM    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                            |       |       |          |               |                                              |       |       |       |       |       |       |       |         |       |
| 1,3,5-Trimethylbenzene  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | 2.6                                          | 1.8   | 1.3   | 1.8   | <1    | <1    | <1    | <1    | <1      | <1    |
| 1,2,4-Trimethylbenzene  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | 9.8                                          | 6.3   | 4.01  | 6.0   | <1    | <1    | <1    | <1    | <1      | <1    |
| Benzene                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WNI   | WNI                                                                                                        | 0.3   | <1    | <1       | <1            | 19                                           | 32    | 5.65  | 3.8   | <1    | 1.4   | <1    | <1    | <1      | <1    |
| Toluene                 | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | 20                                           | 51    | 12    | 6.7   | <1    | <1    | <1    | <1    | <1      | <1    |
| Ethylbenzene            | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | 10                                           | 12    | 3.9   | 4.3   | <1    | <1    | <1    | <1    | <1      | <1    |
| Xylenes (total)         | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WNI   | WNI                                                                                                        | <4    | <2    | <2       | <2            | 47                                           | 53    | 18    | 19    | <2    | <2    | <2    | <2    | <2      | <2    |
| Isopropylbenzene        | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | 1.6                                          | 1.5   | <1    | 1.3   | <1    | <1    | <1    | <1    | <1      | <1    |
| Methyl tert-butyl ether | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | <1                                           | <1    | <1    | <1    | <1    | <1    | <1    | <1    | <1      | <1    |
| Naphthalene             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WNI   | WNI                                                                                                        | <2    | <1    | <1       | <1            | 2.2                                          | 1.5   | <1    | 1.5   | <1    | <1    | <1    | <1    | <1      | <1    |

|                         | Statewide<br>Health |         |          |        |        |         |         |         |         |         |         |          |         |         |         |         |        |
|-------------------------|---------------------|---------|----------|--------|--------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|--------|
| Sample ID (Depth)       | Standards           | MW-12   | MW-12    | MW-12  | MW-12  | MW-12   | MW-12   | MW-12   | MW-12   | MW-12   | MW-12   | MW-12    | MW-12   | MW-12   | MW-12   | MW-12   | MW-12  |
| Sampling Date           | Groundwater         | 11/8/13 | 12/11/13 | 2/4/14 | 3/7/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 12/10/15 | 3/31/16 | 6/23/16 | 9/21/16 | 12/8/16 |        |
| Matrix                  | Used Aquifers       | Water   | Water    | Water  | Water  | Water   | Water   | Water   | Water   | Water   | Water   | Water    | Water   | Water   | Water   | Water   | Water  |
| Units                   | <2,500 TDS          | (ug/L)  | (ug/L)   | (ug/L) | (ug/L) | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L) |
| VOLATILE ORGANIC COM    | POUNDS              |         |          |        |        |         |         |         |         |         |         |          |         |         |         |         |        |
| 1,3,5-Trimethylbenzene  | 13                  | <2      | <1       | NS     | <1     | <1      | 6.7     | <1      | 2.3     | 4.7     | 4.5     | 2.5      | <1      | <1      | 5.7     | <1      | <1     |
| 1,2,4-Trimethylbenzene  | 15                  | <2      | <1       | NS     | <1     | <1      | 20      | <1      | 8.3     | 17.7    | 15.7    | 9.3      | 3.2     | <1      | 20.8    | <1      | <1     |
| Benzene                 | 5                   | 2.1     | <1       | NS     | 1.4    | 1.4     | 20      | <1      | 26      | 21      | 22      | 10       | 11      | <1      | 1.7     | <1      | <1     |
| Toluene                 | 1,000               | 6.6     | <1       | NS     | 3.1    | 3.1     | 25      | <1      | 60      | 54      | 43      | 36       | 57      | <1      | 18      | <1      | <1     |
| Ethylbenzene            | 700                 | <2      | <1       | NS     | 1.5    | 1.5     | 19      | <1      | 12      | 17      | 15      | 7.3      | 9.5     | <1      | 12      | <1      | <1     |
| Xylenes (total)         | 10,000              | 4.1     | <2       | NS     | 6.4    | 6.4     | 83      | <2      | 60      | 87      | 67      | 41       | 36      | <2      | 37      | <2      | <2     |
| Isopropylbenzene        | 840                 | <2      | <1       | NS     | <1     | <1      | 3.5     | <1      | 1.1     | 2.1     | 2.2     | <1       | <1      | <1      | 4.3     | <1      | <1     |
| Methyl tert-butyl ether | 20                  | <2      | <1       | NS     | <1     | <1      | <1      | <1      | <1      | <1      | <1      | <1       | <1      | <1      | <1      | <1      | <1     |
| Naphthalene             | 100                 | <2      | <1       | NS     | NS     | <1      | 1.3     | <1      | 1.6     | 3.4     | 4.0     | 1.7      | <1      | <1      | 4.5     | <1      | <1     |

`

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

|                         | TABLE 2 (Continued)<br>GROUNDWATER ANALYTICAL DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |    |     |     |      |     |      |     |     |    |    |     |     |    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|------|-----|------|-----|-----|----|----|-----|-----|----|
|                         | Statewide     Image: Statewide       Health     Image: Statewide                                                                         |    |     |     |      |     |      |     |     |    |    |     |     |    |
| Comple ID (Donth)       |                                                                                                                                          |    |     |     |      |     |      |     |     |    |    |     |     |    |
|                         |                                                                                                                                          |    |     |     |      |     |      |     |     |    |    |     |     |    |
| Sampling Date           |                                                                                                                                          |    |     |     |      |     |      |     |     |    |    |     |     |    |
| Matrix                  |                                                                                                                                          |    |     |     |      |     |      |     |     |    |    |     |     |    |
| Units                   |                                                                                                                                          |    |     |     |      |     |      |     |     |    |    |     |     |    |
| VOLATILE ORGANIC COM    | IPOUNDS                                                                                                                                  |    |     |     |      |     |      |     |     |    |    |     |     |    |
| 1,3,5-Trimethylbenzene  | 13                                                                                                                                       | <1 | <1  | <1  | 4.9  | DRY | 1.9  | DRY | 4.3 | <1 | <1 | DRY | DRY | <1 |
| 1,2,4-Trimethylbenzene  | 15                                                                                                                                       | <1 | <1  | <1  | 18.9 | DRY | 6.8  | DRY | 17  | <1 | <1 | DRY | DRY | <1 |
| Benzene                 | 5                                                                                                                                        | <1 | <1  | <1  | 108  | DRY | 10   | DRY | 16  | <1 | <1 | DRY | DRY | <1 |
| Toluene                 | 1,000                                                                                                                                    | 66 | 102 | 1.8 | 120  | DRY | 25   | DRY | 91  | <1 | <1 | DRY | DRY | <1 |
| Ethylbenzene            | 700                                                                                                                                      | <1 | <1  | <1  | 30.5 | DRY | 6.67 | DRY | 18  | <1 | <1 | DRY | DRY | <1 |
| Xylenes (total)         | Xylenes (total)         10,000         <2                                                                                                |    |     |     |      |     |      |     |     |    |    |     |     |    |
| Isopropylbenzene        | 840                                                                                                                                      | <1 | <1  | <1  | 3.3  | DRY | <1   | DRY | 1.7 | <1 | <1 | DRY | DRY | <1 |
| Methyl tert-butyl ether |                                                                                                                                          |    |     |     |      |     |      |     |     |    |    |     |     |    |
| Naphthalene             | 100                                                                                                                                      | <1 | <1  | <1  | 6.0  | DRY | 1.2  | DRY | 3.7 | <1 | <1 | DRY | DRY | <1 |

|                         | Statewide<br>Health |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards           | MW-14   |
| Sampling Date           | Groundwater         | 4/29/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 12/9/15 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers       | Water   |
| Units                   | <2,500 TDS          | (ug/L)  |
| VOLATILE ORGANIC COM    | IPOUNDS             |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | <1      | <1      | <1      | 7.2     | 6.2     | 2.5     | 2.9     | 1.8     | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                  | <1      | <1      | <1      | 26      | 21      | 9.0     | 9.1     | 6.6     | <1      | <1      | <1      | <1      | <1      |
| Benzene                 | 5                   | <1      | <1      | <1      | 72      | 63      | 13      | 17      | 5.2     | 3.9     | <1      | <1      | <1      | <1      |
| Toluene                 | 1,000               | <1      | <1      | <1      | 65      | 96      | 30      | 36      | 23      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                 | <1      | <1      | <1      | 31      | 28      | 8.2     | 11      | 5.1     | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000              | <2      | <2      | 2.2     | 137     | 147     | 43      | 51      | 29      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                 | <1      | <1      | <1      | 4.4     | 2.9     | 1.0     | 2       | <1      | <1      | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether | 20                  | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Naphthalene             | 100                 | <1      | <1      | <1      | 7.0     | 3.7     | 1.5     | 2.7     | 1.2     | <1      | <1      | <1      | <1      | <1      |

`

NS - Not Sampled

All concentrations in micrograms per liter (ug/L) WD - Well Destroyed

# TABLE 2 (Continued) GROUNDWATER ANALYTICAL DATA FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

| 11-17788-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Groundwater | 4/29/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 12/9/15 | 1/20/16 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix Used Aquifers Water W                                                                                                                                                                                                                                            |             |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| nits <2,500 TDS (ug/L) |             |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| /OLATILE ORGANIC COMPOUNDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13          | <1      | <1      | <1      | 7.7     | 3.06    | 5.86    | 7.29    | 5.37    | <1      | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15          | <1      | <1      | <1      | 25.7    | 10.6    | 21.8    | 25.3    | 20.2    | <1      | <1      | <1      | <1      | <1      | <1      |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5           | <1      | <1      | <1      | 71      | 29.1    | 27.7    | 38.3    | 22.8    | <1      | 1.71    | <1      | <1      | <1      | <1      |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000       | <1      | 2.35    | <1      | 57.2    | 61.2    | 63.2    | 62.4    | 70.2    | <1      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 700         | <1      | <1      | <1      | 31      | 13.4    | 20.6    | 23.4    | 15.2    | <1      | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,000      | <2      | 2.94    | 4.25    | 135     | 68      | 105     | 105     | 87.9    | <2      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 840         | <1      | <1      | <1      | 4.7     | 1.23    | 2.70    | 3.86    | 1.92    | <1      | <1      | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20          | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100         | <1      | <1      | <1      | 7.06    | 1.91    | 4.5     | 7.31    | 3.98    | <1      | <1      | <1      | <1      | <1      | <1      |

|                         | Statewide<br>Health |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------------------|---------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards           | MW-16   |
| Sampling Date           | Groundwater         | 4/29/14 | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 | 6/25/15 | 8/26/15 | 12/9/15 | 1/20/16 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers       | Water   |
| Units                   | <2,500 TDS          | (ug/L)  |
| VOLATILE ORGANIC COM    | <b>MPOUNDS</b>      |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | <1      | <1      | 7       | NS      | NS      | 1.7     | 1.7     | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                  | <1      | <1      | 27      | NS      | NS      | 4.8     | 5.3     | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Benzene                 | 5                   | <1      | <1      | 20      | NS      | NS      | 8.1     | 7.9     | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Toluene                 | 1,000               | <1      | <1      | 26      | NS      | NS      | 14      | 12      | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                 | <1      | <1      | 32      | NS      | NS      | 4.8     | 5.4     | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000              | <2      | <2      | 138     | NS      | NS      | 22      | 21      | <2      | <2      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                 | <1      | <1      | 4.2     | NS      | NS      | 1.1     | 1.4     | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether | 20                  | 9.2     | 3.0/3.4 | 30      | NS      | NS      | 15      | 12      | 6.7     | 8.1     | 4.9     | 7.8     | 48      | 7.4     | 4.8     |
| Naphthalene             | 100                 | <1      | <1      | 1.8     | NS      | NS      | 1.1     | 1.9     | <1      | <1      | <1      | <1      | <1      | <1      | <1      |

`

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

|                                                                                   | TABLE 2 (Continued)<br>GROUNDWATER ANALYTICAL DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |    |     |    |     |    |    |    |    |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|-----|----|----|----|----|--|--|
| Statewide<br>Health                                                               |                                                                                                                                          |    |     |    |     |    |    |    |    |  |  |
| Sample ID (Depth) Standards MW-17 MW-17 MW-17 MW-17 MW-17 MW-17 MW-17 MW-17 MW-17 |                                                                                                                                          |    |     |    |     |    |    |    |    |  |  |
| Sampling Date                                                                     | ling Date Groundwater 11/12/15 12/9/15 1/20/16 3/30/16 6/23/16 9/21/16 12/8/16 2/24/17                                                   |    |     |    |     |    |    |    |    |  |  |
| Aatrix Used Aquifers Water  |                                                                                                                                          |    |     |    |     |    |    |    |    |  |  |
| Units         <2,500 TDS                                                          |                                                                                                                                          |    |     |    |     |    |    |    |    |  |  |
| VOLATILE ORGANIC COM                                                              | IPOUNDS                                                                                                                                  |    |     |    |     |    |    |    |    |  |  |
| 1,3,5-Trimethylbenzene                                                            | 13                                                                                                                                       | <1 | 3.6 | <1 | <1  | <1 | <1 | <1 | <1 |  |  |
| 1,2,4-Trimethylbenzene                                                            | 15                                                                                                                                       | <1 | 13  | <1 | <1  | <1 | <1 | <1 | <1 |  |  |
| Benzene                                                                           | 5                                                                                                                                        | <1 | 15  | <1 | 1.4 | <1 | <1 | <1 | <1 |  |  |
| Toluene                                                                           | 1,000                                                                                                                                    | <1 | 47  | <1 | <1  | <1 | <1 | <1 | <1 |  |  |
| Ethylbenzene         700         <2                                               |                                                                                                                                          |    |     |    |     |    |    |    |    |  |  |
| Xylenes (total)         10,000         <1                                         |                                                                                                                                          |    |     |    |     |    |    |    |    |  |  |
| Isopropylbenzene                                                                  | 840                                                                                                                                      | <1 | 1.2 | <1 | <1  | <1 | <1 | <1 | <1 |  |  |
| Methyl tert-butyl ether                                                           | 20                                                                                                                                       | <1 | <1  | <1 | <1  | <1 | <1 | <1 | <1 |  |  |
| Naphthalene                                                                       | 100                                                                                                                                      | <1 | 2.2 | <1 | <1  | <1 | <1 | <1 | <1 |  |  |

| Sample ID (Depth)       | Statewide<br>Health<br>Standards | MW-18    | MW-18   | MW-18   | MW-18   | MW-18   | MW-18   | MW-18   | MW-18   |
|-------------------------|----------------------------------|----------|---------|---------|---------|---------|---------|---------|---------|
| Sampling Date           | Groundwater                      | 11/12/15 | 12/9/15 | 1/20/16 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers                    | Water    | Water   | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS                       | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COM    | IPOUNDS                          |          |         |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                               | <1       | 2.3     | <1      | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                               | <1       | 8.5     | <1      | <1      | <1      | <1      | <1      | <1      |
| Benzene                 | 5                                | <1       | 7.3     | <1      | <1      | <1      | <1      | <1      | <1      |
| Toluene                 | 1,000                            | <1       | 30      | <1      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                              | <2       | 6.6     | <1      | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000                           | <1       | 37      | <2      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                              | <1       | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether | 20                               | <1       | <1      | <1      | <1      | <1      | <1      | <1      | <1      |
| Naphthalene             | 100                              | <1       | 1.6     | <1      | <1      | <1      | <1      | <1      | <1      |

`

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

| TABLE 2 (Continued)<br>GROUNDWATER ANALYTICAL DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|----|----|-----|-----|----|--|
| Statewide Health                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
| Health     Health       Sample ID (Depth)     Standards     MW-19     MW-19     MW-19     MW-19     MW-19                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
|                                                                                                                                          | Sample ID (Depth)         Standards         MW-19         MW-19< |    |     |    |    |    |     |     |    |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
| Units         <2,500 TDS                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
| VOLATILE ORGANIC CON                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     | -  |    |    |     |     |    |  |
| 1,3,5-Trimethylbenzene                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1 | <2  | <1 | <1 | <1 | DRY | DRY | <1 |  |
| 1,2,4-Trimethylbenzene                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 | 3.6 | <1 | <1 | <1 | DRY | DRY | <1 |  |
| Benzene                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 | 3.0 | <1 | <1 | <1 | DRY | DRY | <1 |  |
| Toluene                                                                                                                                  | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1 | 12  | <1 | <1 | <1 | DRY | DRY | <1 |  |
| Ethylbenzene                                                                                                                             | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2 | 2.8 | <1 | <1 | <1 | DRY | DRY | <1 |  |
| Xylenes (total)         10,000         <1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |     |    |    |    |     |     |    |  |
| Isopropylbenzene                                                                                                                         | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 | <2  | <1 | <1 | <1 | DRY | DRY | <1 |  |
| Methyl tert-butyl ether                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 | <2  | <1 | <1 | <1 | DRY | DRY | <1 |  |
| Naphthalene                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 | <2  | <1 | <1 | <1 | DRY | DRY | <1 |  |

|                         | Statewide<br>Health |          |          |         |         |         |         |         |         |
|-------------------------|---------------------|----------|----------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards           | MW-20    | MW-20    | MW-20   | MW-20   | MW-20   | MW-20   | MW-20   | MW-20   |
| Sampling Date           | Groundwater         | 11/12/15 | 12/10/15 | 1/20/16 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers       | Water    | Water    | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS          | (ug/L)   | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COM    | IPOUNDS             |          |          |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                  | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Benzene                 | 5                   | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Toluene                 | 1,000               | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                 | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000              | <2       | <2       | <2      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                 | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether | 20                  | <1       | <1       | <1      | <1      | <1      | 1.1     | <1      | 1.0     |
| Naphthalene             | 100                 | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |

•

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

| TABLE 2 (Continued)<br>GROUNDWATER ANALYTICAL DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|--|
| Statewide<br>Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
| Health       Health |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample ID (Depth)         Standards         MW-21         MW-21< |    |    |    |    |    |    |    |    |  |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
| Jnits         <2,500 TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
| VOLATILE ORGANIC CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    | I  |    |    |    |    |    |  |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |
| Ethylbenzene         700         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
| Xylenes (total)         10,000         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |    |    |    |    |    |    |  |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |  |

|                         | Statewide<br>Health |          |          |         |         |         |         |         |         |
|-------------------------|---------------------|----------|----------|---------|---------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards           | MW-22    | MW-22    | MW-22   | MW-22   | MW-22   | MW-22   | MW-22   | MW-22   |
| Sampling Date           | Groundwater         | 11/12/15 | 12/10/15 | 1/20/16 | 3/30/16 | 6/23/16 | 9/21/16 | 12/8/16 | 2/24/17 |
| Matrix                  | Used Aquifers       | Water    | Water    | Water   | Water   | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS          | (ug/L)   | (ug/L)   | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC COM    | IPOUNDS             |          |          |         |         |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                  | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Benzene                 | 5                   | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Toluene                 | 1,000               | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Ethylbenzene            | 700                 | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Xylenes (total)         | 10,000              | <2       | <2       | <2      | <2      | <2      | <2      | <2      | <2      |
| Isopropylbenzene        | 840                 | <1       | <1       | <1      | <1      | <1      | <1      | <1      | <1      |
| Methyl tert-butyl ether | 20                  | <1       | <1       | <1      | <1      | <1      | 4.5     | <1      | <1      |
| Naphthalene             | 100                 | <1       | <1       | <1      | NS      | <1      | <1      | <1      | <1      |

•

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

| TABLE 2 (Continued)                 |  |
|-------------------------------------|--|
| GROUNDWATER ANALYTICAL DATA         |  |
| FORMER ROSEMERGY'S CONVENIENT STORE |  |
| 1623 ROUTE 590                      |  |
| HAWLEY, PA                          |  |
| 11-17788-03                         |  |
|                                     |  |

|                         | Statewide<br>Health |         |         |         |         |
|-------------------------|---------------------|---------|---------|---------|---------|
| Sample ID (Depth)       | Standards           | DPE-4   | DPE-4   | DPE-4   | DPE-4   |
| Sampling Date           | Groundwater         | 6/12/14 | 9/17/14 | 12/3/14 | 3/25/15 |
| Matrix                  | Used Aquifers       | Water   | Water   | Water   | Water   |
| Units                   | <2,500 TDS          | (ug/L)  | (ug/L)  | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC CO     | MPOUNDS             |         |         |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | 686     | 545     | 865     | NS      |
| 1,2,4-Trimethylbenzene  | 15                  | 2,270   | 1,820   | 963     | NS      |
| Benzene                 | 5                   | 7,300   | 1,760   | 1,440   | NS      |
| Toluene                 | 1,000               | 8,650   | 4,930   | 2,270   | NS      |
| Ethylbenzene            | 700                 | 2,590   | 2,200   | 1,520   | NS      |
| Xylenes (total)         | 10,000              | 12,800  | 16,900  | 8,470   | NS      |
| Isopropylbenzene        | 840                 | 322     | 337     | 443     | NS      |
| Methyl tert-butyl ether | 20                  | 447     | <20     | <20     | NS      |
| Naphthalene             | 100                 | 502     | 681     | 518     | NS      |

|                         | Statewide<br>Health |         |         |
|-------------------------|---------------------|---------|---------|
| Sample ID (Depth)       | Standards           | ТВ      | ТВ      |
| Sampling Date           | Groundwater         | 9/21/16 | 12/8/16 |
| Matrix                  | Used Aquifers       | Water   | Water   |
| Units                   | <2,500 TDS          | (ug/L)  | (ug/L)  |
| VOLATILE ORGANIC CO     | MPOUNDS             |         |         |
| 1,3,5-Trimethylbenzene  | 13                  | <1      | <1      |
| 1,2,4-Trimethylbenzene  | 15                  | <1      | <1      |
| Benzene                 | 5                   | <1      | <1      |
| Toluene                 | 1,000               | <1      | <1      |
| Ethylbenzene            | 700                 | <1      | <1      |
| Xylenes (total)         | 10,000              | <2      | <2      |
| Isopropylbenzene        | 840                 | <1      | <1      |
| Methyl tert-butyl ether | 20                  | <1      | <1      |
| Naphthalene             | 100                 | <1      | <1      |

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

### Table 3 - DPE System Aqueous Sample Results FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

|                             | Sampling<br>Date | VOLATILE ORGANIC COMPOUNDS |               |         |         |                   |                    |                        |                            |                  |
|-----------------------------|------------------|----------------------------|---------------|---------|---------|-------------------|--------------------|------------------------|----------------------------|------------------|
| Sample                      |                  | 1,3,5-<br>TMB              | 1,2,4-<br>TMB | Benzene | Toluene | Ethyl-<br>benzene | Xylenes<br>(total) | I sopropyl-<br>benzene | Methyl tert<br>butyl ether | Naph-<br>thalene |
| Statewide Health Standards? |                  | 13                         | 15            | 5       | 1,000   | 700               | 10,000             | 840                    | 20                         | 100              |
| Influent                    | 4/20/2016        | 187                        | 630           | 566     | 734     | 494               | 1980               | 86.7                   | 6.95                       | 204              |
| Influent                    | 1/30/2017        | 35.6                       | 78.2          | 109     | 133     | 49                | 338                | <5                     | <5                         | 19               |
|                             | 2/24/2017        | 32.5                       | 112           | 121     | 192     | 49.4              | 285                | 6.26                   | <1                         | 78.6             |
|                             | 3/22/2017        | 31                         | 75            | 34      | 60      | 12                | 180                | <5                     | <5                         | 41               |
|                             | 1/30/2017        | 37                         | 47            | 51.9    | 58.7    | 19.9              | 226                | 2.18                   | <1                         | 6.22             |
| Between Carbon              | 2/24/2017        | <1                         | <1            | <1      | <1      | <1                | <2                 | <1                     | <1                         | 1.4              |
|                             | 3/22/2017        | <1                         | <1            | <1      | <1      | <1                | <2                 | <1                     | <1                         | <1               |
|                             | 4/20/2016        | <1                         | <1            | <1      | <1      | <1                | <2                 | <1                     | <1                         | <1               |
| Effluent                    | 1/30/2017        | <1                         | <1            | <1      | <1      | <1                | <2                 | <1                     | <1                         | <1               |
|                             | 2/24/2017        | <1                         | <1            | <1      | <1      | <1                | <2                 | <1                     | <1                         | <1               |
|                             | 3/22/2017        | <1                         | <1            | <1      | <1      | <1                | <1                 | <1                     | <1                         | <1               |
| Trip Blank                  | 2/24/2017        | <1                         | <1            | <1      | <1      | <1                | <2                 | <1                     | <1                         | <1               |

Note:

All concentrations in micrograms per liter (ug/L)

Matrix: Groundwater

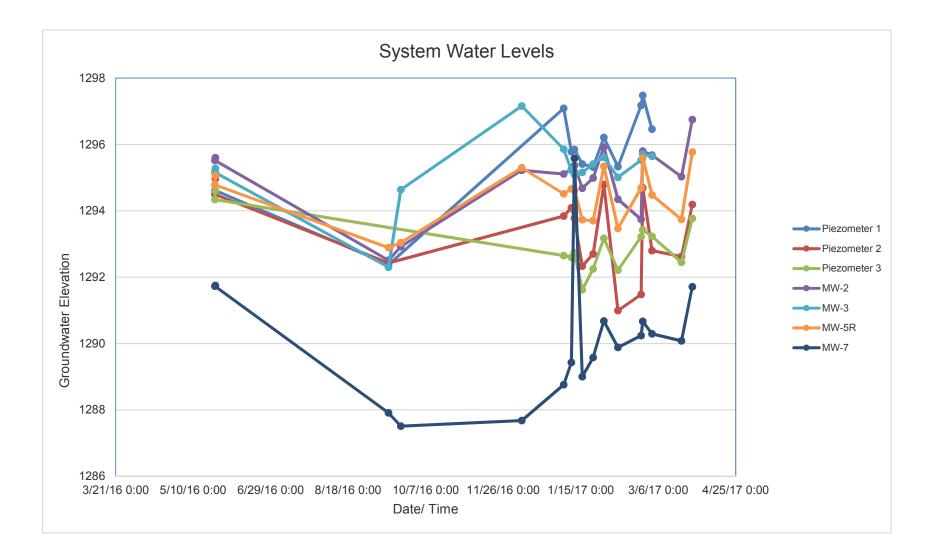
\*Residential Ground water Used Aquifers <2,500 TDS

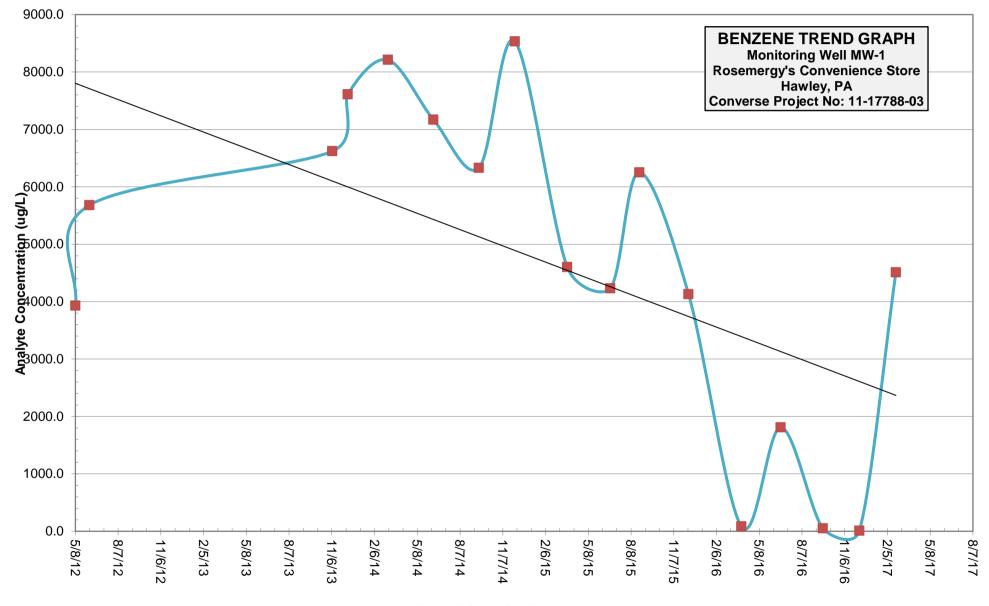
|          | DPE SYSTEM DATA<br>FORMER ROSEMERGY'S CONVENIENT STORE                                                                                                                                                                 |                                      |      |      |     |       |       |    |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|------|-----|-------|-------|----|--|--|--|
|          | 1623 ROUTE 590<br>HAWLEY, PA                                                                                                                                                                                           |                                      |      |      |     |       |       |    |  |  |  |
|          | 11-17788-03                                                                                                                                                                                                            |                                      |      |      |     |       |       |    |  |  |  |
| DATE     | E Vaccum Temp Before Temp After Air Flow Air Pressure H2O Pressure H20 Pressure H2O Pressure H2O Pressure (H2O Pressure H2O Pressure (Hg) Blower (F) Scfm After Blower Before Bag (psi) After Bag (psi) Between Carbon |                                      |      |      |     |       |       |    |  |  |  |
| 01/04/17 | 12.50                                                                                                                                                                                                                  | 96                                   | >250 | N/A  | >30 | 25    | 20    | 8  |  |  |  |
| 01/09/17 | N/A                                                                                                                                                                                                                    | N/A 35-60 35 N/A N/A N/A N/A N/A N/A |      |      |     |       |       |    |  |  |  |
| 01/11/17 | 12.50                                                                                                                                                                                                                  | 83                                   | 245  | N/A  | 2.5 | 5     | 0     | 2  |  |  |  |
| 01/16/17 | 11.50                                                                                                                                                                                                                  | 85                                   | 214  | N/A  | 0   | 8     | 0     | 0  |  |  |  |
| 01/23/17 | 12.50                                                                                                                                                                                                                  | 85                                   | 232  | N/A  | 0   | 8     | 0     | 0  |  |  |  |
| 01/30/17 | 10.50                                                                                                                                                                                                                  | 68                                   | 220  | N/A  | 0   | 6     | 0     | 0  |  |  |  |
| 02/08/17 | 12.00                                                                                                                                                                                                                  | 90                                   | 226  | N/A  | 0   | 6     | 0     | 0  |  |  |  |
| 02/23/17 | 23/17 12.50 104 240 N/A 2 20 0 0                                                                                                                                                                                       |                                      |      |      |     |       |       |    |  |  |  |
| 02/24/17 | 2/24/17 13.00 88 192 N/A 1 8 0 0                                                                                                                                                                                       |                                      |      |      |     |       |       |    |  |  |  |
| 03/02/17 | 3/02/17 -12.10 83.1 192.1 73 N/A 37 25 8                                                                                                                                                                               |                                      |      |      |     |       |       |    |  |  |  |
| 03/21/17 | 15.00                                                                                                                                                                                                                  | 102                                  | 240  | 35   | 0   | 32    | 0     | 0  |  |  |  |
| 03/28/17 | 13.5                                                                                                                                                                                                                   | 97                                   | 222  | >350 | N/A | 35/37 | 42/26 | 13 |  |  |  |

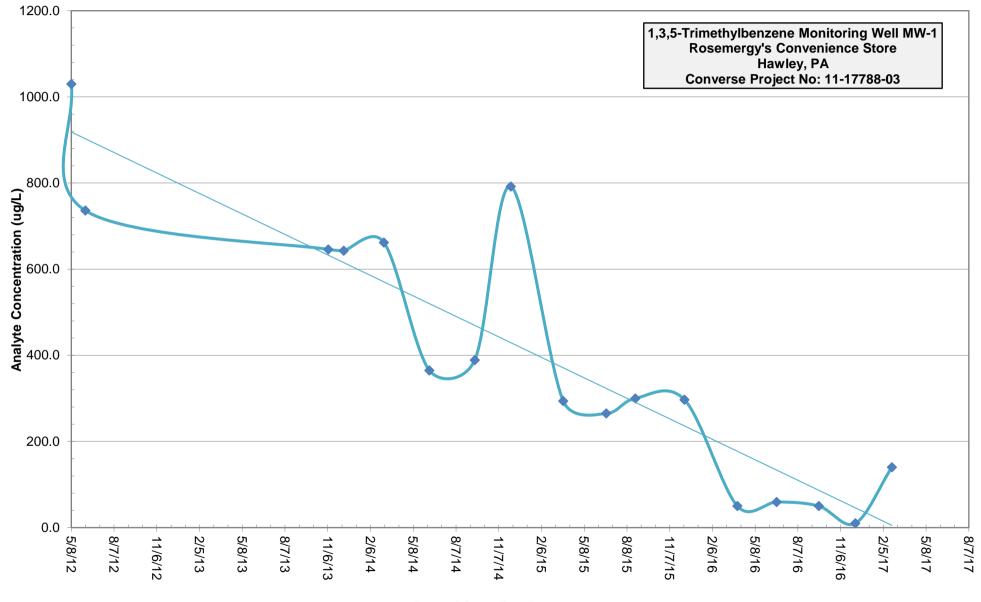
|          | DPE SYSTEM DATA (cont.)<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |                     |                 |                 |                 |                  |                    |                                       |                                         |  |  |
|----------|---------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------|-----------------|------------------|--------------------|---------------------------------------|-----------------------------------------|--|--|
| DATE     | Totalizer<br>Gallons                                                                                          | Run-Time<br>(hours) | CatOx<br>Temp 3 | CatOx<br>Temp 2 | CatOx<br>Temp 1 | PID<br>Pre CatOx | PID<br>After CatOx | System On Upon<br>Arrival (yes or no) | System on Upon<br>Departure (yes or no) |  |  |
| 01/04/17 | 88871-89002                                                                                                   | 135                 | 360             | 353             | 330             | N/A              | N/A                | yes                                   | yes                                     |  |  |
| 01/09/17 | 92398.20                                                                                                      | 146.1               | 3               | 4               | Low temp A1     | N/A              | N/A                | no                                    | no                                      |  |  |
| 01/11/17 | 92471.80                                                                                                      | 149.8               | 364             | 361             | 330             | N/A              | N/A                | no                                    | yes                                     |  |  |
| 01/16/17 | 98950.90                                                                                                      | 320.7               | 365             | 360             | 330             | N/A              | N/A                | yes                                   | yes                                     |  |  |
| 01/23/17 | 106874.00                                                                                                     | 487.4               | 357             | 350             | 330             | N/A              | N/A                | yes                                   | yes                                     |  |  |
| 01/30/17 | 114066.00                                                                                                     | 604.9               | 350             | 343             | 330             | N/A              | N/A                | yes                                   | yes                                     |  |  |
| 02/08/17 | 124519.00                                                                                                     | 815.6               | 355             | 346             | 330             | N/A              | N/A                | yes                                   | yes                                     |  |  |
| 02/23/17 | 146789.00                                                                                                     | 1174.4              | 345             | 338             | 330             | N/A              | N/A                | yes                                   | no                                      |  |  |
| 02/24/17 | 146921.00                                                                                                     | 1175.8              | 345             | 333             | 330             | 97.8 ppm*        | 7.8 ppm            | no                                    | yes                                     |  |  |
| 03/02/17 | 159342.00                                                                                                     | 1314.3              | 345             | 331             | 330             | 800 ppm          | N/A                | yes                                   | yes                                     |  |  |
| 03/21/17 | 183719.00                                                                                                     | 1771.2              | 344             | 334             | 330             | N/A              | N/A                | yes                                   | yes                                     |  |  |
| 03/28/17 | 197007                                                                                                        | 1933.6              | 340             | 329             | 330             | 640 ppm          | N/A                | yes                                   | yes                                     |  |  |

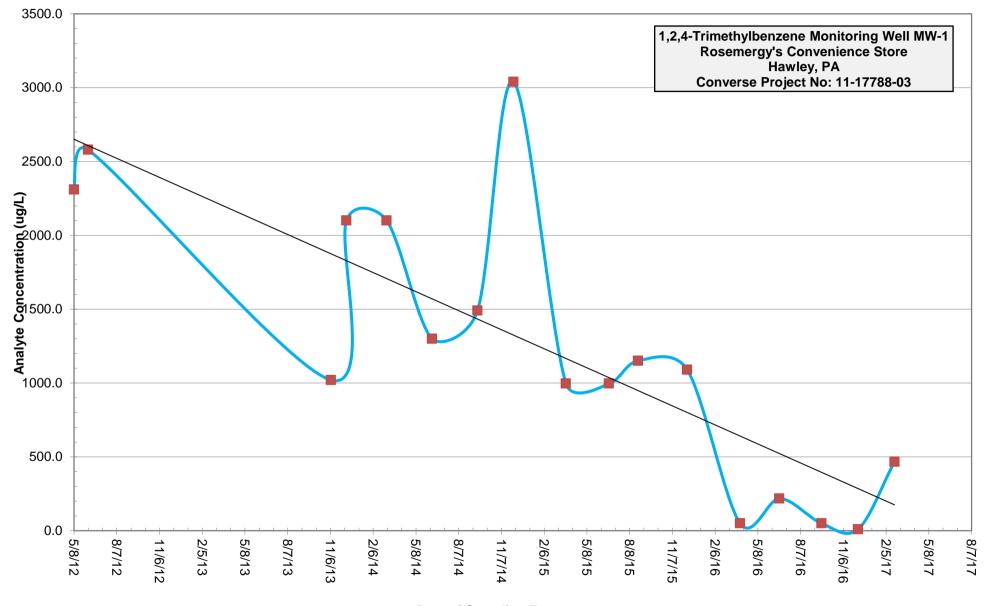
\*- Different instrument from reading done on 3/2 and 3/28

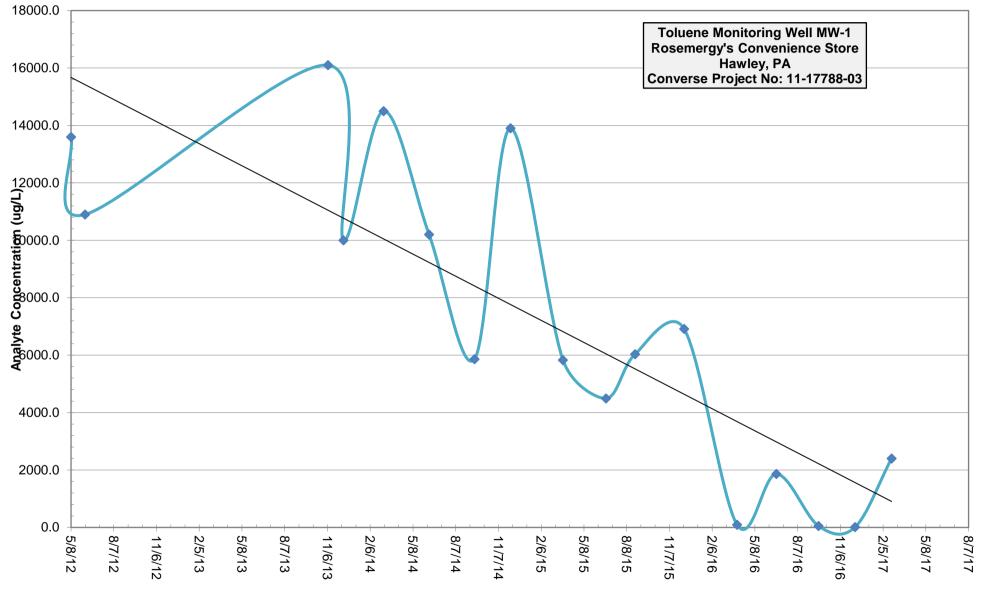
| WELL HEAD VACUUM WITH SYSTEM RUNNING<br>FORMER ROSEMERGY'S CONVENIENT STORE<br>1623 ROUTE 590<br>HAWLEY, PA<br>11-17788-03 |       |       |       |       |       |       |       |       |       |      |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|--|--|
| Date                                                                                                                       | DPE-1 | DPE-2 | DPE-3 | DPE-4 | DPE-5 | DPE-6 | DPE-7 | DPE-8 | MW-1R | MW-4 |  |  |
| 01/04/17                                                                                                                   | >100  | >100  | N/A   | 82    | 97    | >100  | 42    | 80    | >100  | N/A  |  |  |
| 01/11/17                                                                                                                   | 64    | 76    | N/A   | 78    | 64    | 80    | 40    | 80    | 84    | N/A  |  |  |
| 01/16/17                                                                                                                   | 82    | 76    | N/A   | 80    | 68    | 66    | 8     | 74    | 66    | N/A  |  |  |
| 01/23/17                                                                                                                   | 84    | 92    | N/A   | 96    | 76    | 2     | 10    | 10    | 80    | N/A  |  |  |
| 01/30/17                                                                                                                   | 78    | 100   | N/A   | NS    | 80    | 2     | NS    | 96    | 4     | N/A  |  |  |
| 02/08/17                                                                                                                   | 88    | 90    | N/A   | 85    | 96    | 0     | 8     | 85    | 0     | N/A  |  |  |
| 02/23/17                                                                                                                   | 90    | 92    | N/A   | >100  | 78    | 82    | 58    | >100  | >100  | N/A  |  |  |
| 02/24/17                                                                                                                   | 76    | 80    | N/A   | 84    | 56    | 74    | NS    | 98    | 92    | N/A  |  |  |
| 03/02/17                                                                                                                   | 94    | 85    | N/A   | 94    | 73    | 88    | 10    | 90    | 98    | N/A  |  |  |
| 03/21/17                                                                                                                   | 95    | 94    | N/A   | NS    | 84    | 88    | NS    | NS    | >100  | N/A  |  |  |
| 03/28/17                                                                                                                   | 92    | 94    | N/A   | 96    | 82    | 92    | 45    | 110   | 107   | N/A  |  |  |

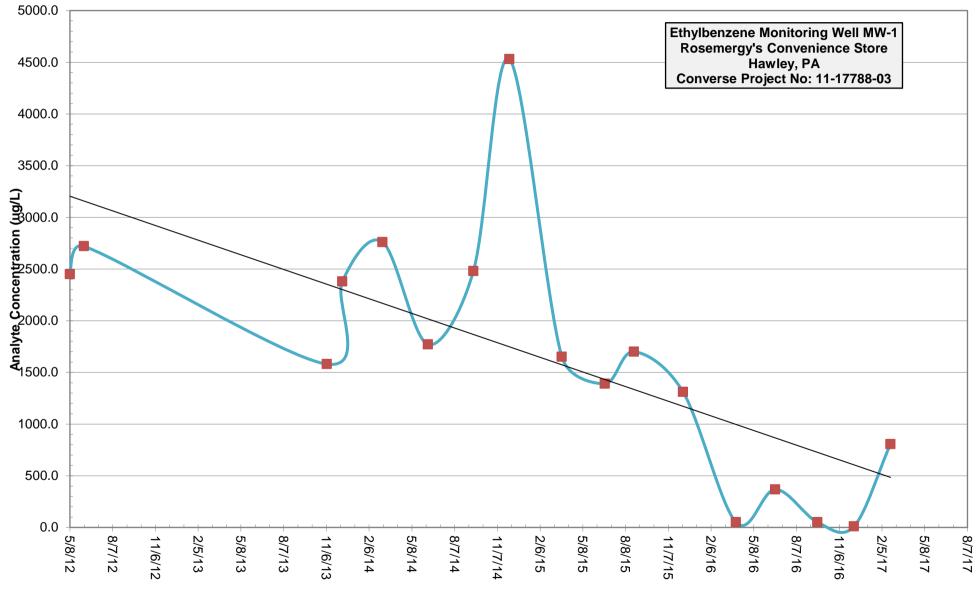

| VACUUM READINGS WITH SYSTEM RUNNING |     |     |     |      |      |       |      |  |  |  |
|-------------------------------------|-----|-----|-----|------|------|-------|------|--|--|--|
| FORMER ROSEMERGY'S CONVENIENT STORE |     |     |     |      |      |       |      |  |  |  |
| 1623 ROUTE 590                      |     |     |     |      |      |       |      |  |  |  |
| HAWLEY, PA                          |     |     |     |      |      |       |      |  |  |  |
| 11-17788-03                         |     |     |     |      |      |       |      |  |  |  |
| Date                                | P-1 | P-2 | P-3 | MW-2 | MW-3 | MW-5R | MW-7 |  |  |  |
| 03/28/17                            | NM  | 0.7 | 3.1 | AS   | NM   | 0     | 0    |  |  |  |

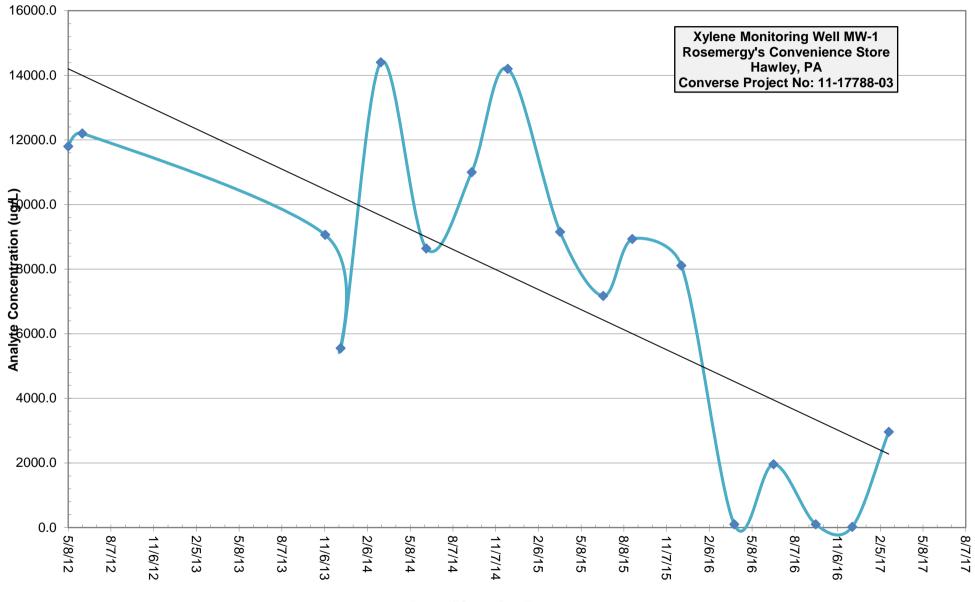

Notes:

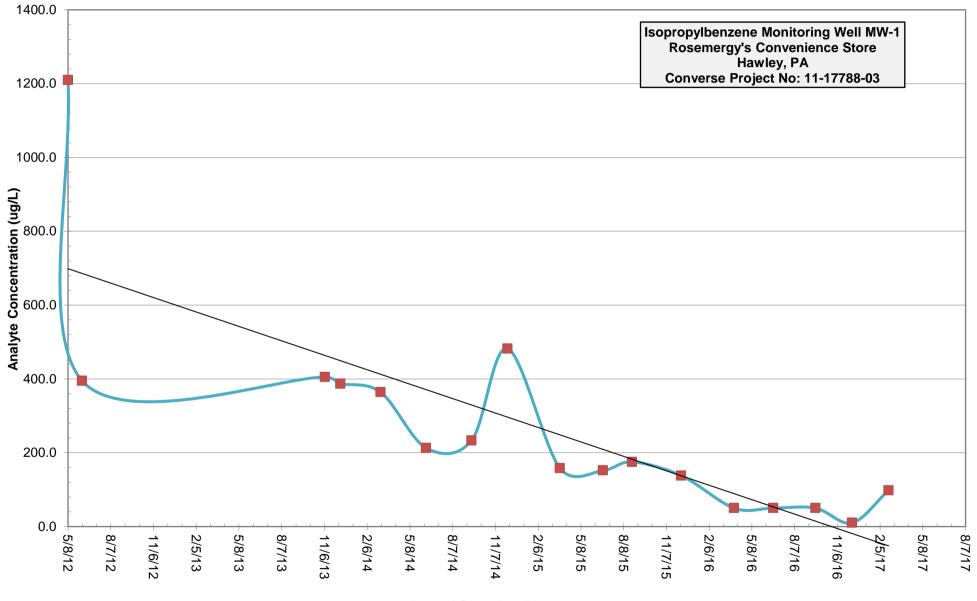

Vacuum Readings in inches of water (IWC)

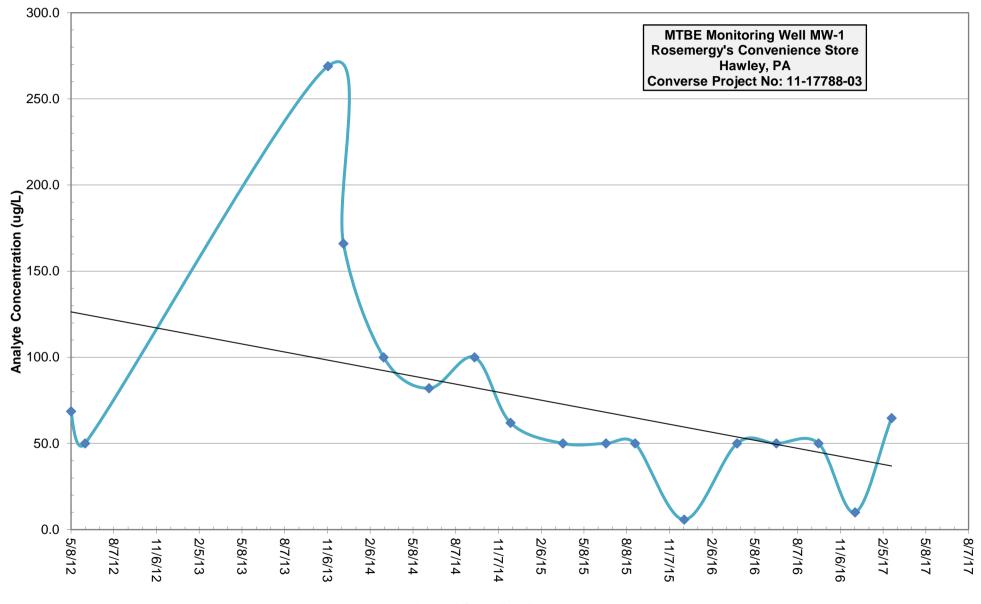

NM - Not measured, wells were not accessible

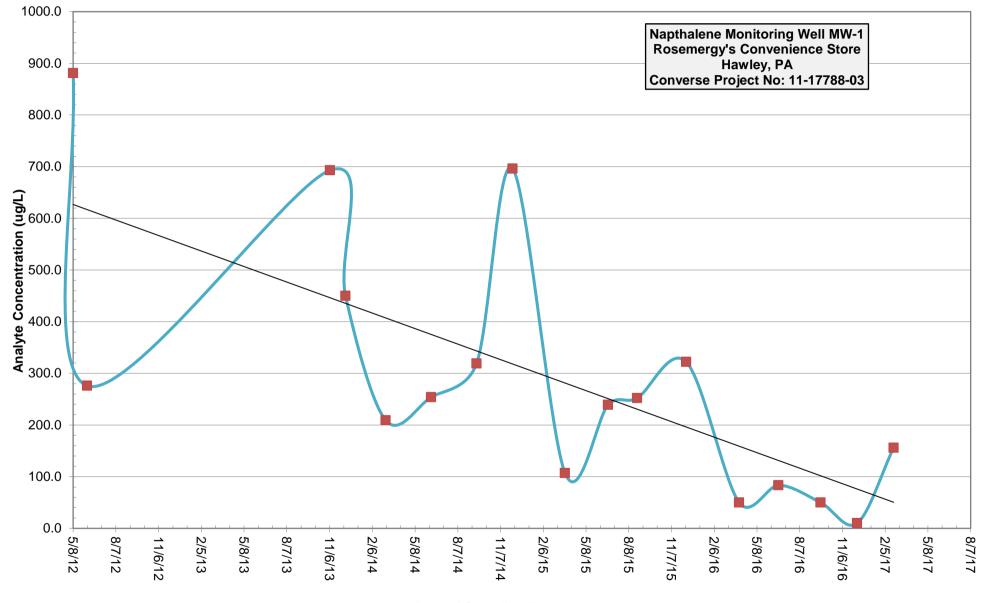

AS - Water level is above screen

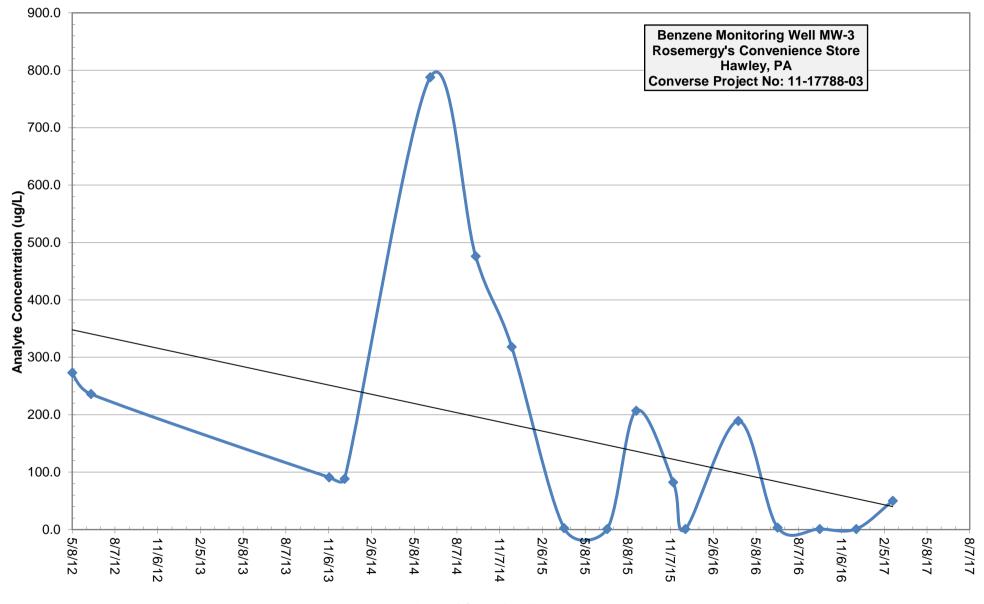


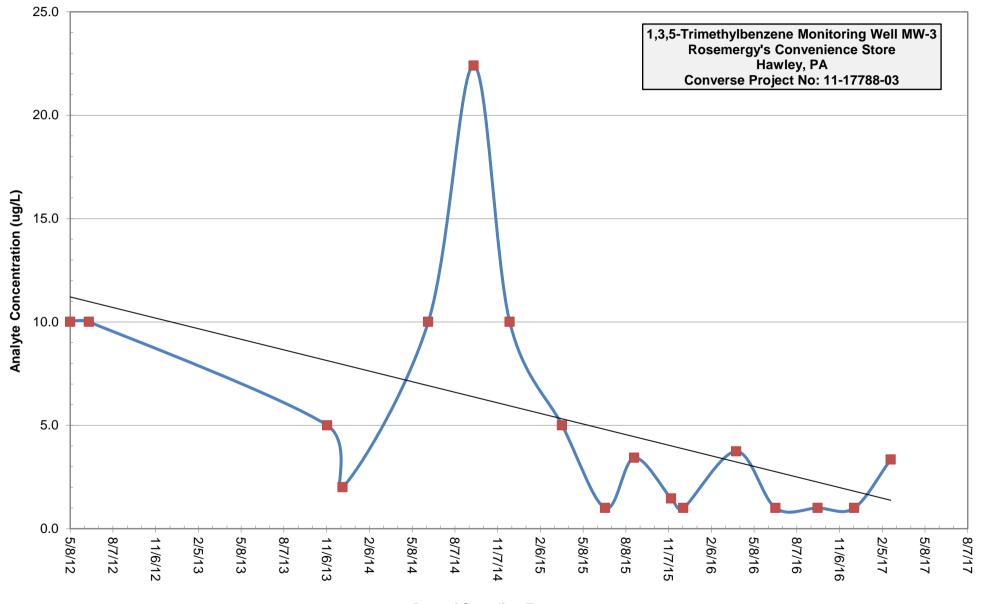



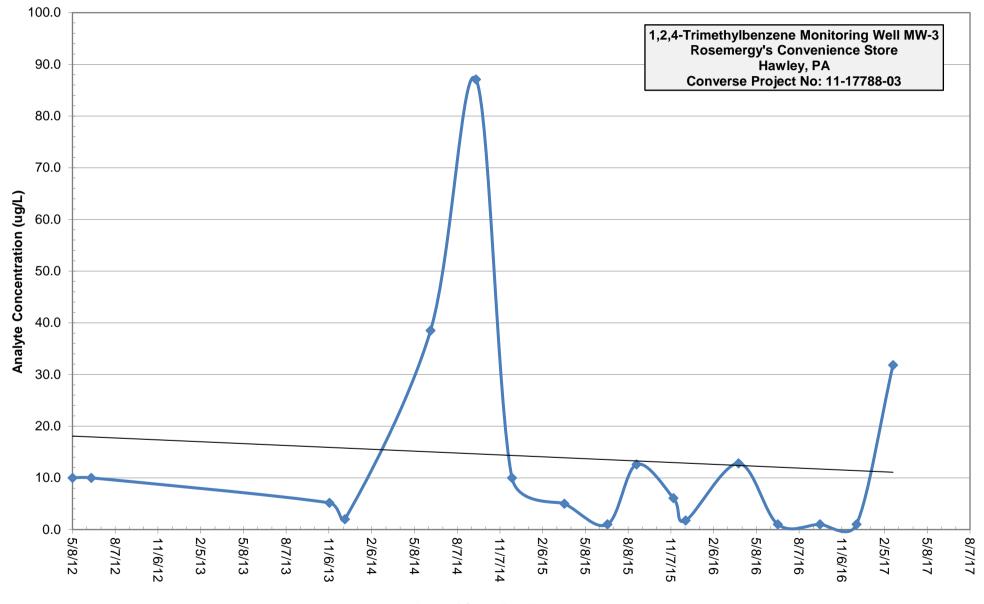



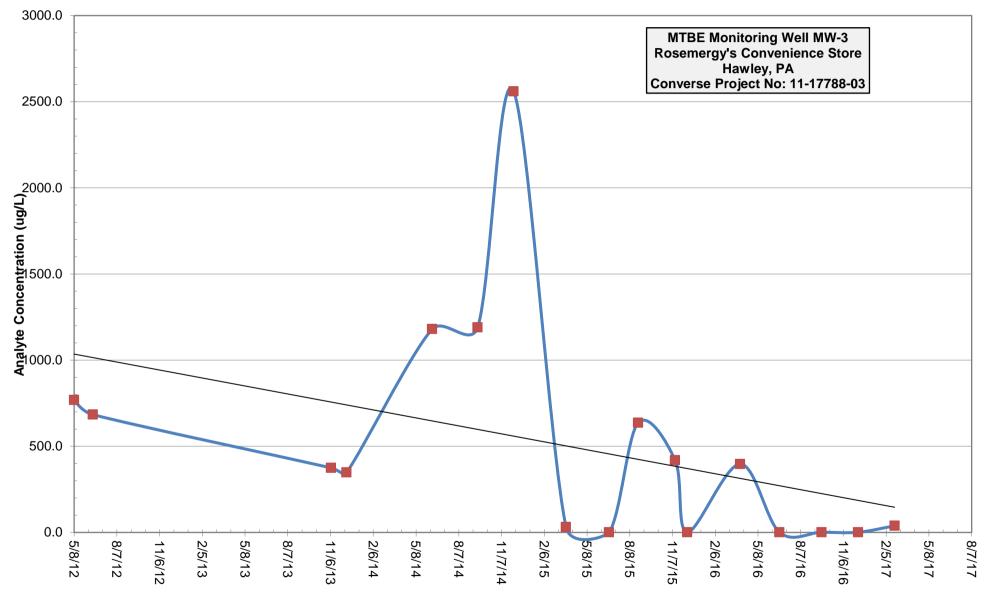



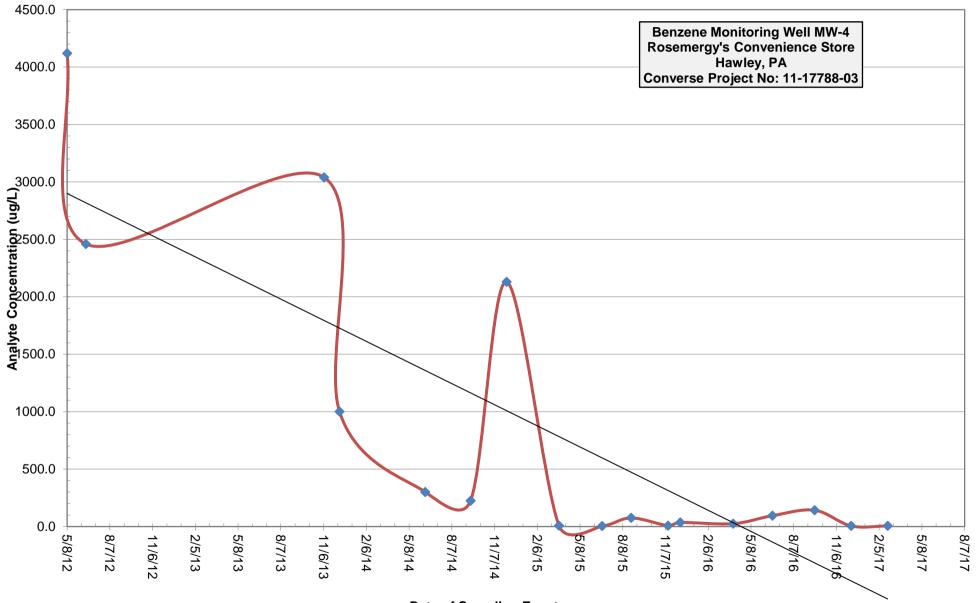



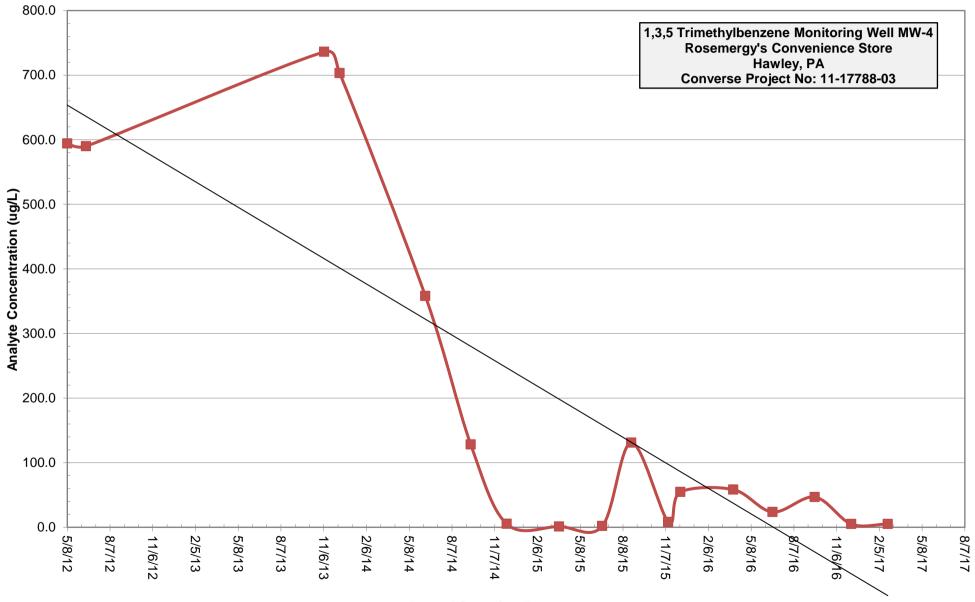



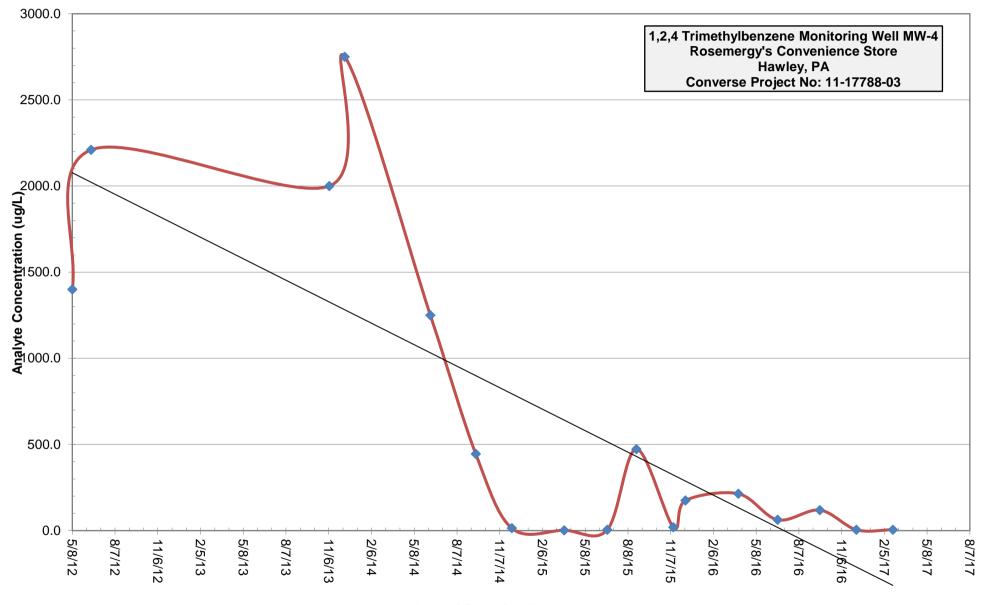



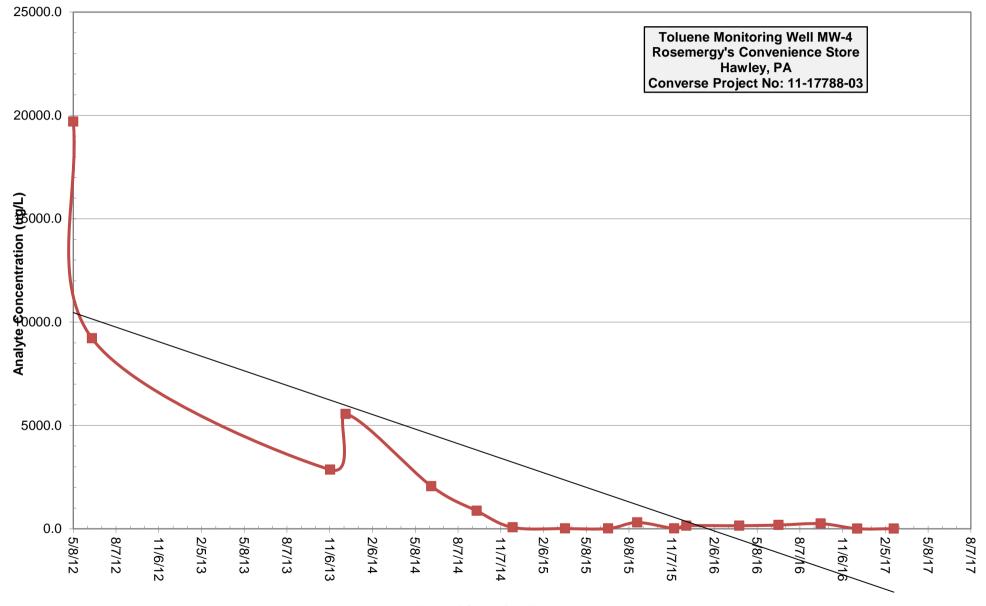



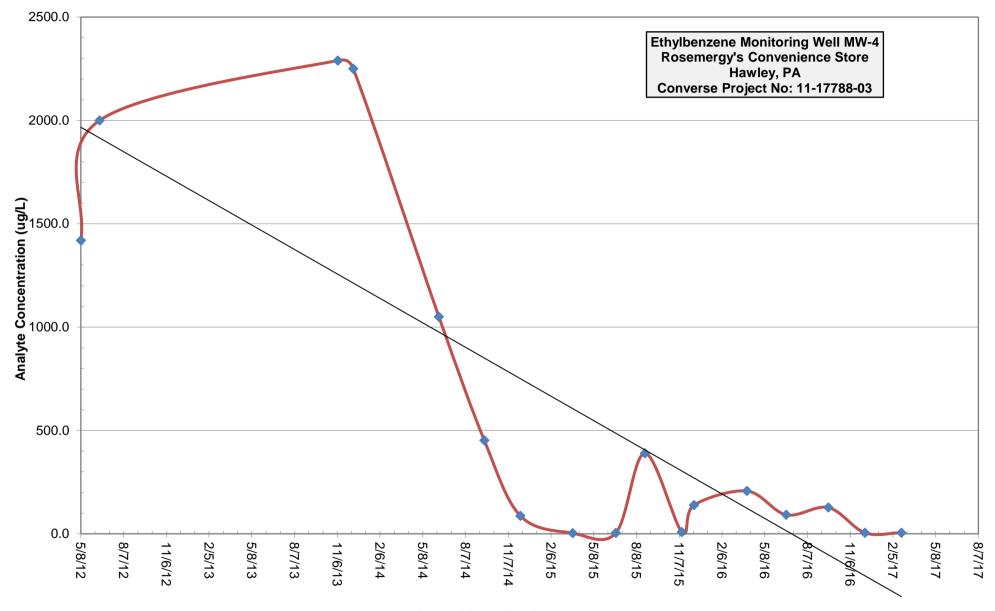



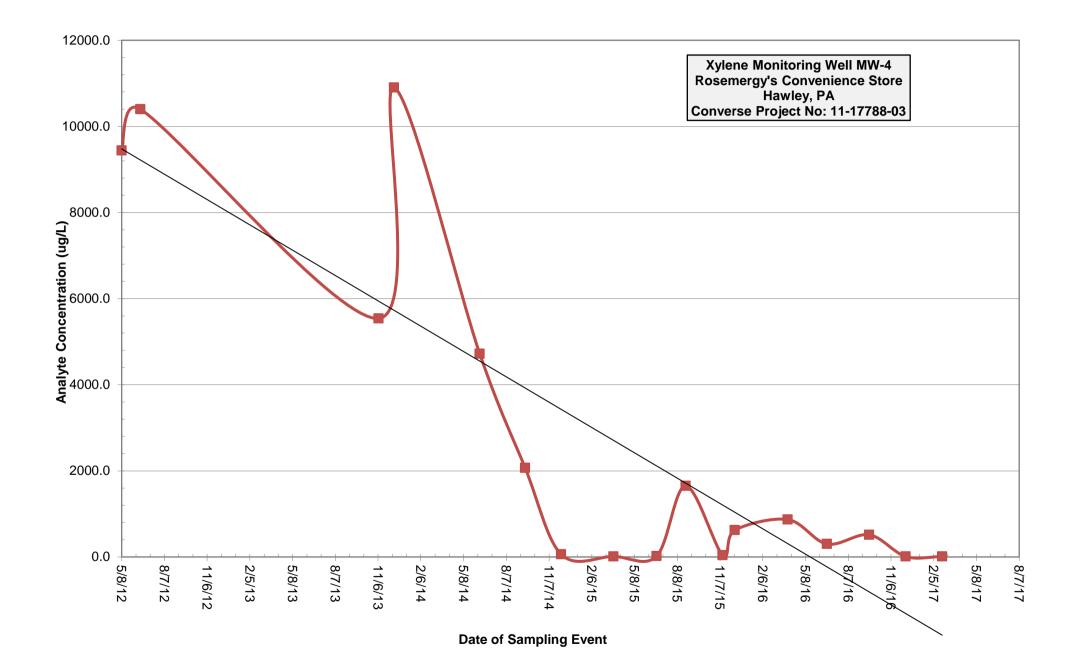



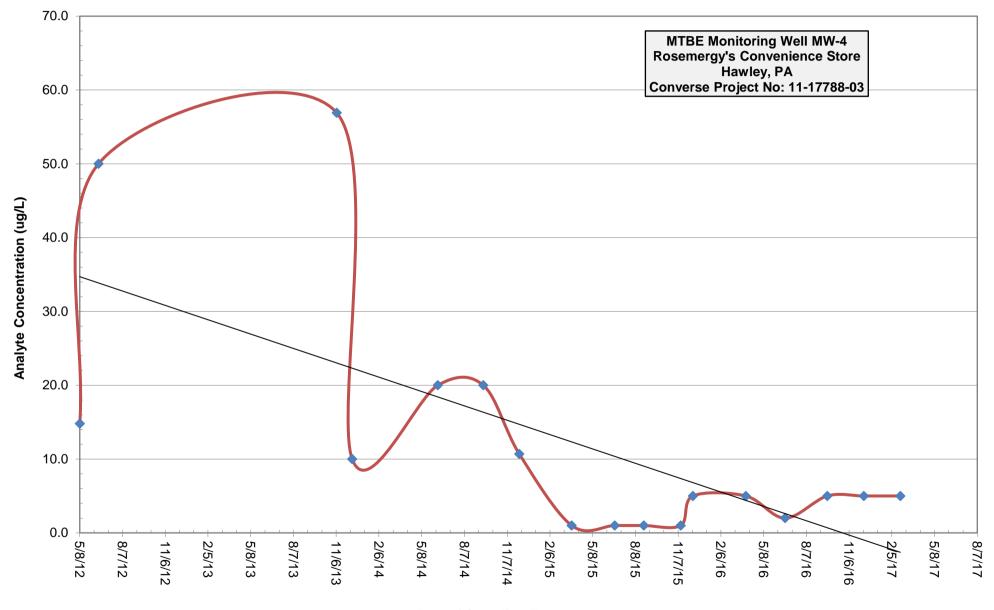



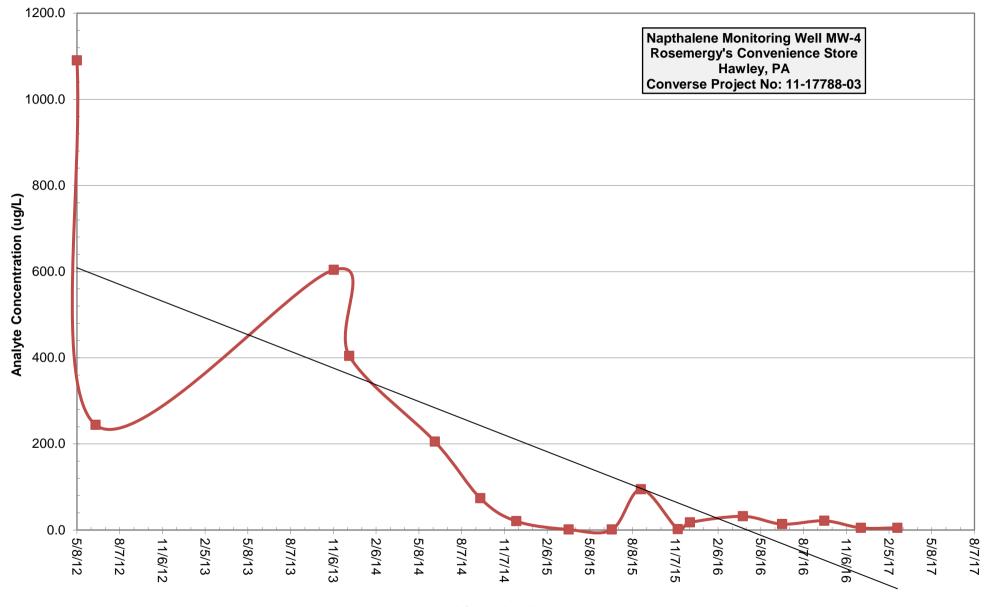



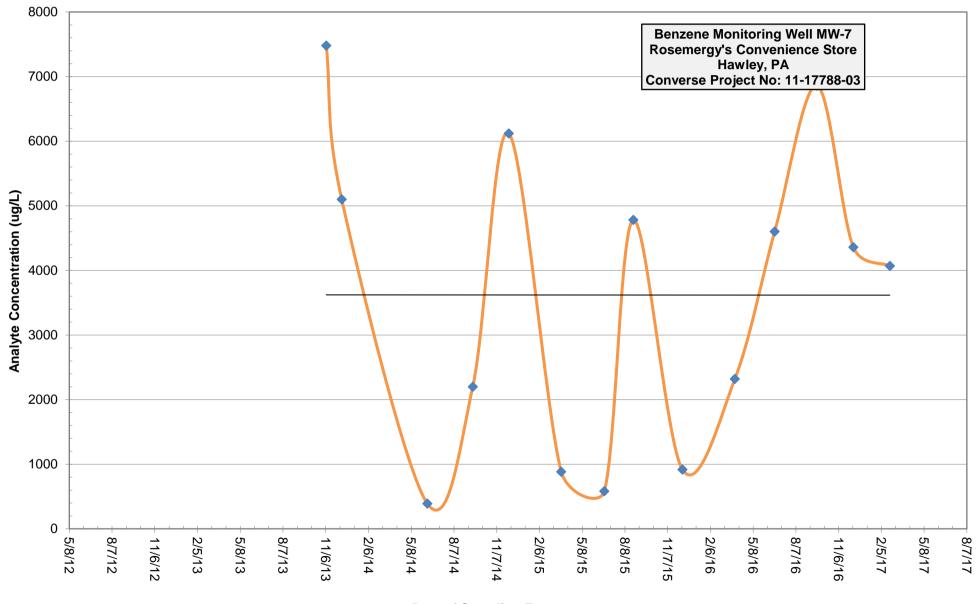



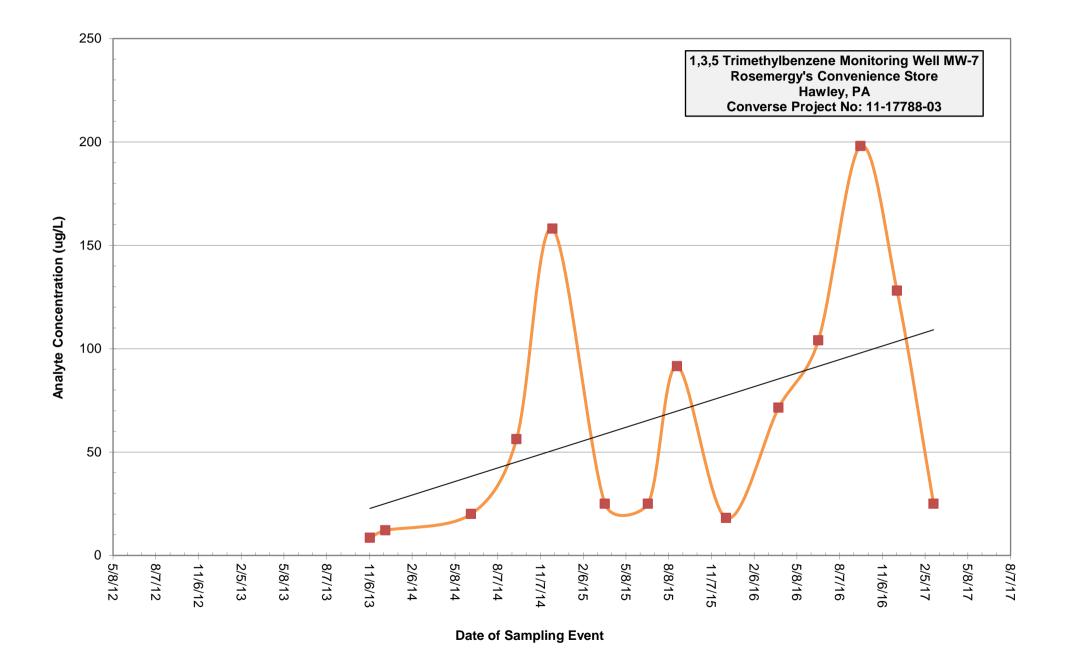



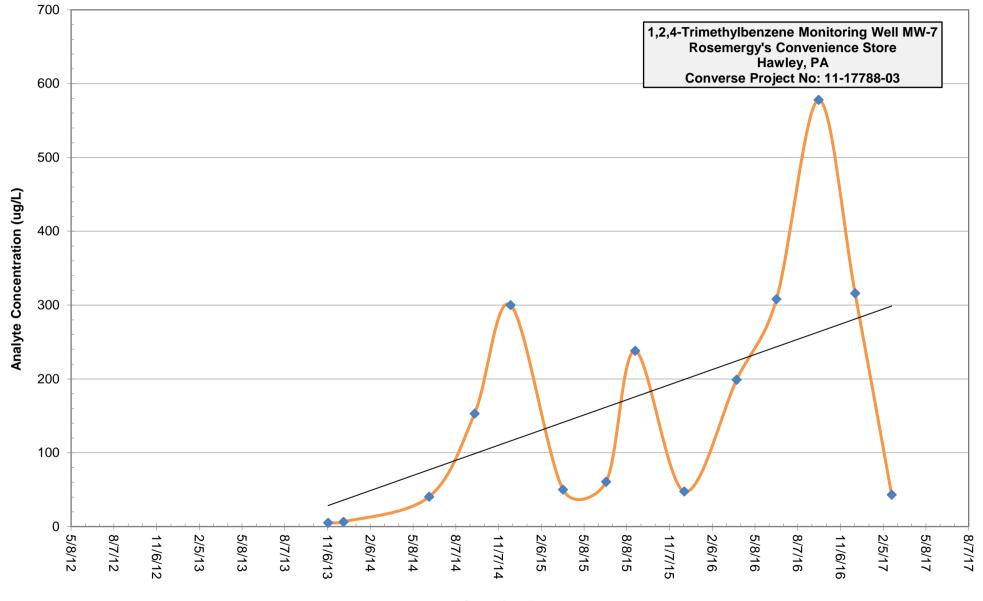



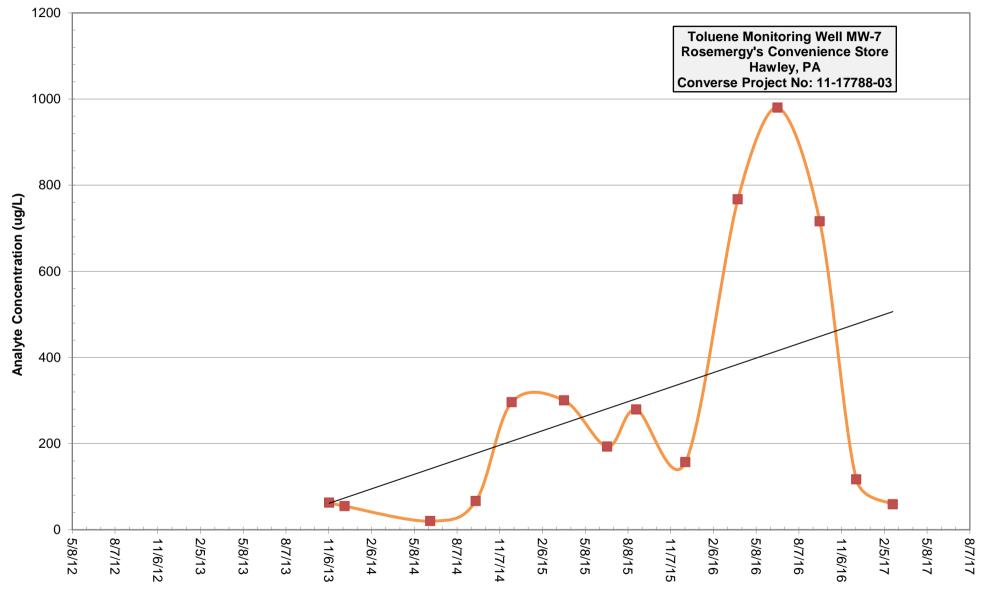



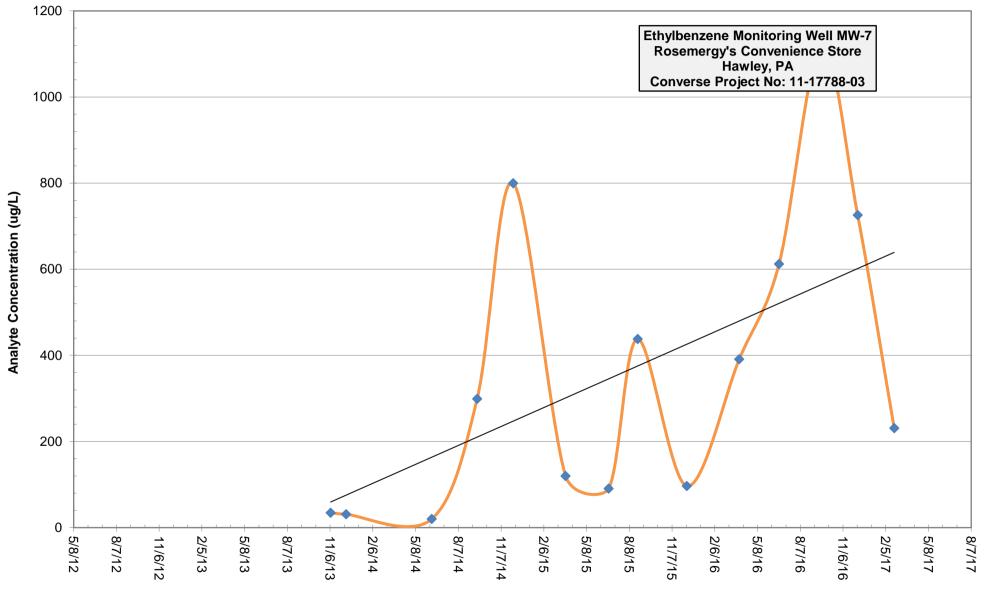



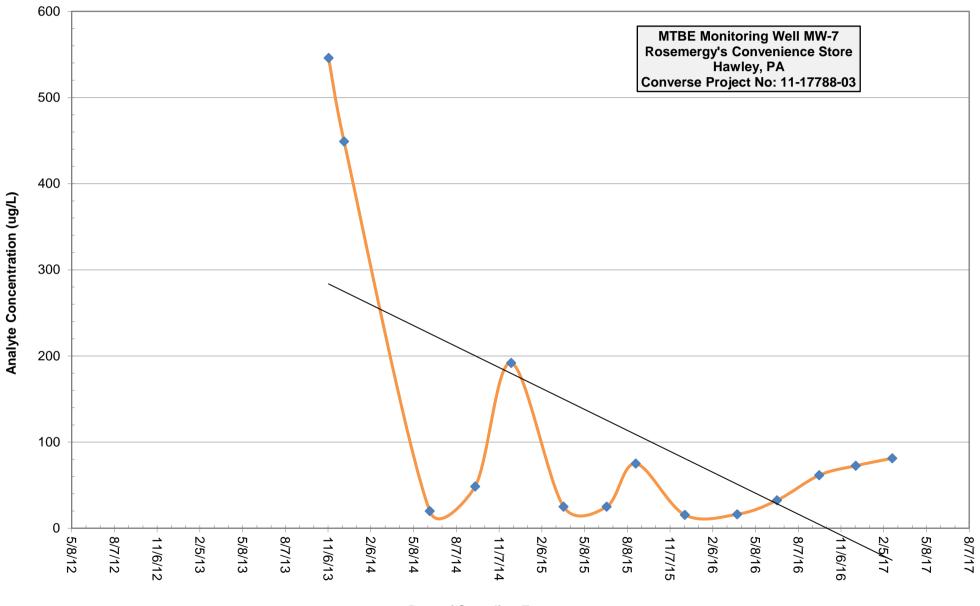



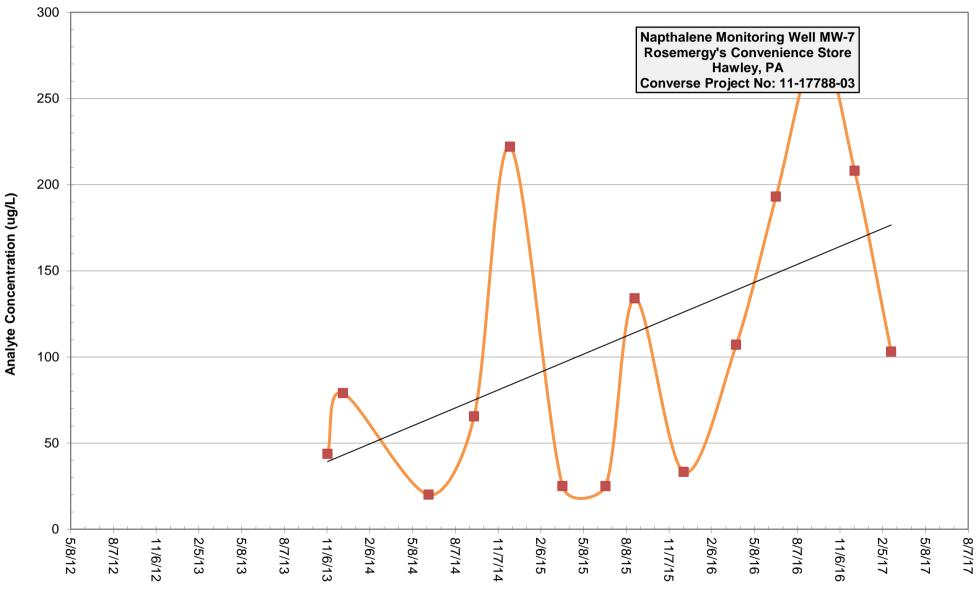



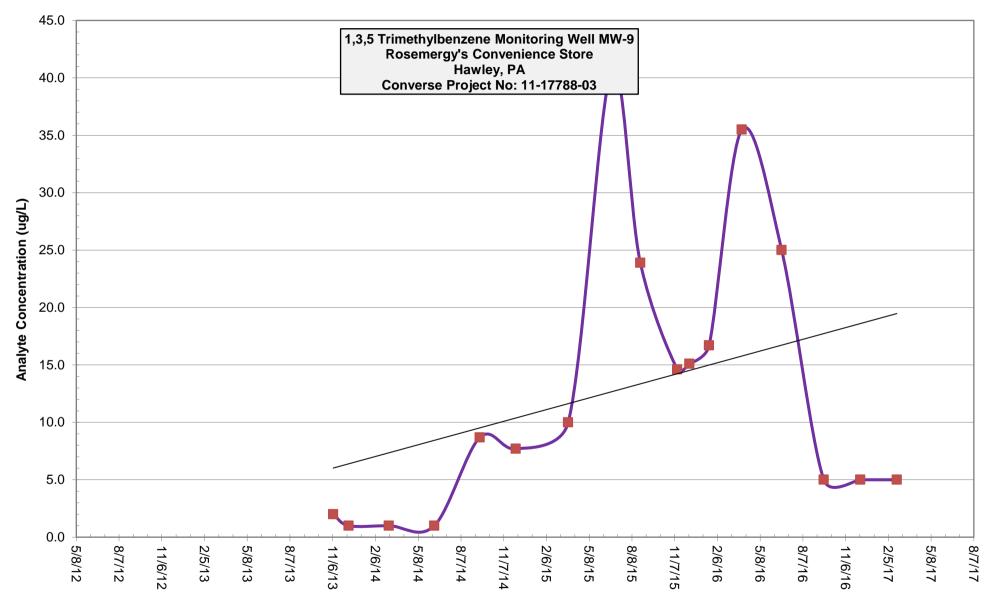



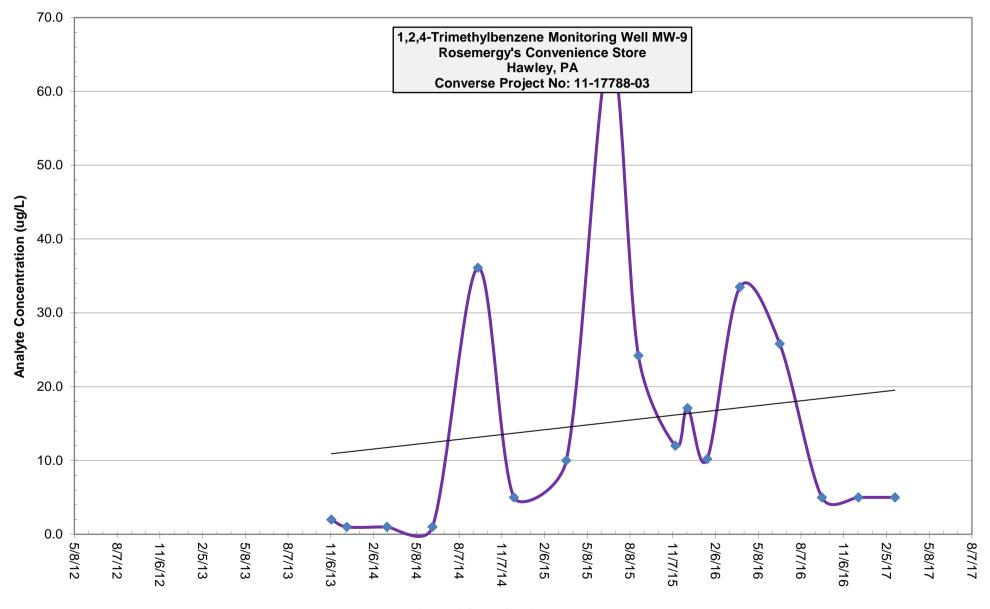



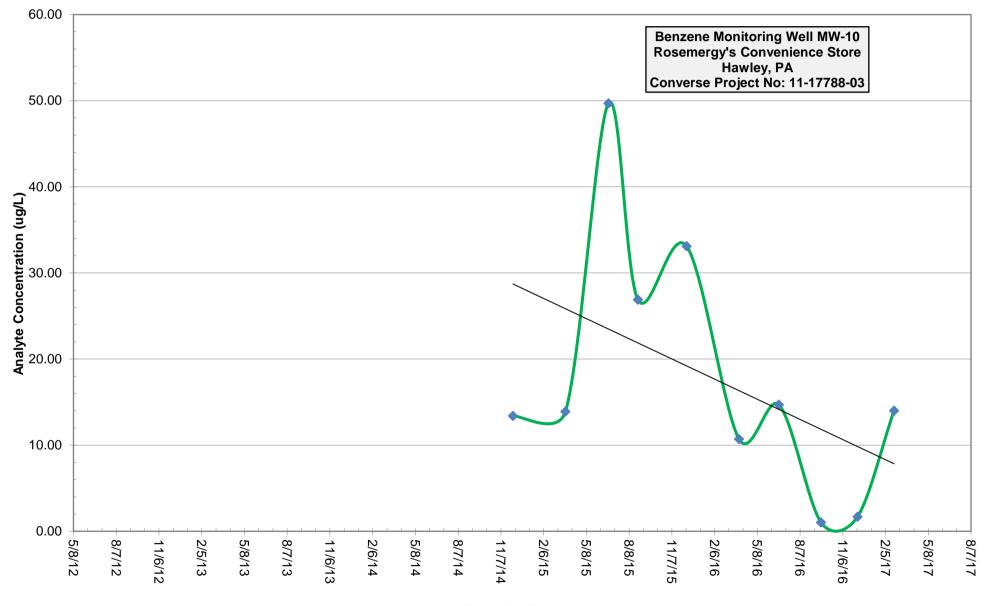



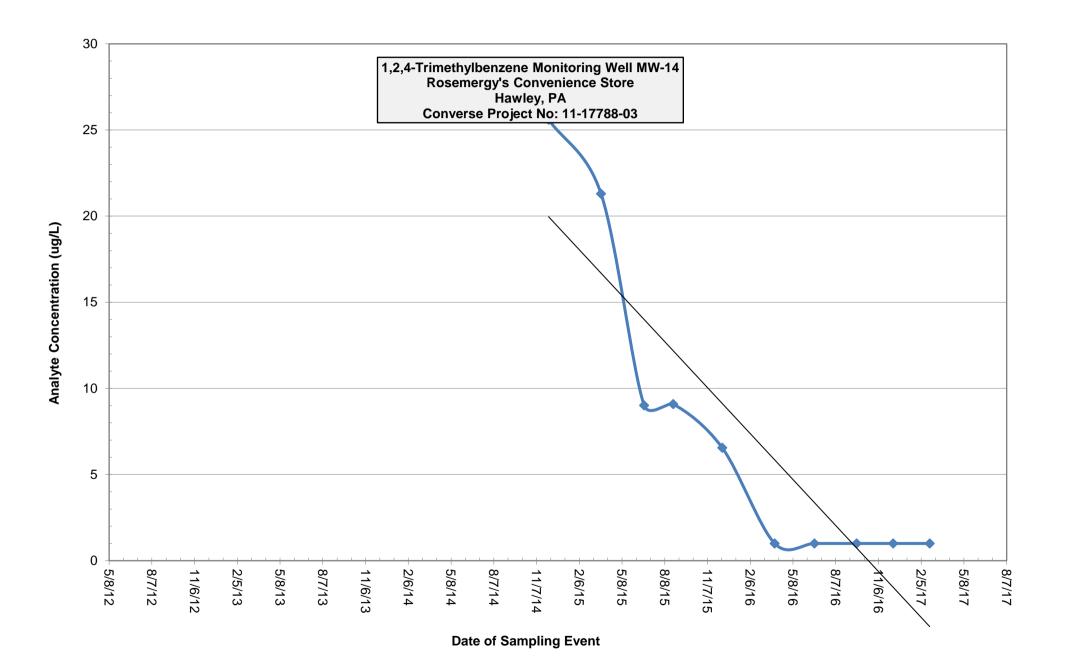


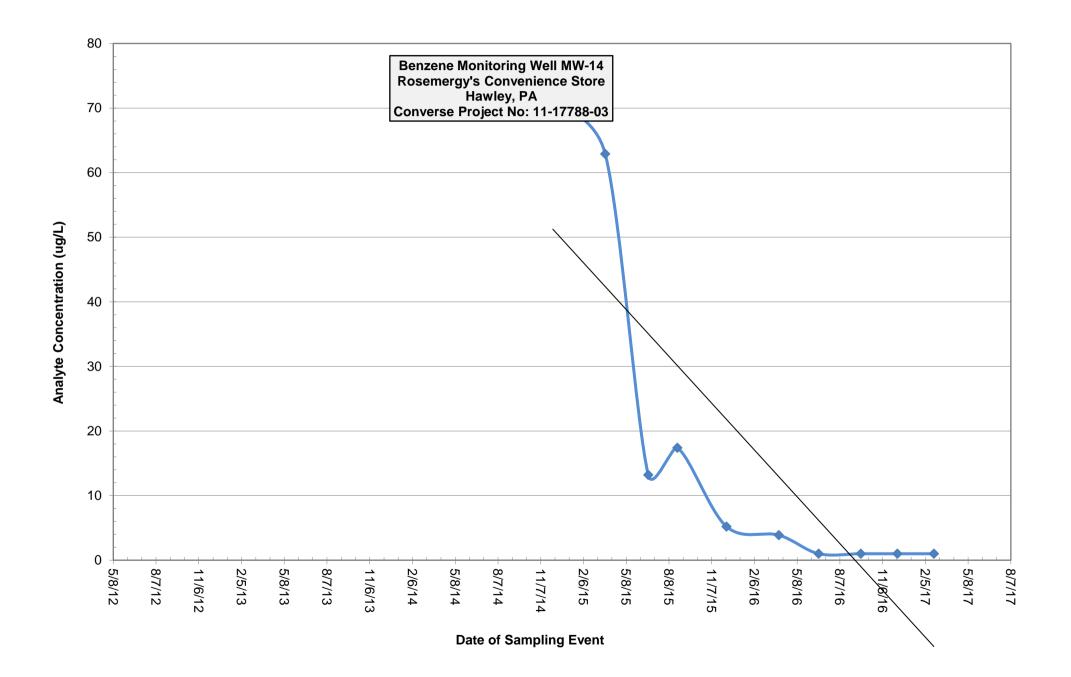



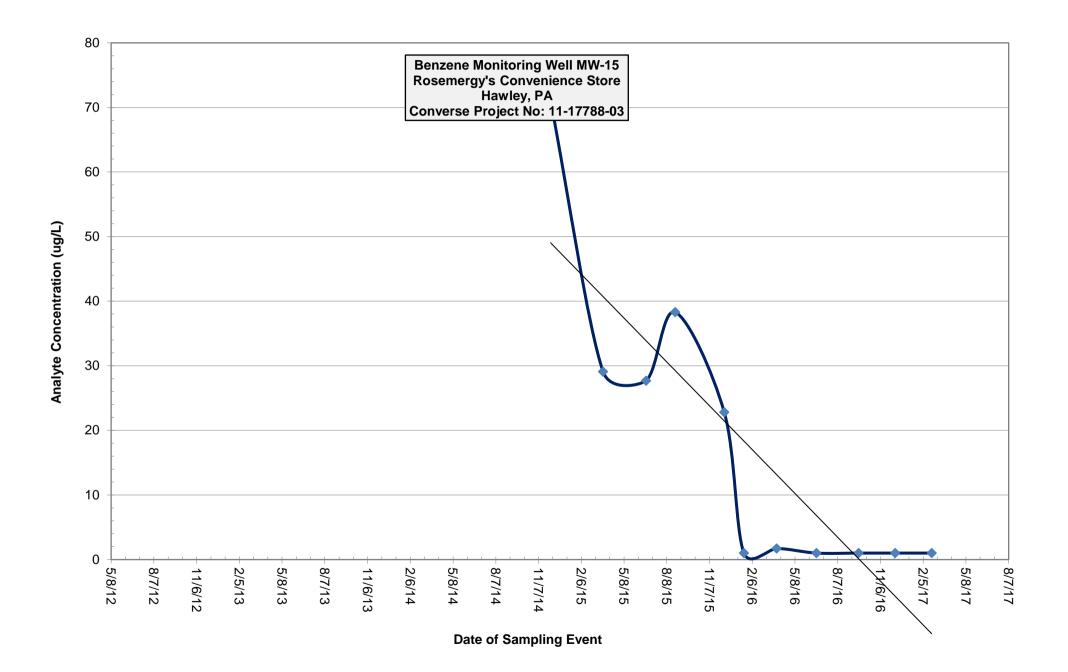



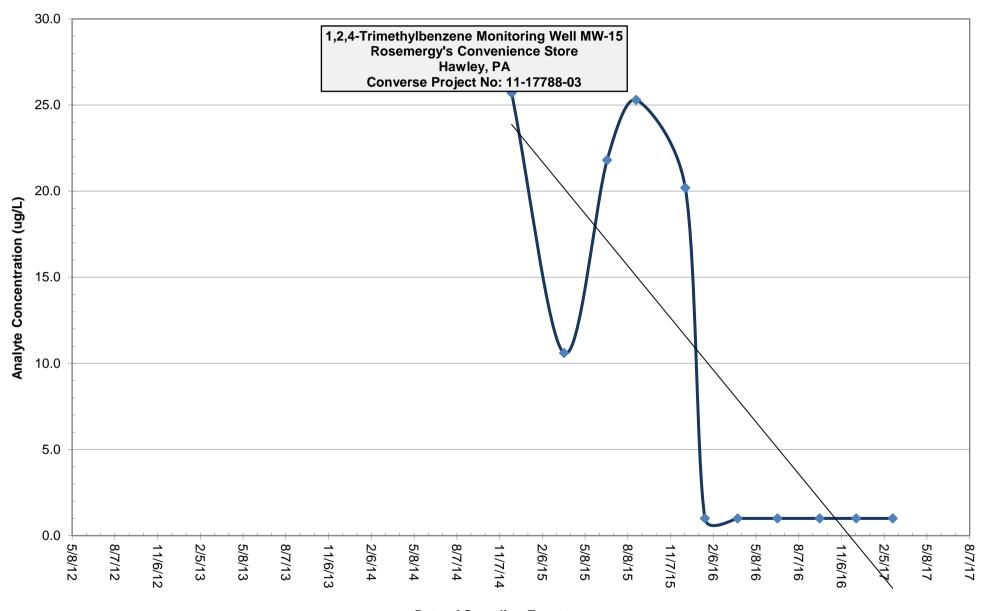





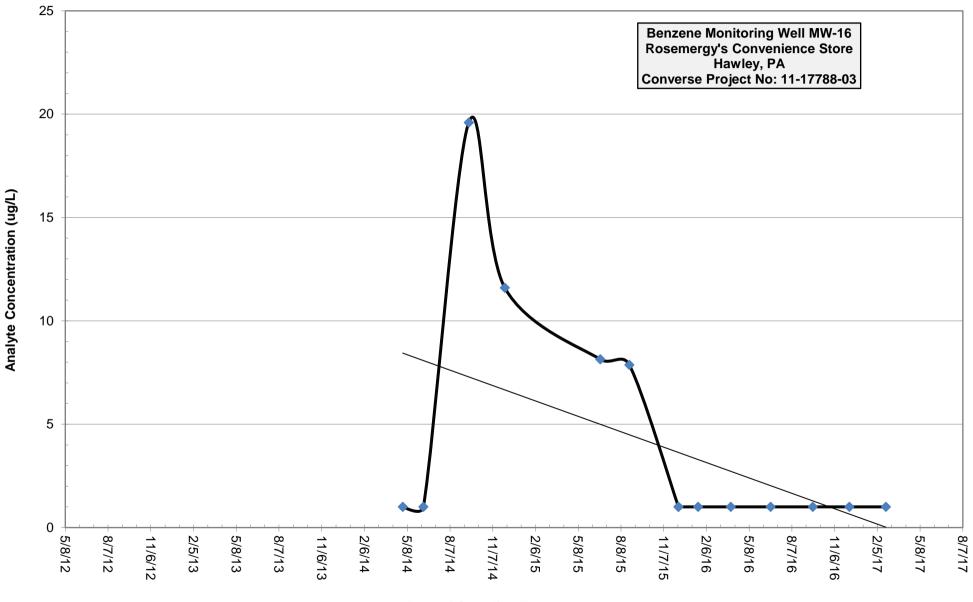



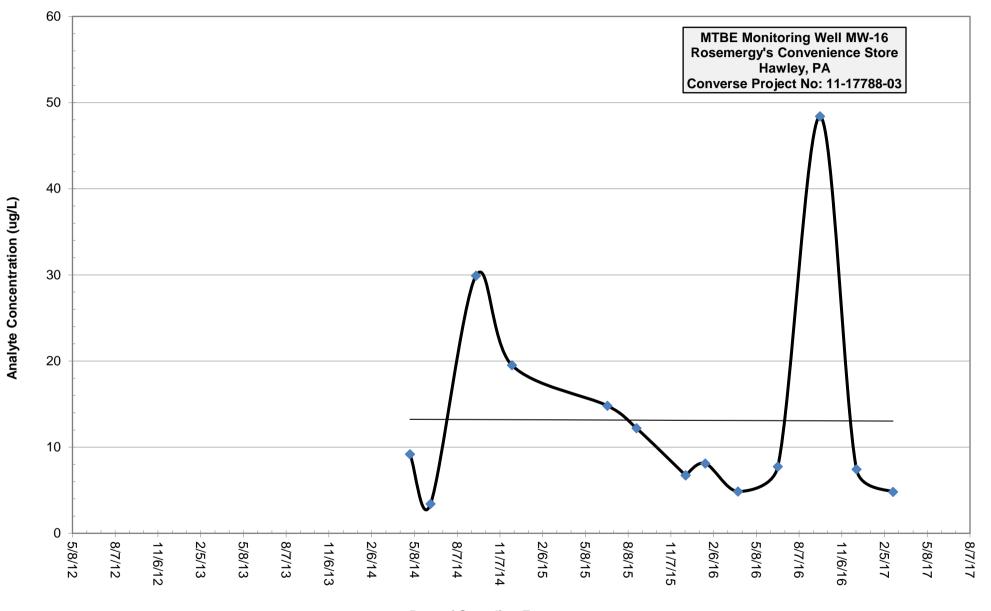










Date of Sampling Event



Date of Sampling Event



Date of Sampling Event



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | venue          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Sample Type | Date Sampled   | Date Received  |
|-----------|---------------|--------|-------------|----------------|----------------|
| MW-1R     | 7B27094-01    | Water  | Grab        | 02/24/17 12:03 | 02/27/17 17:25 |
| MW-2      | 7B27094-02    | Water  | Grab        | 02/24/17 10:42 | 02/27/17 17:25 |
| MW-3      | 7B27094-03    | Water  | Grab        | 02/24/17 11:10 | 02/27/17 17:25 |
| MW-4      | 7B27094-04    | Water  | Grab        | 02/24/17 11:40 | 02/27/17 17:25 |
| MW-5      | 7B27094-05    | Water  | Grab        | 02/24/17 10:40 | 02/27/17 17:25 |
| MW-7      | 7B27094-06    | Water  | Grab        | 02/24/17 12:08 | 02/27/17 17:25 |
| MW-8      | 7B27094-07    | Water  | Grab        | 02/24/17 14:45 | 02/27/17 17:25 |
| MW-9      | 7B27094-08    | Water  | Grab        | 02/24/17 14:20 | 02/27/17 17:25 |
| MW-10     | 7B27094-09    | Water  | Grab        | 02/24/17 12:30 | 02/27/17 17:25 |
| MW-11     | 7B27094-10    | Water  | Grab        | 02/24/17 12:42 | 02/27/17 17:25 |
| MW-12     | 7B27094-11    | Water  | Grab        | 02/24/17 08:48 | 02/27/17 17:25 |
| MW-13     | 7B27094-12    | Water  | Grab        | 02/24/17 10:00 | 02/27/17 17:25 |
| MW-14     | 7B27094-13    | Water  | Grab        | 02/24/17 09:30 | 02/27/17 17:25 |
| MW-15     | 7B27094-14    | Water  | Grab        | 02/24/17 08:45 | 02/27/17 17:25 |
| MW-16     | 7B27094-15    | Water  | Grab        | 02/24/17 13:44 | 02/27/17 17:25 |
| MW-17     | 7B27094-16    | Water  | Grab        | 02/24/17 09:06 | 02/27/17 17:25 |
| MW-18     | 7B27094-17    | Water  | Grab        | 02/24/17 09:29 | 02/27/17 17:25 |
| MW-19     | 7B27094-18    | Water  | Grab        | 02/24/17 10:05 | 02/27/17 17:25 |

Fairway Laboratories, Inc.

Reviewed and Submitted by:

mot

Michael P. Tyler Laboratory Director

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                |
|-----------------------|----------------|-----------------------|-------------|----------------|
| 2738 West College Av  | renue          | Project Number:       | 11-17788-03 | Reported:      |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19 |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                |

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Sample Type | Date Sampled   | Date Received  |
|-----------|---------------|--------|-------------|----------------|----------------|
| MW-20     | 7B27094-19    | Water  | Grab        | 02/24/17 14:03 | 02/27/17 17:25 |
| MW-21     | 7B27094-20    | Water  | Grab        | 02/24/17 13:11 | 02/27/17 17:25 |
| MW-22     | 7B27094-21    | Water  | Grab        | 02/24/17 13:25 | 02/27/17 17:25 |
| MW-2R     | 7B27094-22    | Water  | Grab        | 02/24/17 10:42 | 02/27/17 17:25 |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse               |                | Project:              | ROSEMERGY'S |                  |
|------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Aver | nue            | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 1680 | l              | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:       | David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-1R

Date/Time Sampled: 02/24/17 12:03

Laboratory Sample ID:7B27094-01 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 140          |       | 10.0 | ug/l  | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | 467          |       | 10.0 | ug/l  | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Benzene                           | 4510         |       | 100  | ug/l  | 03/03/17 15:58          | EPA 8260B            | sap          |      |
| Toluene                           | 2400         |       | 100  | ug/l  | 03/03/17 15:58          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 806          |       | 10.0 | ug/l  | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | 2960         |       | 200  | ug/l  | 03/03/17 15:58          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | 98.1         |       | 10.0 | ug/l  | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | 64.7         |       | 10.0 | ug/l  | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Naphthalene                       | 156          |       | 10.0 | ug/l  | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 102 % | 70-  | 130   | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 105 % | 70-1 | 130   | 03/02/17 16:52          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 101 % | 70-1 | 130   | 03/02/17 16:52          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-2

**Date/Time Sampled:** 02/24/17 10:42

Laboratory Sample ID: 7B27094-02 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 37.4         |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | 170          |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Benzene                           | 32.4         |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Toluene                           | 59.5         |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 110          |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | 196          |        | 20.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | 36.5         |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <10.0        |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Naphthalene                       | 26.6         |        | 10.0 | ug/l  | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | Ş            | 07.6 % | 70-1 | 30    | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 102 %  | 70-1 | 30    | 03/02/17 17:18          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 101 %  | 70-1 | 30    | 03/02/17 17:18          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                 |              | Project:              | ROSEMERGY'S |                  |
|--------------------------|--------------|-----------------------|-------------|------------------|
| 2738 West College Avenue | 2            | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801  |              | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: Da      | wid Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-3

Date/Time Sampled: 02/24/17 11:10

Laboratory Sample ID: 7B27094-03 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 3.34         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | 31.8         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Benzene                           | 50.0         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Toluene                           | 6.50         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | 42.6         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | 38.2         |        | 2.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | 15.6         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | 38.2         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Naphthalene                       | 3.93         |        | 1.00 | ug/l  | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 97.0 % | 70-1 | 130   | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 102 %  | 70-1 | 130   | 03/01/17 00:15          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          |              | 103 %  | 70-1 | 130   | 03/01/17 00:15          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-4

**Date/Time Sampled:** 02/24/17 11:40

Laboratory Sample ID: 7B27094-04 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Benzene                           | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Toluene                           | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <10.0        |       | 10.0 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Naphthalene                       | <5.00        |       | 5.00 | ug/l  | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 7.7 % | 70-1 | 30    | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | -            | 102 % | 70-1 | 30    | 03/01/17 19:08          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 9            | 8.6 % | 70-1 | 30    | 03/01/17 19:08          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-5

**Date/Time Sampled:** 02/24/17 10:40

Laboratory Sample ID: 7B27094-05 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 433          |        | 10.0 | ug/l  | 03/02/17 17:44          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | 1700         |        | 100  | ug/l  | 03/03/17 16:36          | EPA 8260B            | sap          |      |
| Benzene                           | 2270         |        | 100  | ug/l  | 03/03/17 16:36          | EPA 8260B            | sap          |      |
| Toluene                           | 4200         |        | 100  | ug/l  | 03/03/17 16:36          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 2710         |        | 100  | ug/l  | 03/03/17 16:36          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | 11100        |        | 200  | ug/l  | 03/03/17 16:36          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | 185          |        | 10.0 | ug/l  | 03/02/17 17:44          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | 14.4         |        | 10.0 | ug/l  | 03/02/17 17:44          | EPA 8260B            | sap          |      |
| Naphthalene                       | 405          |        | 10.0 | ug/l  | 03/02/17 17:44          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 99.1 % | 70-1 | 130   | 03/02/17 17:44          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 103 %  | 70-1 | 130   | 03/02/17 17:44          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 101 %  | 70-1 | 130   | 03/02/17 17:44          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                |                | Project:              | ROSEMERGY'S |                  |
|-------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Avenu | ue             | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801 |                | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: D      | David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-7

Date/Time Sampled: 02/24/17 12:08

Laboratory Sample ID: 7B27094-06 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <25.0        |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | 43.2         |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Benzene                           | 4070         |        | 100  | ug/l  | 03/03/17 17:14          | EPA 8260B            | sap          |      |
| Toluene                           | 59.0         |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 231          |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | 86.5         |        | 50.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | 103          |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | 81.2         |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Naphthalene                       | 103          |        | 25.0 | ug/l  | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 99.3 % | 70-  | 130   | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 104 %  | 70   | 130   | 03/02/17 18:10          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 99.6 % | 70-1 | 130   | 03/02/17 18:10          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                 |          | Project:              | ROSEMERGY'S |                  |
|--------------------------|----------|-----------------------|-------------|------------------|
| 2738 West College Avenue |          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801  |          | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David   | Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-8

Date/Time Sampled: 02/24/17 14:45

Laboratory Sample ID: 7B27094-07 (Water/Grab)

| Analyte                           | Result       | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Benzene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00        |      | 2.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Naphthalene                       | <1.00        |      | 1.00 | ug/l  | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 95           | 5.9% | 70-1 | 30    | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 03 % | 70-1 | 30    | 03/01/17 00:54          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | 1            | 03 % | 70-1 | 30    | 03/01/17 00:54          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

# Client Sample ID: MW-9

**Date/Time Sampled:** 02/24/17 14:20

Laboratory Sample ID: 7B27094-08 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | < 5.00       |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | < 5.00       |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Benzene                           | 243          |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Toluene                           | 8.85         |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 25.2         |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <10.0        |        | 10.0 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | 26.0         |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | < 5.00       |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Naphthalene                       | < 5.00       |        | 5.00 | ug/l  | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 99.9 % | 70-1 | 30    | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 104 %  | 70-1 | 30    | 03/01/17 19:46          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 99.0 % | 70-1 | 30    | 03/01/17 19:46          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                        | Project:              | ROSEMERGY'S |                  |
|---------------------------------|-----------------------|-------------|------------------|
| 2738 West College Avenue        | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801         | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David Swetland | Number of Containers: | 44          |                  |
|                                 |                       |             |                  |

## Client Sample ID: MW-10

Date/Time Sampled: 02/24/17 12:30

Laboratory Sample ID: 7B27094-09 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Benzene                           | 14.0         |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | 3.18         |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | 11.0         |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 5.2 % | 70-1 | 30    | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | Ĩ            | 11 %  | 70-1 | 30    | 03/01/17 01:32          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | 1            | 04 %  | 70-1 | 30    | 03/01/17 01:32          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                        | Project:              | ROSEMERGY'S |                  |
|---------------------------------|-----------------------|-------------|------------------|
| 2738 West College Avenue        | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801         | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-11

**Date/Time Sampled:** 02/24/17 12:42

Laboratory Sample ID: 7B27094-10 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 1.6 % | 70-1 | 30    | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | Ĺ            | 04 %  | 70-1 | 30    | 03/01/17 02:47          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | j            | 102 % | 70-1 | 30    | 03/01/17 02:47          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                 |          | Project:              | ROSEMERGY'S |                  |
|--------------------------|----------|-----------------------|-------------|------------------|
| 2738 West College Avenue |          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801  |          | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David   | Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-12

Date/Time Sampled: 02/24/17 08:48

Laboratory Sample ID: 7B27094-11 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 90           | 5.5 % | 70-1 | 30    | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 06 %  | 70-1 | 30    | 02/28/17 23:54          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 1            | 03 %  | 70-1 | 30    | 02/28/17 23:54          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                 |          | Project:              | ROSEMERGY'S |                  |
|--------------------------|----------|-----------------------|-------------|------------------|
| 2738 West College Avenue |          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801  |          | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David   | Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-13

Date/Time Sampled: 02/24/17 10:00

Laboratory Sample ID: 7B27094-12 (Water/Grab)

| Analyte                          | Result         | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|----------------------------------|----------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EP | A Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene           | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene           | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Benzene                          | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Toluene                          | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Ethylbenzene                     | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Xylenes (total)                  | <2.00          |       | 2.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Isopropylbenzene                 | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether          | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Naphthalene                      | <1.00          |       | 1.00 | ug/l  | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene  | 97             | 7.6 % | 70-1 | 30    | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4 | 1              | 05 %  | 70-1 | 30    | 03/01/17 01:10          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene         | 1              | 01 %  | 70-1 | 30    | 03/01/17 01:10          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                |                | Project:              | ROSEMERGY'S |                  |
|-------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Aver  | nue            | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801 | l              | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:        | David Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-14

**Date/Time Sampled:** 02/24/17 09:30

Laboratory Sample ID: 7B27094-13 (Water/Grab)

| Analyte                           | Result       | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |      | 2.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |      | 1.00 | ug/l  | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 99           | .0 % | 70-1 | 30    | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 10           | 05 % | 70-1 | 30    | 03/01/17 06:14          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 10           | 02 % | 70-1 | 30    | 03/01/17 06:14          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                 |          | Project:              | ROSEMERGY'S |                  |
|--------------------------|----------|-----------------------|-------------|------------------|
| 2738 West College Avenue |          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801  |          | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David   | Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-15

Date/Time Sampled: 02/24/17 08:45

Laboratory Sample ID: 7B27094-14 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 8.1 % | 70-1 | 30    | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | Ĺ            | 07 %  | 70-1 | 30    | 03/01/17 06:52          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 102 % | 70-1 | 30    | 03/01/17 06:52          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-16

**Date/Time Sampled:** 02/24/17 13:44

Laboratory Sample ID: 7B27094-15 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | 4.81         |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 9.           | 5.5 % | 70-1 | 30    | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 06 %  | 70-1 | 30    | 03/01/17 07:31          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 9.           | 9.7 % | 70-1 | 30    | 03/01/17 07:31          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                        | Project:              | ROSEMERGY'S |                  |
|---------------------------------|-----------------------|-------------|------------------|
| 2738 West College Avenue        | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801         | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-17

Date/Time Sampled: 02/24/17 09:06

Laboratory Sample ID: 7B27094-16 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 9.9 % | 70-1 | 30    | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 103 % | 70-1 | 30    | 03/01/17 08:09          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 103 % | 70-1 | 30    | 03/01/17 08:09          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                        | Project:              | ROSEMERGY'S |                  |  |  |
|---------------------------------|-----------------------|-------------|------------------|--|--|
| 2738 West College Avenue        | Project Number:       | 11-17788-03 | <b>Reported:</b> |  |  |
| State College PA, 16801         | Collector:            | CLIENT      | 03/15/17 10:19   |  |  |
| Project Manager: David Swetland | Number of Containers: | 44          |                  |  |  |

## Client Sample ID: MW-18

**Date/Time Sampled:** 02/24/17 09:29

Laboratory Sample ID: 7B27094-17 (Water/Grab)

| Analyte                           | Result       | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |      | 2.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |      | 1.00 | ug/l  | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 90           | 6.7% | 70-1 | 30    | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 02 % | 70-1 | 30    | 03/01/17 08:47          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 1            | 00 % | 70-1 | 30    | 03/01/17 08:47          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse<br>2738 West College Avenue<br>State College PA, 16801 |                | Project:              | ROSEMERGY'S |                  |
|-----------------------------------------------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av                                            | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168                                           | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:                                                | David Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-19

Date/Time Sampled: 02/24/17 10:05

Laboratory Sample ID: 7B27094-18 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 97           | 7.6 % | 70-1 | 30    | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 05 %  | 70-1 | 30    | 03/01/17 09:25          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 1            | 00 %  | 70-1 | 30    | 03/01/17 09:25          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                        | Project:              | ROSEMERGY'S |                  |
|---------------------------------|-----------------------|-------------|------------------|
| 2738 West College Avenue        | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801         | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-20

**Date/Time Sampled:** 02/24/17 14:03

Laboratory Sample ID: 7B27094-19 (Water/Grab)

| Analyte                           | Result       | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |      | 2.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | 1.01         |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |      | 1.00 | ug/l  | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 97           | .6%  | 70-1 | 30    | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 10           | 05 % | 70-1 | 30    | 03/01/17 05:55          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 1            | 02 % | 70-1 | 30    | 03/01/17 05:55          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                        | Project:              | ROSEMERGY'S |                  |
|---------------------------------|-----------------------|-------------|------------------|
| 2738 West College Avenue        | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801         | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager: David Swetland | Number of Containers: | 44          |                  |

#### Client Sample ID: MW-21

**Date/Time Sampled:** 02/24/17 13:11

Laboratory Sample ID: 7B27094-20 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |        | 2.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |        | 1.00 | ug/l  | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 95.6 % | 70-  | 130   | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 102 %  | 70-1 | 130   | 03/01/17 06:33          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 97.3 % | 70-1 | 130   | 03/01/17 06:33          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse               |                | Project:              | ROSEMERGY'S |                  |
|------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Ave  | nue            | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 1680 | 1              | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:       | David Swetland | Number of Containers: | 44          |                  |

## Client Sample ID: MW-22

**Date/Time Sampled:** 02/24/17 13:25

Laboratory Sample ID: 7B27094-21 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 7.9 % | 70-1 | 30    | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 03 %  | 70-1 | 30    | 03/01/17 07:11          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | 9.           | 9.4 % | 70-1 | 30    | 03/01/17 07:11          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse<br>2738 West College Avenue<br>State College PA, 16801 |                | Project:              | ROSEMERGY'S |                  |  |  |
|-----------------------------------------------------------------|----------------|-----------------------|-------------|------------------|--|--|
| 2738 West College Aver                                          | nue            | Project Number:       | 11-17788-03 | <b>Reported:</b> |  |  |
| State College PA, 1680                                          | l              | Collector:            | CLIENT      | 03/15/17 10:19   |  |  |
| Project Manager:                                                | David Swetland | Number of Containers: | 44          |                  |  |  |

#### Client Sample ID: MW-2R

**Date/Time Sampled:** 02/24/17 10:42

Laboratory Sample ID: 7B27094-22 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 34.4         |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | 164          |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Benzene                           | 20.9         |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Toluene                           | 52.9         |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 104          |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | 181          |        | 10.0 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | 32.3         |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | <5.00        |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Naphthalene                       | 24.0         |        | 5.00 | ug/l  | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 99.3 % | 70-1 | 130   | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 103 %  | 70-1 | 130   | 03/01/17 20:24          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          | -            | 98.4 % | 70-1 | 130   | 03/01/17 20:24          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse               |                | Project:              | ROSEMERGY'S |                  |
|------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Ave  | nue            | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 1680 | 1              | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:       | David Swetland | Number of Containers: | 44          |                  |

#### Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- # The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- \* P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252 certified.
- < Represents "less than" indicates that the result was less than the reporting limit.
- MDL Method Detection Limit is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RL Reporting Limit is the lowest or minimum level at which the analyte can be quantified.
- [CALC] Indicates a calculated result. Calculations use results from other analyses performed under accredited methods.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | venue          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/15/17 10:19   |
| Project Manager:      | David Swetland | Number of Containers: | 44          |                  |

#### Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

**CONFIDENTIALITY** Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

PAYMENT/BILLING Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date. A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

**SAMPLE COLLECTION AND SUBMISSION** Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

**RETURN OF RESULTS** Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.

HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

**WARRANTY AND LIMITATION OF LIABILITY** For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

| SAMPLING, CHAIN OF CUSTODY AND ANA<br>SAMPLING PLACE ROSEME OF F<br>DWNER<br>ADDRESS HAWILLY PA |                |                                   |      |              |                         | DATE 2/01/1/<br>WEATHER Ууйлу |          |              |                           |          |    | Converse Consultants<br>2738 West College Avenue<br>State College, Pennsylvania 16801<br>814-234-3223 |                |                                         |             |          |                     |        |        |     |
|-------------------------------------------------------------------------------------------------|----------------|-----------------------------------|------|--------------|-------------------------|-------------------------------|----------|--------------|---------------------------|----------|----|-------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|-------------|----------|---------------------|--------|--------|-----|
| STATION NO.<br>OR<br>SAMPLE IDENT.                                                              | TIME           | DEPTH TO WATER<br>(FEET)<br>DATUM | DEF  |              | AMOUNT PURGED<br>(GALS) | SAMPLING                      | METHOD   | Jaylow L HCI |                           |          |    |                                                                                                       | Hq             | SPECIFIC<br>CONDUCTANCE<br>(# mohs/cm.) | TEMP. °C    |          | ANALYSIS<br>REQUEST | / co   | MMENTS |     |
| MW-IR                                                                                           | 12:03          |                                   | Basi |              | 3.5                     | Gra                           | b        | Ø            |                           |          |    |                                                                                                       | ς'n.           | 2Kns                                    | 11,1        | 200      | 8 PF                | DEF    | Sh     | Æ.  |
| MW-2                                                                                            | 10:42          | 3.8                               |      |              | 5                       |                               | ··       |              | $\downarrow$ $\downarrow$ | ++       | ++ |                                                                                                       | 6.6            | <u>16 <b>9</b></u> /                    | 122         | List     | 701                 | get    | Compo  | NAS |
| <u>MW-J</u>                                                                                     | 1:10           | 2.40                              | ·    |              | 6                       |                               |          | M            | ++                        | ++       | ++ | ┥┤╽                                                                                                   | 6.6            | 1320                                    | 11. L<br>an |          |                     | 1      | /      |     |
| MW-4<br>MW-4                                                                                    | 11:40<br>10:40 | <u>1.44</u><br>3.77               |      |              | 7                       |                               |          | $\mathbb{N}$ | ++                        | ┼┾       | ++ |                                                                                                       | 8.2<br>6.7     | 941<br>4.84ms                           | 9.9<br>W.3  |          | <u></u>             |        |        |     |
| $\frac{1}{M} - 1$                                                                               | 12:07          | <u>3.</u> //<br>7.91              |      |              | 5                       |                               |          |              | ╉╋                        | ++       | ┼╊ |                                                                                                       | $\frac{o}{C}$  | 7.87ms<br>1537                          | 12.8        | <u> </u> |                     |        |        |     |
| MV-8                                                                                            | 2:45           | 0.65                              |      |              | 7                       |                               |          | ľ/           |                           |          | ┼┼ |                                                                                                       | 7.8            | 2.31ms                                  | 22          |          |                     |        |        |     |
| mm1-9                                                                                           | 2:26           | 0                                 | Pum  | 0            | 8                       |                               |          | ĥ            |                           |          | ++ |                                                                                                       | 7.)            | 1463                                    | 8.1         |          |                     | 1      |        |     |
| MJ-10                                                                                           | 12:30          |                                   | 1    | ŗ            | 7                       |                               |          | Й            | † †                       |          |    |                                                                                                       | 7.0            | 805                                     | 6.5         |          |                     | 1      |        |     |
| MW-11                                                                                           | 12:42          |                                   |      | . •          | 7                       |                               |          |              |                           |          |    |                                                                                                       | C7             | 622                                     | 9.2         |          |                     | )      |        |     |
| MW-12                                                                                           | 8:48           | 3.95                              | Bail |              | 5.)                     |                               |          | Μ            |                           |          |    |                                                                                                       | 6.0            | 2.54ms                                  | 10,0        |          | ··· ··              |        |        |     |
| MW-13                                                                                           | 10:20          | 10.23                             |      |              | 2.5                     |                               | ·        | М            |                           |          |    |                                                                                                       | 5.9            | 243                                     | 11.0        |          |                     | ļ,     |        |     |
| MW-+4                                                                                           | 9:30           | 10.30                             |      |              | 4                       |                               |          | $\nu$        |                           |          |    |                                                                                                       | 5,3            | 201                                     | 11.7        |          | <u> </u>            |        | ·/     |     |
| RELINQUE                                                                                        | 2              | $\rightarrow$                     | 2    | 27           | тіме<br>9:40            | Pr                            | eived by | Ŀ            | 16                        | 243      | RE | CEIVIN                                                                                                | g labo<br>Addi | DRATORY<br>RESS                         |             | - 7]     | RW                  | 4      |        |     |
| RELINCHISHE                                                                                     | ED BY (S       | SIGNATURI                         |      | DATE         | TIME                    | REC                           | EIVED BY | (SIGI        | NATUF                     | RE)      | 1  |                                                                                                       |                |                                         |             |          | <b></b> _           |        |        |     |
| RELINQUISH                                                                                      | <u>SOM</u>     | and the                           |      | // 7<br>DATE | 172<br>TIME             | BEC                           | EIVED BY | (8)(6)       |                           | <u>)</u> | -  | TE REC                                                                                                |                |                                         |             |          |                     | _ TIME |        |     |
| RELINQUISH                                                                                      | 20 01 (3       |                                   |      |              | T TIVIL                 |                               | - i ch   |              | 77,                       |          | 1  |                                                                                                       |                |                                         |             |          |                     |        |        |     |

Page 27 of 29

PA Page 2/2 SAMPLING, CHAIN OF CUSTODY AND ANALYSES RECORD FOR SOIL GROUNDWATER AND AIR MONITORING KOSL MIRQ V'S SAMPLING PLACE \_\_ FIRM RESPONSIBLE FOR SAMPLING 2 OWNER DATE **Converse Consultants** Hawler 2738 West College Avenue State College, Pennsylvania 16801 ADDRESS WEATHER 788-03 PROJECT NO. 814-234-3223 ATTENTION  $\underline{b}$ PROJECT NAME Fax 814-234-3255 オン 20f3 JAGU CONTAINER DESCRIPTION DEPTH TO WATER (FEET) DATUM PURGING SPECIFIC CONDUCTANCE (µ mohs/cm.) AMOUNT PURGED (GALS) STATION NO. OR SAMPLE IDENT. METHOD SAMPLING METHOD ပ္ R TIME ANALYSIS TEMP. F COMMENTS REQUEST 7 SAMPLE \$ DEPTH (FT.) INTERVAL ç 1487 97 MV-15 8:45 7.30 Bail 9 Grab 5.9 810 14 aa Pump 6 844 1:44 0.40 'G 125 4 15 Ь 9:08 Bai 1796 8.1 4 Q 59 5.0 16 9:29 10,5 40 S 989 М 17 1].9 *ب*ج. 10:05 3.0 10.95 18 6.5 6,8  $\overline{\mathcal{O}}$ 2:03 20 00 19 767 03 lum 60 5 Ŵ mu-0.3 7 6.5 63 21 16:42 6.6 37 5 169 Ba. 10 172 79 RECEIVED BY (SIGNATURE) 2/27 (SIGNATURE) RECEIVING LABORATORY RELINQUISHED TIME 9:40 27 ar way ADDRESS DATE RECEIVED BY (SIGNATURE) REUNQUIGHED BY (SIGNATURE) TIME 2/27/17 TIME \_\_\_\_\_ 725 DATE RECEIVED \_\_\_\_ **RECEIVED BY (SIGNATURE)** ALL SAMPLES REC'D. INTACT DIYES DINO RELINQUISHED BY (SIGNATURE) DATE TIME 2-2717 LIST SAMPLES MISSING/DAMAGED ACCEPTED BY

Page 28 of 29

| SOP FLI0601-002                                                                                                                                                        |                                       |               | Revis                                   | sion 22        |                        |              | Date: N                  | ovember 8, 2016                                                                                                                                         |                          |              | Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|-----------------------------------------|----------------|------------------------|--------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receiver:                                                                                                                                                              |                                       |               |                                         |                | Chain                  | of Ca        | otody Red                | ceiving Docu<br>Pa                                                                                                                                      | ument<br>age <u>3</u> of | f <u>3</u>   | <b>#</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date/Time of this che                                                                                                                                                  | ck: <u>}-</u> 3                       | 2717          | 18:4                                    |                | $\sim$                 |              |                          |                                                                                                                                                         |                          |              | 7B27094#3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Received on ICE?                                                                                                                                                       | <b>└</b> □*                           | Sample        | Tempe                                   | rature w       | hen del                | ivered       | to the Lab               | : <u>2.9</u> Accep                                                                                                                                      | otable? <u> </u>         | /<br>   * 01 | Image: Constraint of the second symplectic state of the second |
| Custody Seals?                                                                                                                                                         | 4                                     | _ Intact      | ?                                       | Y              |                        |              |                          |                                                                                                                                                         |                          | *(No         | t applicable for WV compliance)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COC/Labels on bottle                                                                                                                                                   | s agree? _                            | <u>4</u> 0*   | Co                                      | rrect con      | tainers f              | or all d     | ie analysis :            | requested?                                                                                                                                              | _ 🗆 * M                  | atrix:       | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COC #                                                                                                                                                                  |                                       |               |                                         | Nu             | mber an                | d Type       | of BOTTI                 | LES                                                                                                                                                     |                          |              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                        | Poly<br>Non-<br>Pres.                 | Poly<br>H2SO4 | Poly<br>HNO3                            | Amber<br>H2SO4 | Amber<br>Non-<br>Pres. | Poly<br>NaOH | VOCS<br>(Head<br>space?) | Other                                                                                                                                                   | Properly<br>Preserved    | Bacti        | Internal notification<br>completed for deviations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                        |                                       |               | · · · ·                                 |                |                        |              | 274                      |                                                                                                                                                         | PM                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        |                                       |               |                                         |                |                        |              |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        |                                       |               |                                         |                |                        |              |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        |                                       |               |                                         |                |                        | -            |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        |                                       |               |                                         |                |                        |              |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        |                                       | -             |                                         |                |                        |              |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        |                                       |               |                                         |                |                        |              |                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                   |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |               | 1                                       |                |                        |              |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>* DEVIATION PRESENT:</li> <li>③ No Ice ()</li> <li>③ Not at Proper Temperature ()</li> <li>③ Wrong Container ()</li> <li>④ Missing Information: ()</li> </ul> |                                       |               | CLIENT CALLEI<br>YES ()<br>By Whom:<br> |                |                        |              |                          | CLIENT RESPONSE:Proceed with analysis; qualify data ()Will Resample ()Provided Information ()No Response; Proceed and qualified ()Client Contact: Date: |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| * Comments:                                                                                                                                                            |                                       |               |                                         | _1             |                        |              |                          |                                                                                                                                                         |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Page 29 of 29

This is a date sensitive document and may not be current after February 24. 2017.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | Project: ROSEMERGY'S   |                |  |  |  |  |
|-----------------------|----------------|-----------------------|------------------------|----------------|--|--|--|--|
| 2738 West College Av  | venue          | Project Number:       | Project Number: [none] |                |  |  |  |  |
| State College PA, 168 | 01             | Collector:            | CLIENT                 | 02/13/17 09:40 |  |  |  |  |
| Project Manager:      | David Swetland | Number of Containers: | 6                      |                |  |  |  |  |

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID      | Laboratory ID | Matrix | Sample Type | Date Sampled   | Date Received  |
|----------------|---------------|--------|-------------|----------------|----------------|
| INFLUENT       | 7B03133-01    | Water  | Grab        | 01/30/17 15:38 | 02/03/17 14:00 |
| BETWEEN CARBON | 7B03133-02    | Water  | Grab        | 01/30/17 15:40 | 02/03/17 14:00 |
| EFFLUENT       | 7B03133-03    | Water  | Grab        | 01/30/17 15:45 | 02/03/17 14:00 |

Fairway Laboratories, Inc.

Reviewed and Submitted by:

mot

Michael P. Tyler Laboratory Director Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

Analyst

Note

| Converse               |                | Project:              | ROSEMERGY'S                |                |  |  |
|------------------------|----------------|-----------------------|----------------------------|----------------|--|--|
| 2738 West College Ave  | enue           | Project Number:       | Project Number: [none] Rep |                |  |  |
| State College PA, 1680 | )1             | Collector:            | CLIENT                     | 02/13/17 09:40 |  |  |
| Project Manager:       | David Swetland | Number of Containers: | 6                          |                |  |  |

### **Client Sample ID: INFLUENT**

**Date/Time Sampled:** 01/30/17 15:38

 Laboratory Sample ID: 7B03133-01 (Water/Grab)

 Date / Time
 Analytical

 Analyte
 Result
 MDL
 RL
 Units
 Analyzed
 Method

 Volatile Organic Compounds by EPA Method 8260B
 25.6
 5.00
 4.4
 02/00/17.16.15
 EPA 926

| 1,3,5-Trimethylbenzene           | 35.6   |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
|----------------------------------|--------|--------|------|------|----------------|-----------|-----|--|
| 1,2,4-Trimethylbenzene           | 78.2   |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Benzene                          | 109    |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Toluene                          | 133    |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Ethylbenzene                     | 49.0   |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Xylenes (total)                  | 338    |        | 10.0 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Isopropylbenzene                 | < 5.00 |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Methyl tert-butyl ether          | <5.00  |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Naphthalene                      | 19.0   |        | 5.00 | ug/l | 02/09/17 16:15 | EPA 8260B | sap |  |
| Surrogate: 4-Bromofluorobenzene  |        | 101 %  | 70-1 | 30   | 02/09/17 16:15 | EPA 8260B | sap |  |
| Surrogate: 1,2-Dichloroethane-d4 | 9      | 97.9 % | 70-1 | 30   | 02/09/17 16:15 | EPA 8260B | sap |  |
| Surrogate: Fluorobenzene         |        | 101 %  | 70-1 | 30   | 02/09/17 16:15 | EPA 8260B | sap |  |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S      |                |
|-----------------------|----------------|-----------------------|------------------|----------------|
| 2738 West College Av  | venue          | Project Number:       | <b>Reported:</b> |                |
| State College PA, 168 | 01             | Collector:            | CLIENT           | 02/13/17 09:40 |
| Project Manager:      | David Swetland | Number of Containers: | 6                |                |

## Client Sample ID: BETWEEN CARBON

**Date/Time Sampled:** 01/30/17 15:40

Laboratory Sample ID: 7B03133-02 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 37.0         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | 47.0         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Benzene                           | 51.9         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Toluene                           | 58.7         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | 19.9         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | 226          |       | 2.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | 2.18         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Naphthalene                       | 6.22         |       | 1.00 | ug/l  | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 7.2 % | 70-1 | 30    | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | i            | 12 %  | 70-1 | 30    | 02/09/17 17:11          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | 1            | 05 %  | 70-1 | 30    | 02/09/17 17:11          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S                 |                |  |  |
|-----------------------|----------------|-----------------------|-----------------------------|----------------|--|--|
| 2738 West College Av  | venue          | Project Number:       | Project Number: [none] Repo |                |  |  |
| State College PA, 168 | 01             | Collector:            | CLIENT                      | 02/13/17 09:40 |  |  |
| Project Manager:      | David Swetland | Number of Containers: | 6                           |                |  |  |

## Client Sample ID: EFFLUENT

**Date/Time Sampled:** 01/30/17 15:45

Laboratory Sample ID: 7B03133-03 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Benzene                           | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00        |        | 2.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mte          |      |
| Isopropylbenzene                  | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mte          |      |
| Naphthalene                       | <1.00        |        | 1.00 | ug/l  | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   |              | 95.8 % | 70   | 130   | 02/09/17 17:41          | EPA 8260B            | mte          |      |
| Surrogate: 1,2-Dichloroethane-d4  |              | 108 %  | 70   | 130   | 02/09/17 17:41          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          |              | 105 %  | 70   | 130   | 02/09/17 17:41          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                  | Project:                 | ROSEMERGY'S           |
|---------------------------|--------------------------|-----------------------|
| 2738 West College Avenue  | Project Number:          | [none] Reported:      |
| State College PA, 16801   | Collector:               | CLIENT 02/13/17 09:40 |
| Project Manager: David Sw | nd Number of Containers: | 6                     |

#### Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- # The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- \* P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252 certified.
- < Represents "less than" indicates that the result was less than the reporting limit.
- MDL Method Detection Limit is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RL Reporting Limit is the lowest or minimum level at which the analyte can be quantified.
- [CALC] Indicates a calculated result. Calculations use results from other analyses performed under accredited methods.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S              |                |  |  |
|-----------------------|----------------|-----------------------|--------------------------|----------------|--|--|
| 2738 West College Av  | venue          | Project Number:       | Project Number: [none] R |                |  |  |
| State College PA, 168 | 301            | Collector:            | CLIENT                   | 02/13/17 09:40 |  |  |
| Project Manager:      | David Swetland | Number of Containers: | 6                        |                |  |  |

#### Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

**CONFIDENTIALITY** Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

PAYMENT/BILLING Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date. A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

**SAMPLE COLLECTION AND SUBMISSION** Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

**RETURN OF RESULTS** Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.

HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

**WARRANTY AND LIMITATION OF LIABILITY** For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

| PURGING METHOD AND SAMPLE DEPTH (FT) INTERVAL VA VA VA UAA VA V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 (<br>DR SAMPLING<br><b>nts</b><br>prive<br>vania 16801 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Botween Lettern 3:40 N/A N/A N/A N/A V V A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NTS                                                      |
| E + Huent = 3:45 N/A = N/A = N/A = V = V = V = V = V = V = V = V = V =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pounds                                                   |
| Image: Solution of the state of the sta | ·                                                        |
| Image: Sector |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
| RELINQUISHED BY (SIGNATURE) DATE TIME BECEIVED BY (SIGNATURE) RECEIVING LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                                      |
| 2-5-V) 11/55 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |
| RECINQUISHED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |
| 2-3-17 12:46 CEB32 1240 DATE RECEIVED TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
| RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED BY (SIGNATURE) ALL SAMPLES REC'D. INTACT I YES INO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| CELOSA 2-3-17 )400 B.Barulus 2-3-17 1400 LIST SAMPLES MISSING/DAMAGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |

DISTRIBUTION: WHITE-WITH SHIPMENT TO LAB. CANARY-CONVERSE. PINK-RETAINED BY FIELD REP.

Page 7 of 8

| SOP FLI0601-002                                                |               |               | Revis        | ion 22         |               |              | Date: 1                                | November 8, 2016 |                       |            | Page of                                                      |
|----------------------------------------------------------------|---------------|---------------|--------------|----------------|---------------|--------------|----------------------------------------|------------------|-----------------------|------------|--------------------------------------------------------------|
|                                                                |               |               |              |                | Chain o       | of Cus       | tody Re                                | ceiving Docu     |                       | $\sim$     |                                                              |
| Receiver: <u>BB</u>                                            |               |               |              |                |               |              |                                        |                  | ge <u>)</u> of        |            | #2                                                           |
| Date/Time of this check                                        | к: <u>дЗ-</u> | רו            | 1445         | Clier          | nt: <u>Co</u> | JUERS        | E (0                                   | NSULTANTS        | La                    | ib #       | 7B03 133                                                     |
|                                                                |               |               |              |                |               |              |                                        |                  |                       |            | • In cool down process?  *********************************** |
| Custody Seals?                                                 |               |               |              |                |               |              |                                        |                  | ,                     | *(No       | t applicable for WV compliance)*                             |
|                                                                | ,             |               | •            |                |               |              |                                        |                  | _                     |            |                                                              |
| COC/Labels on bottles                                          | agree? _      | ¥∐*           | Cor          | rect cont      | tainers fo    | or all the   | e analysis                             | requested?       | ∠Ц∗м                  | atrix:     | water                                                        |
| COC #                                                          |               |               | •            | Nu             | mber and      | d Type       | of BOTT                                | LES              |                       |            | Comments                                                     |
|                                                                | Poly<br>Non-  | Poly<br>H2SO4 | Poly<br>HNO3 | Amber<br>H2SO4 | Amber<br>Non- | Poly<br>NaOH | VOCS<br>(Head                          | Other            | Properly<br>Preserved | Bacti      | * Internal notification<br>completed for deviations.         |
|                                                                | Pres.         |               |              |                | Pres.         |              | space?)                                | *                | *                     |            |                                                              |
| INF                                                            |               |               |              |                |               |              | 2HU                                    |                  | MA                    |            |                                                              |
| CARBON                                                         |               |               |              |                |               |              |                                        |                  |                       |            |                                                              |
| EFF                                                            |               |               |              |                |               |              | d                                      | ····             | <b>d</b>              |            |                                                              |
|                                                                | <br>          |               |              |                |               |              |                                        |                  |                       |            |                                                              |
|                                                                |               |               |              |                |               |              |                                        |                  |                       |            |                                                              |
| · · · · · · · · · · · · · · · · · · ·                          |               |               |              |                |               |              |                                        |                  |                       |            |                                                              |
|                                                                |               |               |              |                |               |              |                                        |                  |                       |            |                                                              |
|                                                                |               |               |              |                |               | <u> </u>     |                                        |                  |                       |            |                                                              |
| 1                                                              | L             |               | .1           |                | 4             | 1            | ·I ··································· |                  | · · · ·               | - <b>1</b> |                                                              |
| * DEVIATION PRE                                                | SENT:         |               |              | CLIE           | NT CAI        | LLED:        |                                        |                  |                       |            | PONSE:                                                       |
| 😕 No Ice                                                       |               | ()            |              |                | YE            | <b>S</b> ()  |                                        |                  |                       |            | analysis; qualify data ()                                    |
| ⊗ Not at Proper Ter                                            |               | re ()         |              | By W           | hom:          |              |                                        |                  | Will Re               | -          |                                                              |
| <ul> <li>Wrong Container</li> <li>Mining Laboration</li> </ul> |               | ()            |              |                |               |              | Date:                                  |                  | Provide<br>No Rest    |            | Proceed and qualified ()                                     |
| 😕 Missing Informati                                            | ion:          | ()            | )            |                | ······        |              | Datt                                   |                  | - 110 ICS             | ,01130,    | rivereu anu quanneu ()                                       |

| LLED: | <b>CLIENT RESPONSE:</b>             |
|-------|-------------------------------------|
| ES () | Proceed with analysis; qualify data |
|       | Will Resample                       |
|       | <b>Provided Information</b>         |
| Date: | No Response; Proceed and qualified  |
|       | Client Contact:Date                 |

Page 8 of 8

\* Comments: \_\_\_\_\_

This is a date sensitive document and may not be current after January 17, 2017.

,



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:      | David Swetland | Number of Containers: | 7           |                  |

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID      | Laboratory ID | Matrix | Sample Type | Date Sampled   | Date Received  |
|----------------|---------------|--------|-------------|----------------|----------------|
| PRE CARBON     | 7B27093-01    | Water  | Grab        | 02/24/17 15:38 | 02/27/17 17:25 |
| BETWEEN CARBON | 7B27093-02    | Water  | Grab        | 02/24/17 15:40 | 02/27/17 17:25 |
| POST CARBON    | 7B27093-03    | Water  | Grab        | 02/24/17 15:44 | 02/27/17 17:25 |
| TB             | 7B27093-04    | Water  | Trip Blank  | 02/24/17 00:00 | 02/27/17 17:25 |

Fairway Laboratories, Inc.

Reviewed and Submitted by:

mot

Michael P. Tyler Laboratory Director Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | renue          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:      | David Swetland | Number of Containers: | 7           |                  |

# Client Sample ID: PRE CARBON

Date/Time Sampled: 02/24/17 15:38

| Labo                             | oratory Sample | ID: 7B | 27093-01 | (Water/G | rab)                    |                      |              |      |
|----------------------------------|----------------|--------|----------|----------|-------------------------|----------------------|--------------|------|
| Analyte                          | Result         | MDL    | RL       | Units    | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
| Volatile Organic Compounds by EP | A Method 8260B |        |          |          |                         |                      |              |      |
| 1,3,5-Trimethylbenzene           | 32.5           |        | 1.00     | ug/l     | 02/28/17 21:18          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene           | 112            |        | 1.00     | ug/l     | 02/28/17 21:18          | EPA 8260B            | mtc          |      |
| Benzene                          | 121            |        | 10.0     | ug/l     | 03/02/17 17:58          | EPA 8260B            | mtc          |      |
| Toluene                          | 192            |        | 10.0     | ug/l     | 03/02/17 17:58          | EPA 8260B            | mtc          |      |
| Ethylbenzene                     | 49.4           |        | 1.00     | ug/l     | 02/28/17 21:18          | EPA 8260B            | mtc          |      |
| Xylenes (total)                  | 285            |        | 20.0     | ug/l     | 03/02/17 17:58          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                 | 6.26           |        | 1.00     | ug/l     | 02/28/17 21:18          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether          | <1.00          |        | 1.00     | ug/l     | 02/28/17 21:18          | EPA 8260B            | mtc          |      |
| Naphthalene                      | 78.6           |        | 1.00     | ug/l     | 02/28/17 21:18          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene  |                | 102 %  | 70-      | 130      | 02/28/17 21:18          | EPA 8260B            | mtc          |      |

70-130

70-130

105~%

102 %

Fairway Laboratories, Inc.

Surrogate: 1,2-Dichloroethane-d4

Surrogate: Fluorobenzene

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

02/28/17 21:18

02/28/17 21:18

EPA 8260B

EPA 8260B

mtc

mtc



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | renue          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:      | David Swetland | Number of Containers: | 7           |                  |

## Client Sample ID: BETWEEN CARBON

**Date/Time Sampled:** 02/24/17 15:40

Laboratory Sample ID: 7B27093-02 (Water/Grab)

| Analyte                           | Result       | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Benzene                           | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00        |      | 2.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00        |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Naphthalene                       | 1.40         |      | 1.00 | ug/l  | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 93           | 8.6% | 70-1 | 30    | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 08 % | 70-1 | 30    | 02/28/17 21:56          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | 1            | 04 % | 70-1 | 30    | 02/28/17 21:56          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse               |                | Project:              | ROSEMERGY'S |                  |
|------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av   | enue           | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 1680 | 01             | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:       | David Swetland | Number of Containers: | 7           |                  |

# Client Sample ID: POST CARBON

**Date/Time Sampled:** 02/24/17 15:44

Laboratory Sample ID: 7B27093-03 (Water/Grab)

| Analyte                           | Result       | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Benzene                           | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00        |      | 2.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Naphthalene                       | <1.00        |      | 1.00 | ug/l  | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 93           | .3 % | 70-1 | 30    | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 07 % | 70-1 | 30    | 02/28/17 22:34          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | 1            | 01 % | 70-1 | 30    | 02/28/17 22:34          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | renue          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:      | David Swetland | Number of Containers: | 7           |                  |

### Client Sample ID: TB

**Date/Time Sampled:** 02/24/17 00:00

Laboratory Sample ID: 7B27093-04 (Water/Trip Blank)

| Analyte                           | Result         | MDL  | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|----------------|------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | A Method 8260B |      |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| 1,2,4-Trimethylbenzene            | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Benzene                           | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Toluene                           | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Ethylbenzene                      | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Xylenes (total)                   | <2.00          |      | 2.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Isopropylbenzene                  | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Methyl tert-butyl ether           | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Naphthalene                       | <1.00          |      | 1.00 | ug/l  | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Surrogate: 4-Bromofluorobenzene   | 94             | .3 % | 70-1 | 30    | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 98             | 0%   | 70-1 | 30    | 02/28/17 23:11          | EPA 8260B            | mtc          |      |
| Surrogate: Fluorobenzene          | 10             | 01 % | 70-1 | 30    | 02/28/17 23:11          | EPA 8260B            | mtc          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                |                | Project:              | ROSEMERGY'S |                  |
|-------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Aven  | ue             | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 16801 |                | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:        | David Swetland | Number of Containers: | 7           |                  |

#### Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- # The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- \* P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252 certified.
- < Represents "less than" indicates that the result was less than the reporting limit.
- MDL Method Detection Limit is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RL Reporting Limit is the lowest or minimum level at which the analyte can be quantified.
- [CALC] Indicates a calculated result. Calculations use results from other analyses performed under accredited methods.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | venue          | Project Number:       | 11-17788-03 | <b>Reported:</b> |
| State College PA, 168 | 801            | Collector:            | CLIENT      | 03/07/17 08:33   |
| Project Manager:      | David Swetland | Number of Containers: | 7           |                  |

#### Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

**CONFIDENTIALITY** Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

PAYMENT/BILLING Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date. A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

**SAMPLE COLLECTION AND SUBMISSION** Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

**RETURN OF RESULTS** Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.

HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

**WARRANTY AND LIMITATION OF LIABILITY** For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

| AMPLING PLACE <u>Boe Mergy</u><br>WNER<br>DDRESS <u>Hawley</u> , <u>PA</u><br>ROJECT NAME |               |                                   |                                                        |                         |                    | WEATHER Sunny<br>PROJECT NO. 41-17788-03<br>ATTENTION DWS<br>CONTAINER |                 |                         | FIRM RESPONSIBLE FOR SAMPLIN<br>Converse Consultants<br>2738 West College Avenue<br>State College, Pennsylvania 1680<br>814-234-3223<br>Fax 814-234-3255 |            |        |                                         |     |                                       |
|-------------------------------------------------------------------------------------------|---------------|-----------------------------------|--------------------------------------------------------|-------------------------|--------------------|------------------------------------------------------------------------|-----------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-----------------------------------------|-----|---------------------------------------|
| STATION NO.<br>OR<br>SAMPLE IDENT.                                                        | TIME          | DEPTH TO WATER<br>(FEET)<br>DATUM | PURGING<br>METHOD<br>SAMPLE<br>DEPTH (FT.)<br>INTERVAL | AMOUNT PURGED<br>(GALS) | SAMPLING<br>METHOD | 240 ml HCI                                                             |                 |                         |                                                                                                                                                          |            | H      | SPECIFIC<br>CONDUCTANCE<br>(# mohs/cm.) |     | ANALYSIS<br>REQUEST COMMENTS          |
| fre-lasbon                                                                                | 3:38          |                                   |                                                        |                         | Grab               | Ζ                                                                      |                 |                         | $\square$                                                                                                                                                |            |        |                                         |     | List Target Compainds                 |
| Schween Curbon                                                                            | 3:40          |                                   |                                                        |                         |                    | $\checkmark$                                                           |                 |                         |                                                                                                                                                          |            |        |                                         |     | List Target Compaines                 |
| ost Carbon                                                                                | 3:44          |                                   |                                                        |                         | V                  | $\checkmark$                                                           |                 |                         | $\square$                                                                                                                                                |            |        | ļ                                       |     | , , , , , , , , , , , , , , , , , , , |
|                                                                                           |               |                                   |                                                        |                         |                    |                                                                        |                 |                         |                                                                                                                                                          |            |        |                                         |     |                                       |
|                                                                                           |               |                                   |                                                        |                         | ······             |                                                                        |                 |                         |                                                                                                                                                          |            |        |                                         |     |                                       |
|                                                                                           |               |                                   |                                                        | ·                       |                    |                                                                        |                 |                         |                                                                                                                                                          | -          |        |                                         |     |                                       |
| Van Z                                                                                     | 20            | $\sim$                            | 2-27-17                                                |                         |                    | Y (SI)                                                                 |                 | TURE)<br>7 10<br>10 - 2 | <br>RECI                                                                                                                                                 | EIVIN      |        | ORATORY                                 | -fa | irway Labs                            |
| RELINQUISHE                                                                               | $\mathcal{D}$ | 1                                 | E) DATE<br>2/27/17                                     | TIME                    | RECEIVED B         | T (SI                                                                  | JNA             | IURE)                   | DATE                                                                                                                                                     | ERFO       | CEIVER | )                                       |     | TIME                                  |
| RELINQUISHE                                                                               |               | IGNATUR                           | E) DATE                                                | TIME                    | RECEIVED B         | Y (SIC                                                                 | GNA<br>シン<br>レフ | TURE)<br>ア1フ            | ALL<br>LIST                                                                                                                                              | SAM<br>SAM | PLES F | IEC'D. INTA                             |     | YES 🗆 NO                              |

Page 8 of 9

|   |                                                                                                                                                                                                                      |                                                        |                                                                                                                                |                                                                  |                            |              |               |                    |              |               |                  | Comments:                                                                      | *    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|--------------|---------------|--------------------|--------------|---------------|------------------|--------------------------------------------------------------------------------|------|
|   | CLIENT RESPONSE:<br>Proceed with analysis; qualify data ()<br>Will Resample ()<br>Provided Information ()<br>No Response; Proceed and qualified ()<br>No Response; Proceed and qualified ()<br>Client Contact: Date: | KES<br>with a<br>ample<br>I Infor<br>onse; 1<br>ontact | CLIENT RESPONSE:<br>Proceed with analysis;<br>Will Resample<br>Provided Information<br>No Response; Proceed<br>Client Contact: |                                                                  | Date:                      |              | By Whom:      | By Whom:           |              |               | nperatur<br>ion: | No Ice<br>Not at Proper Temperature<br>Wrong Container<br>Missing Information: | 8888 |
|   |                                                                                                                                                                                                                      |                                                        |                                                                                                                                |                                                                  |                            |              |               |                    |              |               |                  |                                                                                | *    |
|   |                                                                                                                                                                                                                      |                                                        |                                                                                                                                |                                                                  |                            |              |               |                    |              |               |                  |                                                                                |      |
|   |                                                                                                                                                                                                                      |                                                        | ¢                                                                                                                              |                                                                  | 1-19-1                     |              |               |                    |              |               |                  | TIS                                                                            |      |
|   |                                                                                                                                                                                                                      |                                                        |                                                                                                                                |                                                                  | *                          |              |               |                    |              |               |                  | 2                                                                              |      |
|   |                                                                                                                                                                                                                      |                                                        | 1/17                                                                                                                           |                                                                  | - Patro                    |              |               |                    |              |               |                  |                                                                                |      |
|   | completed for deviations.                                                                                                                                                                                            |                                                        | *                                                                                                                              | *                                                                | space?)                    |              | Pres.         |                    |              |               | Pres.            | -                                                                              |      |
|   | □ * Internal notification                                                                                                                                                                                            | Bacti                                                  | Properly<br>Preserved                                                                                                          | Other                                                            | VOCS<br>(Head              | Poly<br>NaOH | Amber<br>Non- | Amber<br>H2SO4     | Poly<br>HNO3 | Poly<br>H2SO4 | Poly<br>Non-     |                                                                                |      |
|   | Comments                                                                                                                                                                                                             |                                                        |                                                                                                                                | ES                                                               | Number and Type of BOTTLES | l Type o     | mber and      | Nu                 |              |               |                  | COC #                                                                          | Q    |
|   | work                                                                                                                                                                                                                 | Matrix:                                                | □<br>* Ma                                                                                                                      | Correct containers for all the analysis requested? $\frac{1}{1}$ | analysis 1                 | or all the   | ainers fo     | rect cont          | Cor          |               | s agree? _u      | COC/Labels on bottles agree? $\underline{4} \Box^*$                            |      |
| * | *(Not applicable for WV compliance)*                                                                                                                                                                                 | *(No                                                   | -                                                                                                                              |                                                                  |                            |              |               | 4                  | ;?           | _ Intact?     |                  | Custody Seals?                                                                 | Q    |
| * | ]* Sample Temperature when delivered to the Lab: $2\mathcal{A}$ Acceptable? $\mathcal{L} \square$ * or In cool down process? $\square$ *                                                                             | ↓<br>* 0                                               | ble? 4                                                                                                                         | : <u>2</u> Accepta                                               | o the Lab                  | vered to     | hen deli      | rature w           | Tempe        | Sample        |                  | Received on ICE?                                                               | R    |
|   | Lab # 71522193                                                                                                                                                                                                       | ь<br>#<br>\                                            | Lal                                                                                                                            |                                                                  | Ř                          | Bunde        | L             | <u>O</u> Clier     | 18:4         | ,717          |                  | Date/Time of this check: $\frac{2}{2}777/80$ Client:                           | D    |
|   | t                                                                                                                                                                                                                    | Ň                                                      | M                                                                                                                              | Chain of Custody Receiving Document                              | tody Rec                   | of Cust      | Chain (       |                    |              | ļ             |                  | Receiver:                                                                      | R    |
|   | Page of                                                                                                                                                                                                              |                                                        |                                                                                                                                | Date: November 8, 2016                                           | Date: N                    |              |               | <b>Revision 22</b> | Revis        |               |                  | SOP FLI0601-002                                                                | SC   |

÷



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse               |                | Project:              | ROSEMERGY'S |                  |
|------------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av   | enue           | Project Number:       | [none]      | <b>Reported:</b> |
| State College PA, 1680 | 01             | Collector:            | CLIENT      | 03/31/17 16:42   |
| Project Manager:       | David Swetland | Number of Containers: | 6           |                  |

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID      | Laboratory ID | Matrix | Sample Type | Date Sampled   | Date Received  |
|----------------|---------------|--------|-------------|----------------|----------------|
| PRE CARBON     | 7C22077-01    | Water  | Grab        | 03/22/17 13:35 | 03/22/17 15:35 |
| BETWEEN CARBON | 7C22077-02    | Water  | Grab        | 03/22/17 13:38 | 03/22/17 15:35 |
| POST CARBON    | 7C22077-03    | Water  | Grab        | 03/22/17 13:41 | 03/22/17 15:35 |

Fairway Laboratories, Inc.

Reviewed and Submitted by:

mot

Michael P. Tyler Laboratory Director Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | venue          | Project Number:       | [none]      | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/31/17 16:42   |
| Project Manager:      | David Swetland | Number of Containers: | 6           |                  |

# Client Sample ID: PRE CARBON

**Date/Time Sampled:** 03/22/17 13:35

Laboratory Sample ID: 7C22077-01 (Water/Grab)

| Analyte                           | Result       | MDL    | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|--------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |        |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | 31.0         |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| 1,2,4-Trimethylbenzene            | 75.0         |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Benzene                           | 33.8         |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Toluene                           | 59.6         |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Ethylbenzene                      | 12.0         |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Xylenes (total)                   | 179          |        | 10.0 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Isopropylbenzene                  | < 5.00       |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Methyl tert-butyl ether           | < 5.00       |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Naphthalene                       | 41.2         |        | 5.00 | ug/l  | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Surrogate: 4-Bromofluorobenzene   | 9            | 94.7 % | 70-1 | 130   | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 8            | 89.3 % | 70-1 | 130   | 03/29/17 19:02          | EPA 8260B            | sap          |      |
| Surrogate: Fluorobenzene          |              | 101 %  | 70-1 | 130   | 03/29/17 19:02          | EPA 8260B            | sap          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | enue           | Project Number:       | [none]      | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/31/17 16:42   |
| Project Manager:      | David Swetland | Number of Containers: | 6           |                  |

# Client Sample ID: BETWEEN CARBON

**Date/Time Sampled:** 03/22/17 13:38

Laboratory Sample ID: 7C22077-02 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Surrogate: 4-Bromofluorobenzene   | 9.           | 5.8 % | 70-1 | 30    | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 03 %  | 70-1 | 30    | 03/28/17 06:03          | EPA 8260B            | bag          |      |
| Surrogate: Fluorobenzene          | 90           | 8.8 % | 70-1 | 30    | 03/28/17 06:03          | EPA 8260B            | bag          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                 |         | Project:              | ROSEMERGY'S |                  |
|--------------------------|---------|-----------------------|-------------|------------------|
| 2738 West College Avenue |         | Project Number:       | [none]      | <b>Reported:</b> |
| State College PA, 16801  |         | Collector:            | CLIENT      | 03/31/17 16:42   |
| Project Manager: David S | wetland | Number of Containers: | 6           |                  |

# Client Sample ID: POST CARBON

**Date/Time Sampled:** 03/22/17 13:41

Laboratory Sample ID: 7C22077-03 (Water/Grab)

| Analyte                           | Result       | MDL   | RL   | Units | Date / Time<br>Analyzed | Analytical<br>Method | *<br>Analyst | Note |
|-----------------------------------|--------------|-------|------|-------|-------------------------|----------------------|--------------|------|
| Volatile Organic Compounds by EPA | Method 8260B |       |      |       |                         |                      |              |      |
| 1,3,5-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| 1,2,4-Trimethylbenzene            | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Benzene                           | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Toluene                           | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Ethylbenzene                      | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Xylenes (total)                   | <2.00        |       | 2.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Isopropylbenzene                  | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Methyl tert-butyl ether           | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Naphthalene                       | <1.00        |       | 1.00 | ug/l  | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Surrogate: 4-Bromofluorobenzene   | 94           | 1.8 % | 70-1 | 30    | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Surrogate: 1,2-Dichloroethane-d4  | 1            | 03 %  | 70-1 | 30    | 03/28/17 06:35          | EPA 8260B            | bag          |      |
| Surrogate: Fluorobenzene          | 99           | 0.2 % | 70-1 | 30    | 03/28/17 06:35          | EPA 8260B            | bag          |      |

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse              |                | Project:              | ROSEMERGY'S |                  |
|-----------------------|----------------|-----------------------|-------------|------------------|
| 2738 West College Av  | venue          | Project Number:       | [none]      | <b>Reported:</b> |
| State College PA, 168 | 01             | Collector:            | CLIENT      | 03/31/17 16:42   |
| Project Manager:      | David Swetland | Number of Containers: | 6           |                  |

#### Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- # The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- \* P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252 certified.
- \* G indicates analysis performed by Fairway Laboratories, Inc. at the Greensburg location PaDEP: 65-00392. This location is PaDEP Chapter 252 certified.
- < Represents "less than" indicates that the result was less than the reporting limit.
- MDL Method Detection Limit is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RL Reporting Limit is the lowest or minimum level at which the analyte can be quantified.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684



State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

| Converse                |               | Project:              | ROSEMERGY'S |                  |
|-------------------------|---------------|-----------------------|-------------|------------------|
| 2738 West College Avenu | le            | Project Number:       | [none]      | <b>Reported:</b> |
| State College PA, 16801 |               | Collector:            | CLIENT      | 03/31/17 16:42   |
| Project Manager: Da     | avid Swetland | Number of Containers: | 6           |                  |

#### Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

**CONFIDENTIALITY** Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

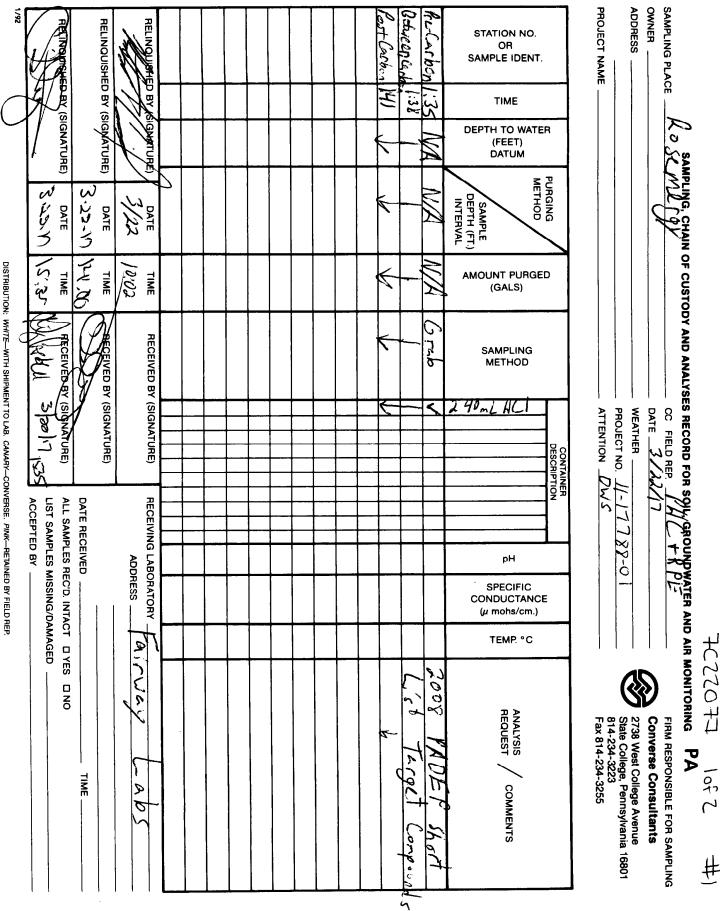
PAYMENT/BILLING Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date. A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

**SAMPLE COLLECTION AND SUBMISSION** Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

**RETURN OF RESULTS** Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.


HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

**WARRANTY AND LIMITATION OF LIABILITY** For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.



Page 7 of 8

| SOP FLUGO1-002       Revision 22       Date: November 8, 2016       Fage of       Fage of         Receiver: $V_{abc}$ Sample 7       SAVD_ Client: $Chain of Custody Receiving Document       Page       Lab # T_{abc} = 0 f_{abc}         Date:       Date:       Mape = 1 Lab # T_{abc} = 1 Lab # T_{abc} = 1 Lab # T_{abc} = 1         Date:       Mape = 1 Lab # T_{abc} = 1         Concord Seals?       V_{abc} = 1 Lab # T_{abc} = 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                             |                                   |                |             |            |               |                |              |               |              | Comments:                                              | * Com           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------|-----------------------------------|----------------|-------------|------------|---------------|----------------|--------------|---------------|--------------|--------------------------------------------------------|-----------------|
| Page of Custody Receiving Document, Page $2$ of $Page 2$ o |                  | ntact: Date                                                 | Client Co                         |                |             |            |               |                |              |               | lon:         | Missing Information:                                   | S<br>M          |
| Revision 22       Date: November 8, 2016       Page of Page $1 \text{ of } 1$ Chain of Custody Receiving Document Page $1 \text{ of } 1$ Page $1 \text{ of } 1$ Page $1 \text{ of } 1$ 3(72) 1-7       EVO       Client:       Converse 1       Lab # $1 \text{ Cl} \text{ 100} \text{ J} \text{ 120} \text{ of } 1$ Lab # $1 \text{ Cl} \text{ 100} \text{ J} \text{ 120} \text{ J} \text{ 110} \text{ cold own process?}$ Correct containers for all the analysis requested? $1 \text{ or } \text{ In cool down process?}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | imple<br>Information<br>nse; Proceed and qualified          | Will Resa<br>Provided<br>No Respo |                | Date:       |            | Yhom:         | By W           |              | re            | mperatu      | No Ice<br>Not at Proper Temperature<br>Wrong Container |                 |
| Revision 22       Date: November 8, 2016       Page       Or Custody Receiving Document         Page       2 of 1       Page       2 of 1         Page       2 of 1       Page       2 of 1         Page       2 of 1       Lab # TC12OTT       Lab # TC12OTT         Intact?       Y       Sample Temperature when delivered to the Lab: Acceptable? Y       sort In cool down process?         Intact?       Y       Number and Type of BOTTLES       Comments         Number       Number and Type of BOTTLES       Comments         Number       Number       Nuch       Preserved         Prese       Nuch       Nuch       Preserved       Basti       * transal outification         Preserved       Nuch       Preserved       Samplet for deviations.       Preserved       completed for deviations.         Preserved       Nuch       Preserved       Samplet for deviations.       Preserved       completed for deviations.         Preserved       Nuch       Preserved       Samplet for deviations.       Preserved       Comments         Preserved       Preserved       Samplet for deviations.       Preserved       Completed for deviations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                | RESPONSE:                                                   | CLIENT                            |                |             | LLED:      | ENT CA        | CLII           |              |               | SENT:        | DEVIATION PRESENT:                                     | * DEV           |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page $2$ of $2$ Page $2$ of $2$ Lab # $\pm$ CL2CF         - Intact?         - Lab # $\pm$ Cl2CF         - Intact?         - Lab # $\pm$ Cl2CF         - Intact?         - Volspan="2">- Number and Type of BOTTLES       Comments         Number and Type of BOTTLES       Comments         Preserved       Bacti $2$ * Internal sotification       completed for deviations.         Pres.       Poly       Prost       Number       Number       Prost       Differ       Preserved       Bacti $2$ * Internal sotification         Number       Number       Number       Poly       Prost       Bacti $2$ * Internal sotification         Number       Poly       Poly       Poly       Poly       Poly       Poly       Poly       Poly<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                             |                                   |                |             |            |               |                | •            |               |              |                                                        |                 |
| Date: November 8, 2016       Page of         Chain of Custody Receiving Document         Page       Of       Page       Of         Page       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                             |                                   |                |             |            |               |                |              |               |              |                                                        |                 |
| Date: November 8, 2016       Page of         Chain of Custody Receiving Document         Page       Laft       Page       Of         Page       Laft       Page       Laft       Page       Of         Page       Laft       Sample Temperature when delivered to the Lab: (c)       Acceptable? $\mathcal{L}$ Image       Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                             |                                   |                |             |            |               |                |              |               |              |                                                        |                 |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page $2$ of $2$ Page $2$ of $2$ The sample Temperature when delivered to the Lab: $\cdot \cdot c$ Acceptable? $4$ or In cool down process?         Intact?       Y       Correct containers for all the analysis requested? $4$ or $4$ more in cool down process?         Number and Type of BOTTLES       Property       South Comments         Poly       Poly       Page $2$ of $2$ Number and Type of BOTTLES       Comments         Prost       Comments         Prost       Numeral Type of BOTTLES       Comments         Prost       Numeral notification         Prost       Prost         Prost       Numeral notification         Prost       Prost         Prost       Prost         Other       Prost       Comments         Prost       Numeral notification         Prost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                             |                                   |                |             |            |               |                |              |               |              |                                                        |                 |
| Revision 22       Date: Nowember 8, 2016       Page of         Chain of Custody Receiving Document       Page $2$ of $2$ Page $2$ of $2$ Image $2$ of $2$ Number and Type of BOTTLES       Comments         Numer Amber Non-       Numer NaOH (Head Space?)       Property Property Property       Bareti Property Property       Bareti Property Property       Bareti Property Proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                             |                                   |                |             |            |               |                |              | -             |              |                                                        |                 |
| Revision 22       Date: November 8, 2016       Page of         Page 1 of Chain of Custody Receiving Document       Page 1 of Page 1                                                                                                      |                  |                                                             |                                   |                |             |            |               | -              |              |               |              |                                                        |                 |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page $2$ of $2$ Page $2$ of $2$ Lab # $+C120+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                             |                                   |                |             |            |               |                |              |               |              |                                                        |                 |
| Date: November 8, 2016       Page of         Chain of Custody Receiving Document         Page $2$ of $2$ Page $2$ of $2$ Lab # $\frac{1}{2}$ ( $12O12$ )         * Sample Temperature when delivered to the Lab: $\cdot \bigcirc$ Acceptable? $\checkmark$ $\square$ ab # $\frac{1}{2}$ ( $12O12$ )         Intact? $\checkmark$ $\checkmark$ $\square$ with applicable for WV compliant (Not applicable for deviationt (Not applicable for WV compliant (Not applicable for deviationt (Not applicable for deviat                                                                                                                                                                                                                                                                                       |                  |                                                             | A                                 | -              |             |            |               |                |              |               |              | v                                                      |                 |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document         Page $2$ of $2$ I ab # $\overline{+C12037}$ I ab # $-C120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                             | e                                 |                | 2 FC -      |            |               |                |              |               |              |                                                        |                 |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page l of         Page       Image       Image </td <td></td> <td></td> <td>*</td> <td>*</td> <td>space?)</td> <td></td> <td>Pres.</td> <td></td> <td></td> <td></td> <td>Pres.</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                                             | *                                 | *              | space?)     |            | Pres.         |                |              |               | Pres.        |                                                        |                 |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page $2$ of         Page $1-7$ Support       Client:       Converse       Lab # $+$ Clicht + Cli                                                                                                              |                  | e national hade                                             |                                   | Other          | (Head       |            | Amber<br>Non- | Amber<br>H2SO4 | Poly<br>HNO3 | Poly<br>H2SO4 | Poly<br>Non- |                                                        |                 |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page 2 of 2         Page 2 of 2       Page 2 of 2         Sample Temperature when delivered to the Lab: $\cdot 6$ Acceptable? $\downarrow =$ or In cool down process?         Intact? $\downarrow$ Sample Correct containers for all the analysis requested? $\downarrow =$ Matrix: $\iota_{A} + \ell_{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 8                                                           |                                   | ES             | f BOTTLI    | d Type o   | umber an      | Nu             |              |               |              |                                                        | COC #           |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page 2 of 2         Page 1-7       540 Client:       Converse         Lab # FC17077       Lab # FC17077         * Sample Temperature when delivered to the Lab:       6       Acceptable?         Intact?       Y       *(Not applicable for WV compliant *(Not applicable *(Not applic                                                                                                                                                                                                                |                  | ix: water                                                   | _ 🗆 * Matr                        | squested?      | analysis re | or all the | tainers fo    | rrect con      | Co           |               | agree?       | bels on bottles                                        | COC/L           |
| Revision 22       Date: November 8, 2016       Page of         Chain of Custody Receiving Document       Page 2 of 1         Page 1-1       1540 Client:       Converse         Lab # + Clicit       1000 Client:       1000 Client:         * Sample Temperature when delivered to the Lab:       4 Acceptable?       4 or In cool down process?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | :                                                           |                                   |                |             |            |               | 1              | ?            | Intact        |              | Seals?                                                 | Custody Seals?  |
| Revision 22 Date: November 8<br>Chain of Custody Receiving<br>3/22/1-7 1540 Client: Converse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ? □ *<br>iance)* | * or In cool down process<br>*(Not applicable for WV compli | ıble? 🗶 🗆                         | ſ              | the Lab:    | ivered to  | rhen deli     | rature w       | Temper       | Sample        | □<br>*       | Received on ICE? <del>\(</del>                         | Receive         |
| Date: November 8, 2016 Page<br>Chain of Custody Receiving Document<br>Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                | # <u>+C170++</u>                                            | Lab i                             |                | ivse        | Conve      | nt:           | Clier          | 54(          | 1-1/08        |              | Date/Time of this check:                               | Date/Ti         |
| Date: November 8, 2016 Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 1                                                           |                                   | Pag<br>Pag     | ody Kece    | of Cust    | Chain         | -              |              | 1             |              |                                                        | Receiver:       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1#               |                                                             |                                   | vember 8, 2016 | Date: Nov   | •<br>)     | •             |                | Revisi       |               |              | 601-002                                                | SOP FLI0601-002 |

This is a date sensitive document and may not be current after March 21, 2017.