

SECOND QUARTER 2017 REMEDIAL ACTION PROGRESS REPORT PAUSTIF CLAIM NO. 2011-0082(S) FORMER ROSEMERGY'S GARAGE/STORE PROPERTY

ORMER ROSEMERGY'S GARAGE/STORE PROPERTY NOW THE MARKET AT WOODLOCH 1623 STATE ROUTE 590

LACKAWAXEN TWP., PIKE COUNTY, PENNSYLVANIA

REPORTING PERIOD:

March 31, 2017 to June 30, 2017

CONTACTS:

Project Manager: Mr. David W. Swetland, P.G., Converse Consultants, State College, PA

(814-234-3223) (dswetland@conveseconsultants.com)

Owner Contact: Mr. George Korb, Chief Engineer, Woodloch Pines Inc., Hawley, PA

(570) 878-1810

QUARTERLY ACTIVITY SUMMARY:

April 2017: System maintenance checks and monitoring. Carbon change on April 17th.

May 2017: System maintenance checks and monitoring.

June 2017: System maintenance and checks and monitoring. Quarterly sampling performed on the 1st. Blower

shut down on June 11th due to bearing failure that was covered by warranty.

ON-GOING FIELD ACTIVITIES:

Well Gauging: Twice per month for area of treatment cell. Quarterly for other

monitoring wells.

Manual Bailing for Product Recovery: No product present during quarterly monitoring.

Groundwater Sampling: Quarterly.

Remedial System Operation & Maintenance: DPE System Operating. See REMEDIATION SYSTEM below.

Remedial System Sampling Date(s): April 27, 2017, and May 23, 2017

Additional Activities: See below for all activities.

QUARTERLY GROUNDWATER SAMPLING DATA SUMMARY:

Groundwater Sampling Date(s): June 1, 2017

Separate Phase Liquid (SPL) Measurement: Oil/Water Interface Probe.

SPL Thickness: No SPL measured in any monitoring well.

SPL Recovery Amounts:

Quarterly/Cumulative Total to Date: 0.0/0.0

Groundwater Sampling Methods: Low-flow purge method

Monitoring Wells Sampled: MW-1R through MW-22 (except MW-6 that was previously

destroyed).

Recovery Wells Sampled: None

Laboratory Analysis: PADEP 2008 Unleaded Gasoline Short List Compounds.

Groundwater Sample Results: See comments below, Appendix B: Table 2, and trend graphs.

Depth to Groundwater: 0.60 feet (MW-16) to 12.98 (MW-19) feet below top of casing.

(see Table 1).

Groundwater Flow Direction: Radial away from groundwater mounding in the area of MW-5R

and MW-3; contaminant transport primarily to the west and

southeast (see Appendix A: Figure 5C).

SECOND QUARTER 2017 REMEDIAL ACTION PROGRESS REPORT PAUSTIF CLAIM NO. 2011-0082(S) FORMER ROSEMERGY'S GARAGE/STORE PROPERTY NOW THE MARKET AT WOODLOCH

1623 STATE ROUTE 590 LACKAWAXEN TWP., PIKE COUNTY, PENNSYLVANIA

Hydraulic Gradient: 0.029

Commentary:

Laboratory data for June 2017 indicate a general decrease in constituent concentrations of benzene, TMBs, naphthalene, toluene and ethylbenzene in impacted monitoring wells when compared to the previous quarter. As presented on Appendix B: Table 2, compounds of concern (COCs) were identified at concentrations that exceed the RMSC SHSs at the following monitoring wells:

Monitoring Well MW-1R: 1,2,4-TMB (684 μg/L), Benzene (3,680 μg/L), Toluene (3,040 μg/L), MTBE

(59 μg/L), Ethylbenzene (1,120μg/L) Naphthalene (196 μg/L)

Monitoring Well MW-2: 1,2,4-TMB (176 μg/L), Benzene (16 μg/L)

Monitoring Well MW-3: Benzene (8.6 μg/L), MTBE (186 μg/L)

Monitoring Well MW-4: 1,2,4-TMB (35 μ g/L), Benzene (7.7 μ g/L)

Monitoring Well MW-5R: 1,2,4-TMB (1,440 μg/L), Benzene (1,930 μg/L), Toluene (1,470 μg/L)

Ethylbenzene (2,260 μg/L), MTBE (<25 μg/L), Naphthalene (326 μg/L)

Monitoring Well MW-7: 1,2,4-TMB (27 μg/L), Benzene (9,180 μg/L), MTBE (240 μg/L)

Monitoring Well MW-9: Benzene (108 µg/L)

Monitoring Well MW-10: Benzene (14 µg/L)

Contaminant concentrations in peripheral monitoring wells have shown a decreasing trend in contaminant concentrations over the past few quarters. Contaminant concentrations in source area monitoring wells were consistent in June 2017 compared to historical data. Reductions in dissolved phase hydrocarbons within the treatment cell due to the operation of the remedial system should be begin within the first year of operation. As the volume of water treated by the remedial system is small compared to treatment of vapor, additional time and/or additional drawdown of the water table may still be required at this point in time.

The results from this quarter show an increase in contaminant concentrations in MW-1R, MW-4, and MW-7. This could be a byproduct of the remedial system being operational. As the DPE extracts groundwater and soil vapor it also can bring higher concentrations of contaminants to the area that are then processed by the system.

Contaminant trends in monitoring wells MW-9 and MW-10 show an overall upward trend compared to initial results however a downward trend is observed for the most recent quarters.

Water level data indicates a groundwater low in the area of monitoring well MW-1R for the 2Q 2017 groundwater sampling event. The groundwater low reflects depression of the water table in the northwest corner of the treatment grid due to the operation of the DPES. This groundwater low was not observed on groundwater contour maps prior to the start-up of the remedial system. It is our interpretation that drawdown in the remainder of the treatment cell is hindered by the influx of water from unpaved areas to the west, south, and east.

Analyte concentration trend graphs are included in Appendix B.

Variances:

None noted.

REMEDIATION SYSTEM: As documented in the previous quarterly report, Converse completed the installation and testing of the remedial system in December 2016. The dual phase extraction (DPE) remedial system was

SECOND QUARTER 2017 REMEDIAL ACTION PROGRESS REPORT PAUSTIF CLAIM NO. 2011-0082(S) FORMER ROSEMERGY'S GARAGE/STORE PROPERTY NOW THE MARKET AT WOODLOCH

1623 STATE ROUTE 590 LACKAWAXEN TWP., PIKE COUNTY, PENNSYLVANIA

started on December 29, 2016.

Samples of the influent and effluent groundwater (as well as between the carbon tanks) processed by the DPE were collected on a monthly basis to ensure the functionality of the system. The data is summarized on the attached Table 3. No samples were collected in June as the system was offline waiting for the replacement blower from June 11 to the end of the month. A complete carbon changeout was performed on the 17th of April (vapor phase GAC is not currently used but will be used when the CATOX is taken off-line).

During the second quarter of 2017 the system treated approximately 86,000 gallons of impacted groundwater during 64 days of operation (approximately 1530 hours). Planned system downtime included seven (7) days for carbon changeout, one (1) day for sampling, and approximately one day for maintenance. The remainder of the downtime was for the period of June 11 to June 30 when the blower bearings failed and Converse awaited a replacement blower under warranty. System operation is summarized below:

Operating Period: April 1, 2017 through June 30, 2017

System Operating Time: 1530 hours or 64 days (total run time)

Total Water Treated: ~86,000 gallons

Average Water Flow Rate: 0.94 gpm

Total Vapor Treated: 33,048,000 scf

Average Vapor Flow Rate: 360 scfm

Estimated Total Liquid Phase Contaminants Removed: 30 lbs of hydrocarbons Estimated Total Vapor Phase Contaminants Removed: 761 lbs of hydrocarbons

SPL Recovered: 0 gallons

Liquid Phase Carbon Disposed: 440 lbs (April carbon changeout)

Vapor Phase Carbon Disposed: 1300 lbs (April carbon changeout)

Calculation of Liquid phase contaminants treated is based on approximately 300 pounds of carbon used during the 2Q and a 10% efficiency for the aqueous phase.

Calculation of Vapor phase contaminants is based on an average PID reading of 80 units of weathered gasoline in the treatment influent, a ppmV for weathered gasoline of 4.62 mg/m3, and the shown volume of vapor treated for the quarter.

Quarterly sample collection and laboratory analysis of the influent air will be conducted beginning in the third quarter of 2017. This data will be used to facilitate decisions with respect to desired increases in the effectiveness and efficiency of the remedial system.

The total DPE system airflow rate is measured by a direct read ERDCO flow meter when the flow is less than 350 cfm. When the system operates above 350 cfm the flow rate can be estimated from the operation curves for the Roots blower. Generally, the blower and CATOX operate within a narrow range of 340 to 390 cfm. The average flow rate is 360 cfm.

SYSTEM DRAWDOWN: During remedial system operation Converse has monitored water levels in the treatment cell to assess the drawdown created by the DPE. As noted above, quarterly groundwater contour maps show a groundwater depression in the northwest corner of the treatment cell due to operation of the remedial system.

Water levels collected in April (11th and 17th) show that when the system is running the recorded drawdown in the monitored wells is between 0.5' and 2.5' lower than static depth to water. A chart of water levels in the piezometers and monitoring wells is included in Appendix B. The graphs indicate that certain areas of the treatment cell including PZ-2, MW-1R (not shown), and MW-5R the system can generally maintain the low water levels observed during the drought of September 2016. These areas that maintain sufficient drawdown are in the interior and northwest corner of the treatment cell. The remainder of the treatment cell will need additional measures to

SECOND QUARTER 2017 REMEDIAL ACTION PROGRESS REPORT PAUSTIF CLAIM NO. 2011-0082(S) FORMER ROSEMERGY'S GARAGE/STORE PROPERTY NOW THE MARKET AT WOODLOCH 1623 STATE ROUTE 590

LACKAWAXEN TWP., PIKE COUNTY, PENNSYLVANIA

increase drawdown unless drought conditions return in the near future. Converse is in the process of addressing vacuum leaks in the southeast corner of the treatment cell at extraction points MW-4 and DPE-3. In addition, Woodloch's engineer is designing a drainage system to eliminate parking lot runoff from entering the treatment cell. After those measures are completed, Converse will re-evaluate the potential mechanism for increasing drawdown along the western, southern and eastern borders of the treatment cell.

Converse assumes that the water levels in the extraction wells during dual phase extraction are at 12.5 feet below grade which is the depth of the DPE system drop-pipes. Water levels taken shortly after a wellhead is turned off generally verify this assumption, although the water level in the wells begins to rise immediately after the wellhead is shut off and a small rise above the bottom of the drop pipe is always observed at the time of water level collection.

SYSTEM VACUUM: During remedial system operation Converse monitors system vacuum in the shed and at the well heads. Since March of 2017, Converse has collected additional vacuum data from the monitoring points in the treatment cell in an attempt to measure the extent of vacuum influence. See the attached Remediation Tables in Appendix B for the measured values.

Vacuum readings were collected throughout the 2nd quarter from P-2, P-3, MW-2, MW-5R, and MW-7. The only monitoring point that consistently shows vacuum influence is P-2 that is located within the interior of the treatment cell. Vacuum influence has periodically been recorded for P-1, P-3, MW-5R and MW-7. Monitoring wells MW-2 and MW-3 are outside of the treatment cell to the north and east, respectively, and have not shown definitive evidence of vacuum influence. It is expected that MW-3 will be within the zone of vacuum influence after the vacuum short circuiting is addressed at vapor points MW-4 and DPE-3.

The remediation system typically operates at a vacuum of 9 to 14.5 inches of mercury (inHg). Vacuum measured at the DPE well heads should typically exceed 80 inches of water column (IWC). Vacuum levels at the well heads have been sufficient to simultaneously extract water and soil vapor from each of the DPE well heads, however during the winter months several wellheads displayed sub-optimal vacuum readings. Since late April the vacuum measurements at the well heads have shown significant improvement and were all greater than 90 IWC by early June. Analyzing the historical vacuum data at the wellheads it appears that the vacuum readings have been influence by sub-freezing temperatures and by periodic collection of readings too soon after the system is restarted.

DPE well heads DPE-3 and MW-4 were not utilized during the winter months due to vapor pathway short circuiting. Rehabilitation of the well heads for DPE-3 and MW-4 is scheduled for early August.

<u>VAPOR TREATMENT:</u> During the Fall of 2016 the vapor phase GAC was replaced with a Falmouth 300 CATOX treatment unit. The unit was designed to cope with the increased air flow and vapor levels (PID readings in excess of 2000 units) that were encountered during testing of the remedial system in July/August of 2016. PID readings have decreased rapidly since start-up and post-drought water levels have caused a significant portion of the contaminant mass to be submerged below achievable drawdown levels. As the current PID readings do not support the continued use of the CATOX we plan to switch the vapor treatment back to GAC when the current CATOX lease period expires in mid-August.

A correlation between the vapor concentrations and the temperature in the combustion chamber may be expected. Although we have observed a general decrease in combustion chamber temperature (T3) as the influent concentrations have decreased, a direct correlation is not possible due to vapor control valve and bypass valve operation that are constantly adjusted by the CATOX to optimize operation. A better measure of CATOX operation would be a daily comparison of vapor concentrations versus electricity use. Higher concentrations promote more self-sustaining combustion and reduce power demand. The monthly electric bills don't provide sufficient data resolution to provide a meaningful comparison however.

NOISE REDUCTION ACTIVITIES: On June 7, 2017 Converse installed sound reduction materials inside the DPE manholes. The materials were required to meet noise standards within the nearby market building.

PLANNED ACTIVITIES:

Well Gauging: September 2017
Manual Bailing for Product Recovery: Not planned

SECOND QUARTER 2017 REMEDIAL ACTION PROGRESS REPORT PAUSTIF CLAIM NO. 2011-0082(S) FORMER ROSEMERGY'S GARAGE/STORE PROPERTY NOW THE MARKET AT WOOD! OCH

NOW THE MARKET AT WOODLOCH 1623 STATE ROUTE 590 LACKAWAXEN TWP., PIKE COUNTY, PENNSYLVANIA

Groundwater Sampling: September 2017
Remedial System Operation & Maintenance: At least twice per month
Remedial System Sampling Date(s): Monthly

Additional:

Analysis of an influent air sample once per quarter. Additional remedial measures to increase drawdown are being planned.

APPENDICES:

Appendix A

Figure 1: Site Location Map Figure 2: Property Plan

Figure 3A: DPE System Schematic

Figure 4: Groundwater Elevation Contour Map June 2017
Figure 5: Dissolved Benzene Isoconcentration Map June 2017
Figure 6: Dissolved MTBE Isoconcentration Map June 2017
Figure 7: Dissolved Naphthalene Isoconcentration Map June 2017
Figure 8: Dissolved 1,2,4-TMB Isoconcentration Map June 2017
Figure 9: Dissolved 1,3,5-TMB Isoconcentration Map June 2017

Appendix B

Table 1: Groundwater Elevations

Table 2: Groundwater Analytical Summary
Table 3: DPE System Aqueous Sample Results

DPE System Summary Tables

Trend Graphs

Appendix C:

Chain of Custody Documents and Laboratory Reports

NOTES:

The second Quarter 2017 hydraulic gradient was calculated using the groundwater elevation at monitoring well MW-5R (1296.35 feet) minus the groundwater elevation at monitoring well MW-19 (1288.70 feet) divided by the horizontal distance (~262 feet) from monitoring well MW-5R to monitoring well MW-19.

REFERENCES:

Act 2, 1995. Pennsylvania Act 2 of 1995: Land Recycling and Environmental Remediation Standards Act (35 P.S. 6026)

Act 32, 1989. Pennsylvania Act 32 of 1989: Storage Tank and Spill Prevention Act (35 P.S. '6021)

§245, 25 Pennsylvania Code Chapter 245 (§245). Subchapter D: Corrective Action Process for Owners and Operators of Storage Tanks and Storage Tank Facilities and Other Responsible Parties

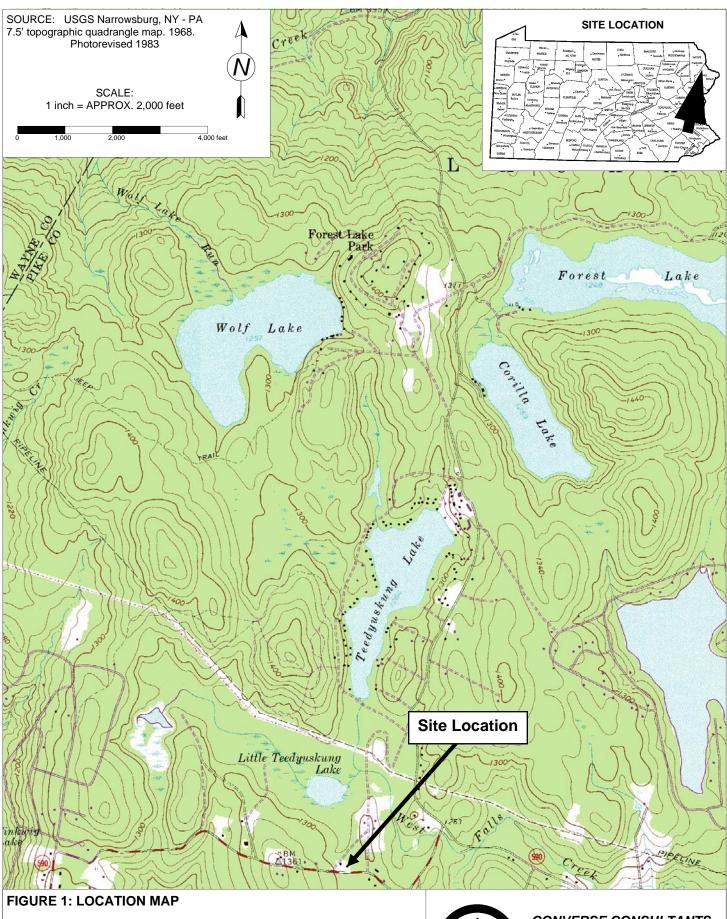
§250, 25 PA Code Chapter 250 (§250): Administration of the Land Recycling Program

Converse, 2013. Work Plan, Additional Supplemental Site Characterization, PAUSTIF Claim #2011-0082(S), Former Rosemergy's Convenience Store, 1623 Route 590, Hawley, Pike County, Pennsylvania, September 23, 2014, Converse Consultants, State College, PA.

Converse, 2014. Site Characterization Report, Former Rosemergy's Store/Garage, PAUSTIF Claim #2011-0082(S), 1623 Route 590, Hawley, Lackawaxen Twp., Pike County, Pennsylvania, August 7, 2014, Converse Consultants, State College, PA.

SECOND QUARTER 2017 REMEDIAL ACTION PROGRESS REPORT PAUSTIF CLAIM NO. 2011-0082(S) FORMER ROSEMERGY'S GARAGE/STORE PROPERTY NOW THE MARKET AT WOODLOCH 1623 STATE ROUTE 590

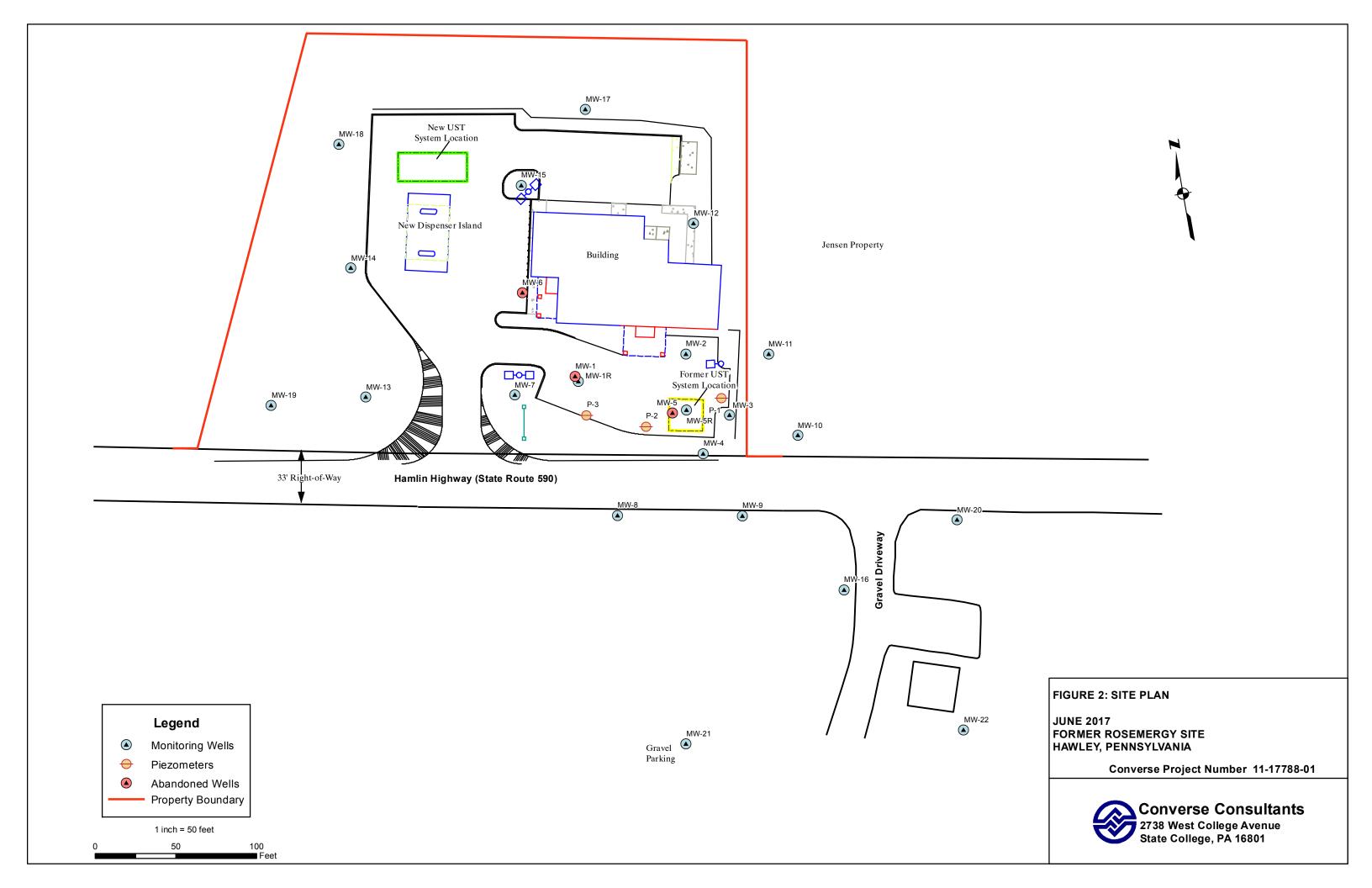

LACKAWAXEN TWP., PIKE COUNTY, PENNSYLVANIA

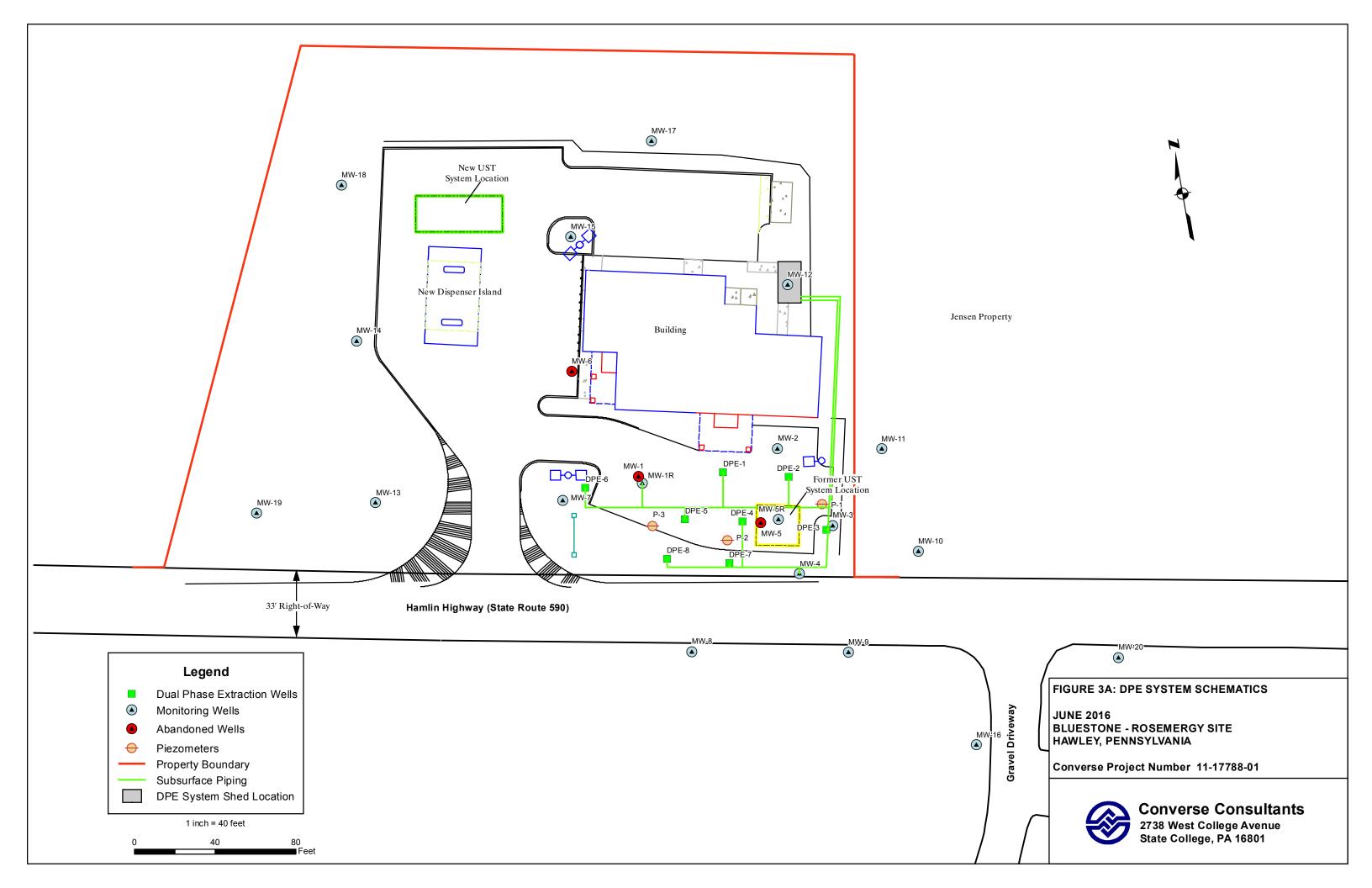

PADEP, 1998. Technical Document, Closure Requirements for Underground Storage Tank Systems, PADEP 253-4500-601, December 1998.

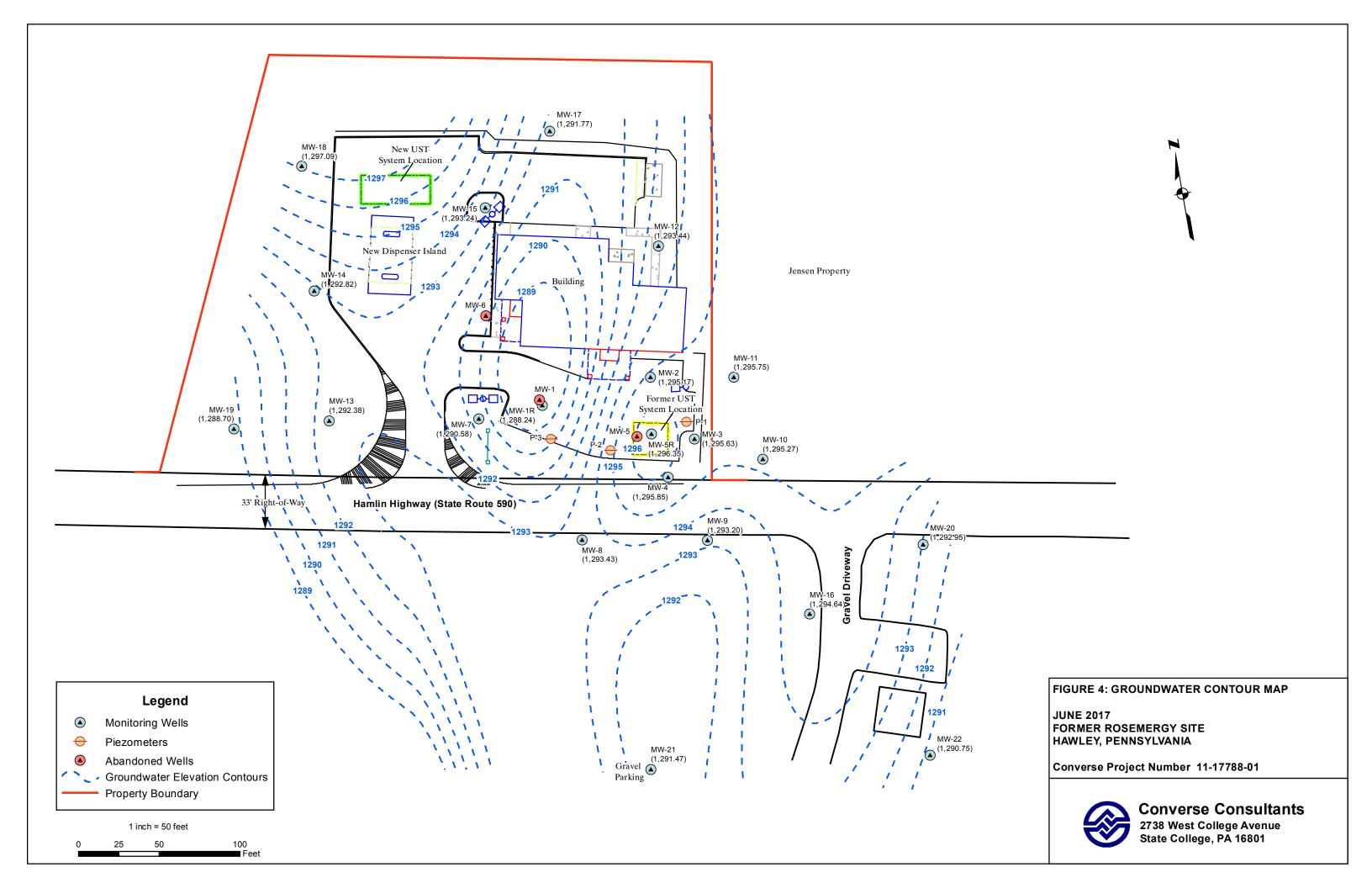
PADEP, 2002. Land Recycling Program Technical Guidance Manual, PADEP 253-0300-100, May 4, 2002: with amended 2008.

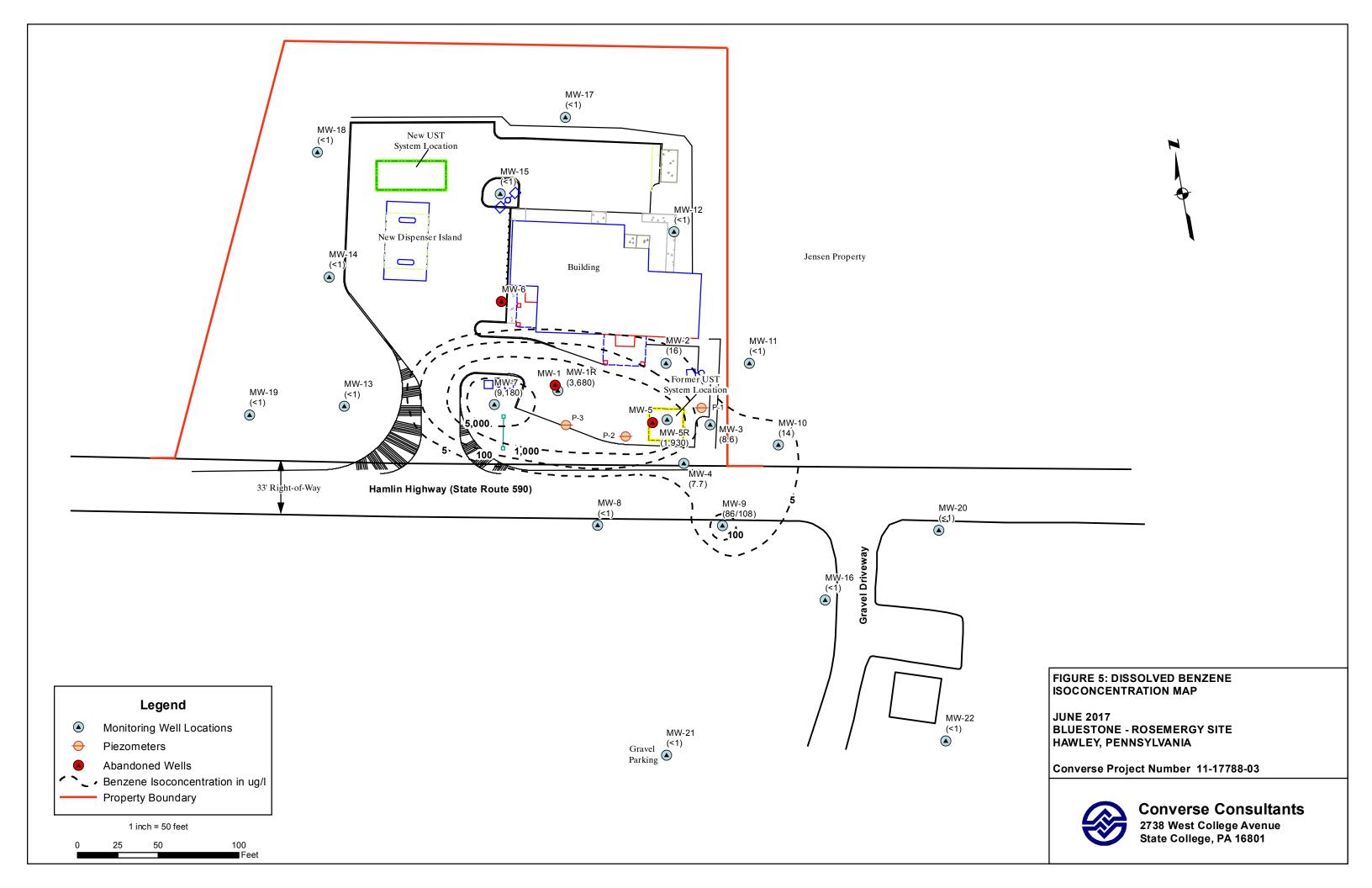
PAGWIS, 2010. Pennsylvania Groundwater Information System, Pennsylvania Department of Conservation and Natural Resources (http://www.dcnr.state.pa.us/topogeo/groundwater/PaGWIS/PaGWISMenu.asp?c=t)

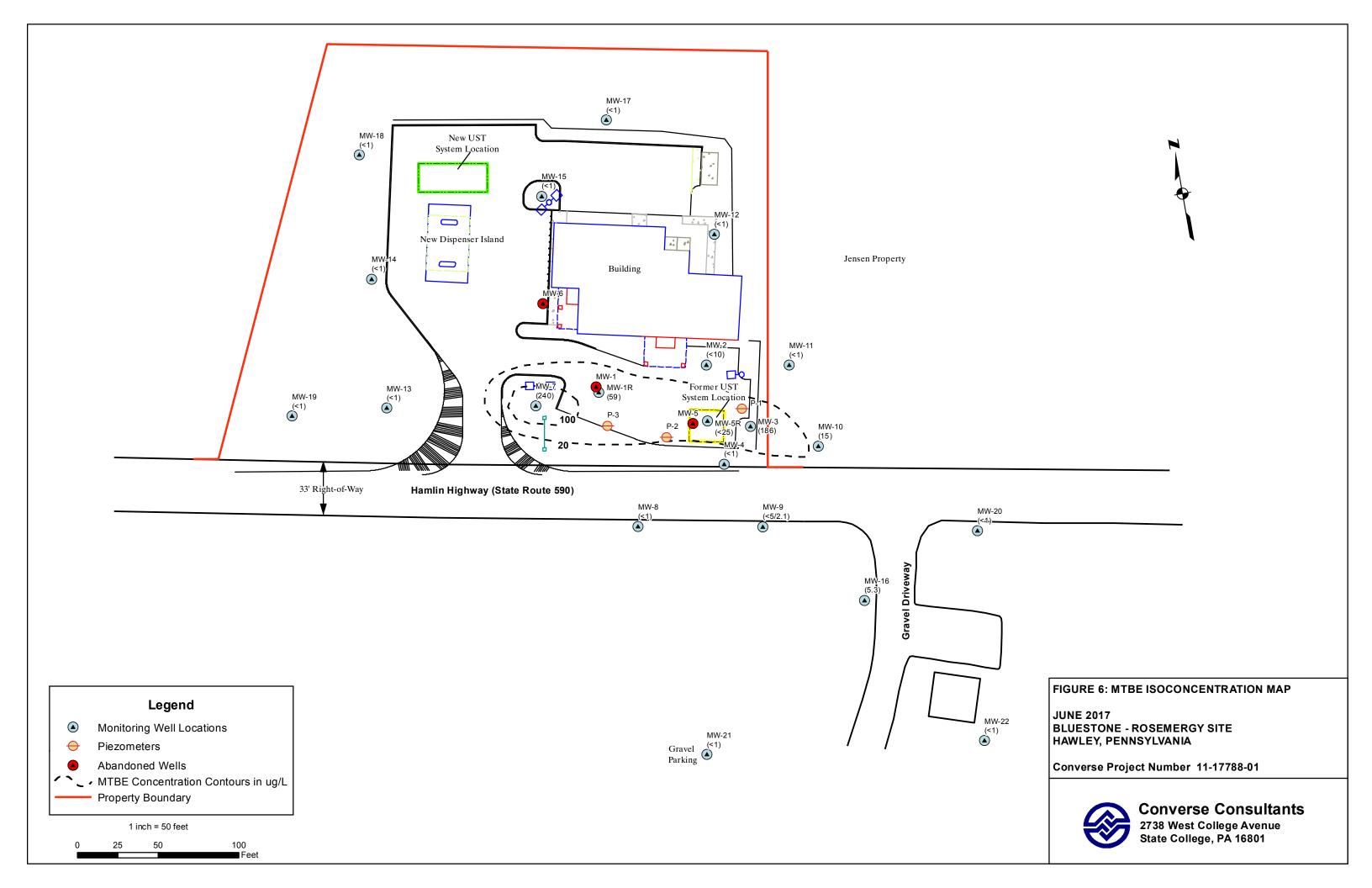
PG SEAL

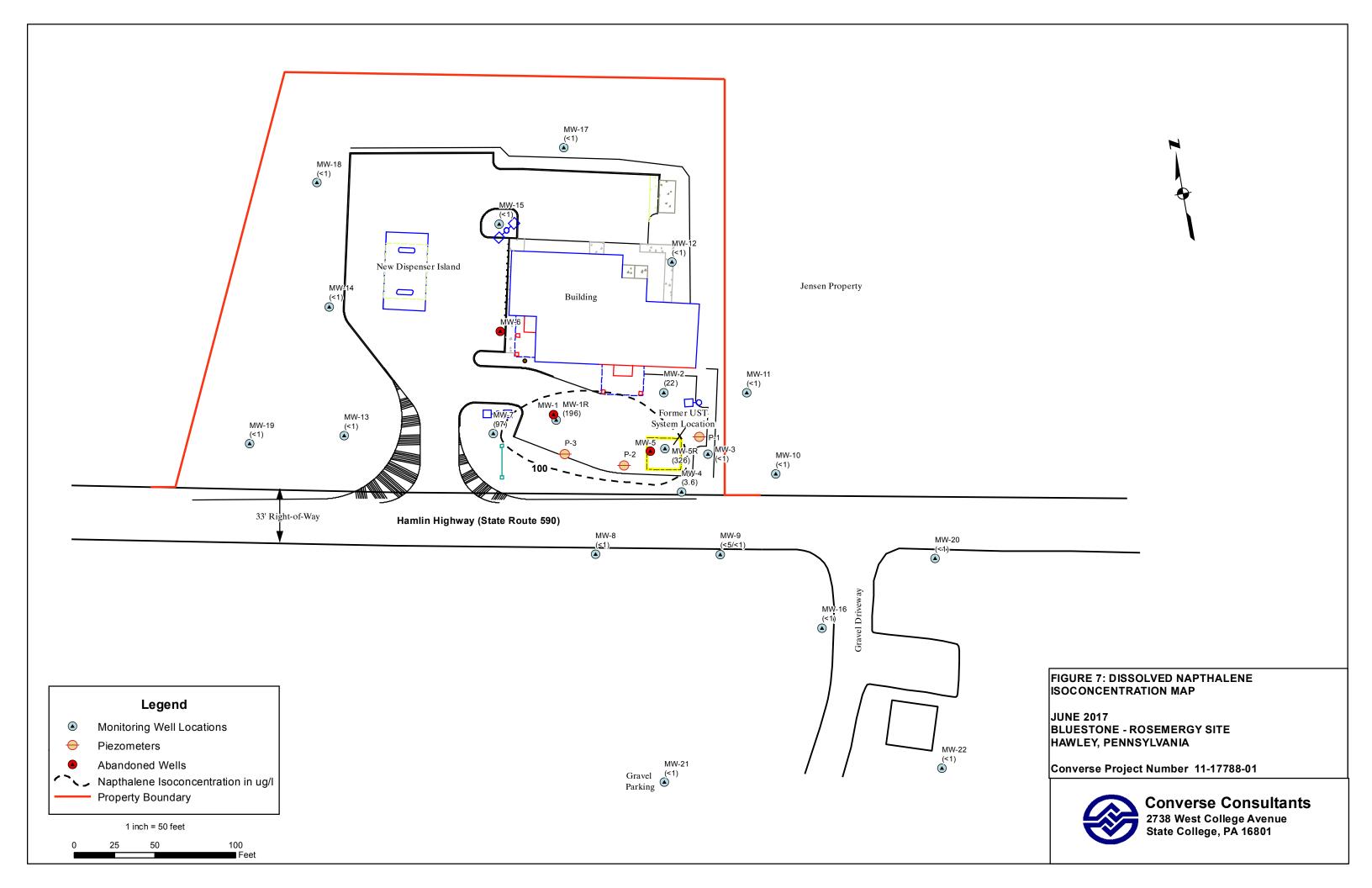

ROSEMERGY SITE HAMLIN HIGHWAY (PA 590) HAWLEY, PIKE COUNTY, PENNSYLVANIA

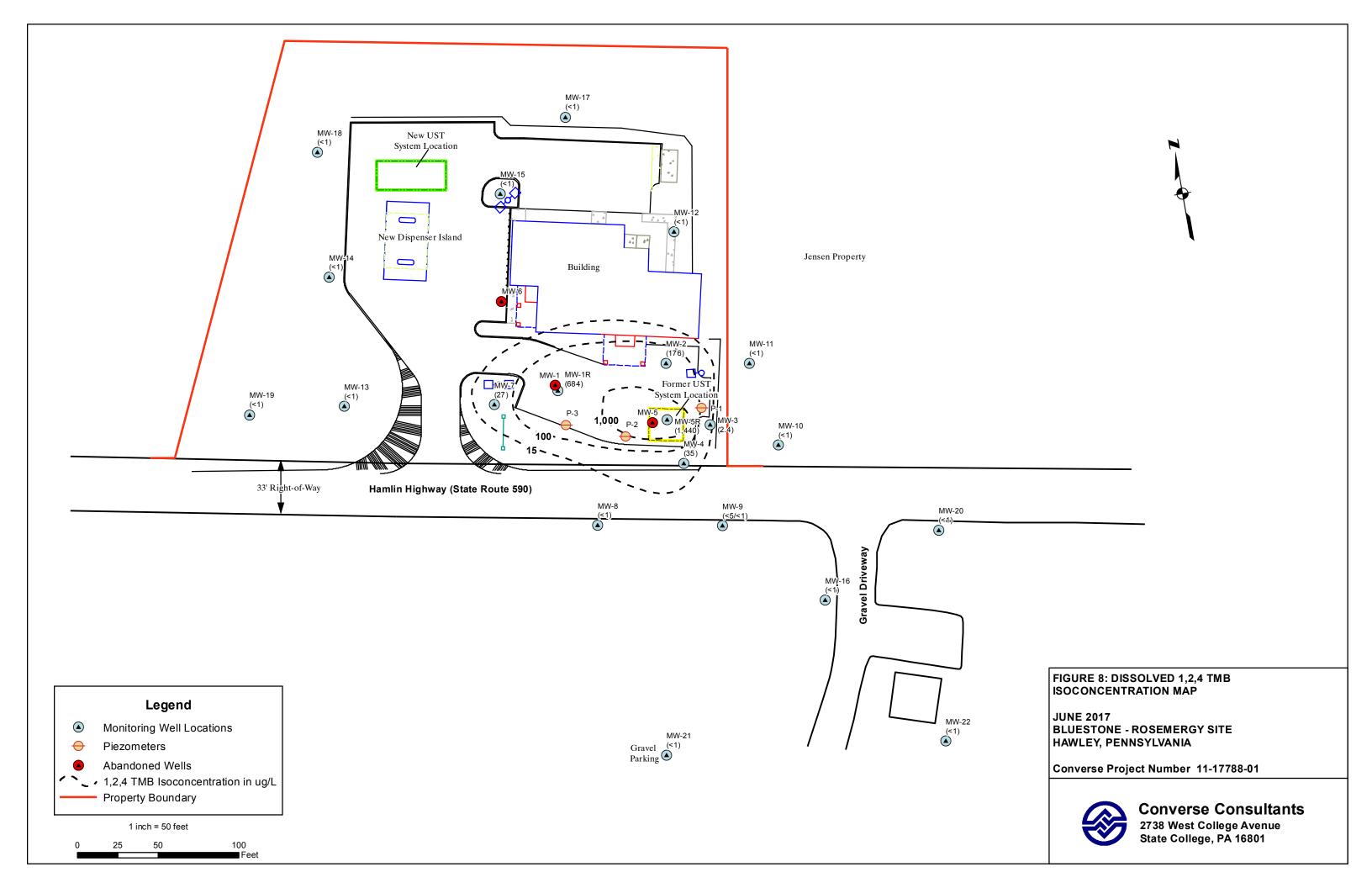

Converse Project Number 11-17829-01

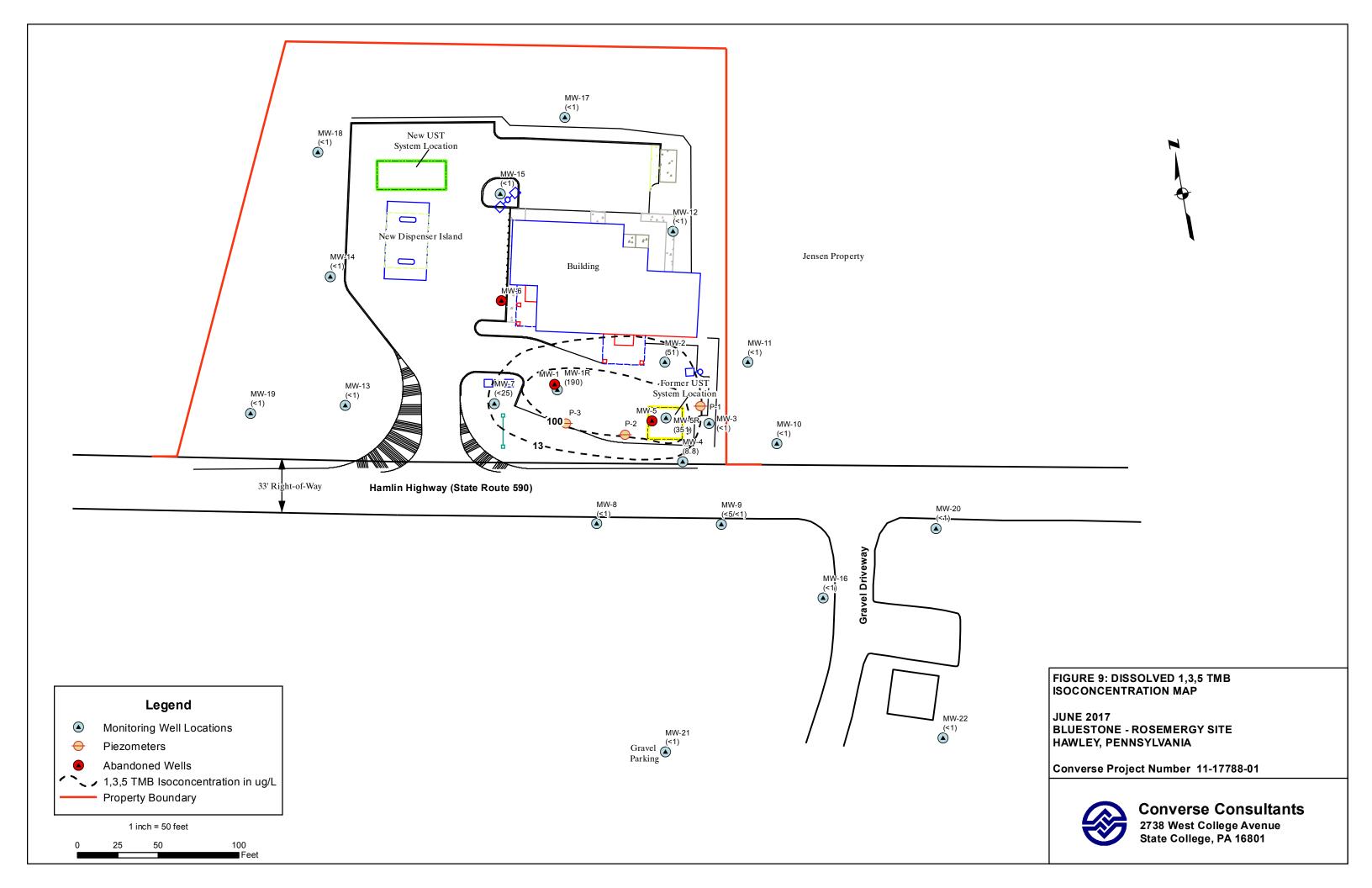

Revised 01/09/13




CONVERSE CONSULTANTS 2738 West College Avenue State College, PA 16801 (814) 234-3223







WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-1	14.70	3-14.7	-0.48	1300.57	5/8/12	5.30	1295.27
(2)					6/17/12	6.52	1294.05
					5/14/13	IA	IA
					12/11/13	AB	AB
MW-1R	14.61	4-14.61	-0.28	1298.25	11/8/13	10.89	1287.36
					12/11/13	9.90	1288.35
					2/4/14	7.82	1290.43
					3/7/14	7.73	1290.52
					4/29/14	NS	NC
					6/12/14	6.35	1291.90
					9/17/14	7.49	1290.76
					12/3/14	7.44	1290.81
					3/25/15	5.00	1293.25
					6/25/15	5.16	1293.09
					8/26/15	7.52	1290.73
					11/12/15	NS	NS
					12/9/15	6.21	1292.04
					1/14/16	5.39	1292.86
					3/30/16	5.41	1292.84
					6/23/16*	3.39	1294.86
					9/21/16	9.10	1289.15
					12/8/16	7.84	1290.41
					2/24/17	6.86	1291.39
					6/1/17	10.01	1288.24
MW-2	14.40	3-14.4	-0.67	1299.67	5/8/12	3.18	1296.49
(2)					6/17/12	5.61	1294.06
					5/14/13	3.51	1296.16
					11/8/13	8.62	1291.05
					12/11/13	5.70	1293.97
					2/4/14	NS 4.07	NC
					3/7/14	4.87	1294.80
					4/29/14 6/12/14	NS NS	NC NC
					9/17/14	5.27	1294.40
					12/3/14	3.31	1294.40
					3/25/15	2.80	1296.87
					6/25/15	2.80 3.17	1296.67
					8/26/15	4.50	1295.30
					11/12/15	4.50 NS	1295.17 NS
					12/9/15	3.85	1295.82
					1/14/16	3.17	1296.50
					3/30/16	3.65	1296.02
					6/23/16*	5.04	1294.63
					9/21/16	6.75	1294.03
					12/8/16	4.45	1295.22
					2/24/17	3.83	1295.84
					6/1/17	4.50	1295.04
1				l	5/ 1/ 17	1.00	1200.17

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-3	14.21	3-14.21	-0.37	1298.61	5/8/12	2.13	1296.48
(2)					6/17/12	3.45	1295.16
					5/14/13	2.71	1295.90
					11/8/13	6.73	1291.88
					12/11/13	3.82	1294.79
					2/4/14	NS	NC
					3/7/14	NS	NC
					4/29/14	NS	NC
					6/12/14	3.49	1295.12
					9/17/14	4.14	1294.47
					12/3/14	2.18	1296.43
					3/25/15	2.14	1296.47
					6/25/15	2.15	1296.46
					8/26/15	3.69	1294.92
					11/12/15	2.13	1296.48
					12/9/15	2.67	1295.94
					1/14/16	3.02	1295.59
					3/30/16	2.97	1295.64
					6/23/16*	3.28	1295.33
					9/21/16	3.97	1294.64
					12/8/16	1.45	1297.16
					2/24/17	2.40	1296.21
					6/1/17	2.98	1295.63
MW-4	14.56	3-14.56	-0.56	1299.05	5/8/12	2.45	1296.60
(2)					6/17/12	3.96	1295.09
					5/14/13	3.19	1295.86
					11/8/13	7.36	1291.69
					12/11/13	4.41	1294.64
					2/4/14	NS	NC
					3/7/14	NS	NC
					4/29/14	NS	NC
					6/12/14	3.64	1295.41
					9/17/14	4.20	1294.85
					12/3/14	1.52	1297.53
					3/25/15	1.70	1297.35
					6/26/15	2.34	1296.71
					8/26/15	3.71	1295.34
					11/12/15	1.53	1297.52
					12/9/15	3.40	1295.65
					1/14/16	3.72	1295.33
					3/30/16	2.97	1296.08
					6/23/16*	4.55	1294.5
					9/21/16	4.85	1294.2
					12/8/16	1.8	1297.25
					2/24/17	1.44	1297.61
					6/1/17	3.2	1295.85

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-5	14.68	3-14.68	-0.26	1299.36	5/8/12	2.65	1296.71
(2)					6/17/12	3.90	1295.46
					5/14/13	3.18	1296.18
					11/8/13	7.82	1291.54
					12/11/13	4.42	1294.94
					2/4/14	NS	NC
					3/7/14	3.83	1295.53
					4/29/14	NS	NC
					3/25/15	2.78	1296.58
					6/25/15	3.30	1296.06
					8/26/15	4.50	1294.86
					11/12/15	NS	NS
					12/9/15	3.92	1295.44
					1/14/16	4.11	1295.25
					3/30/16	3.66	1295.70
					6/23/16*	4.24	1295.12
					9/21/16	6.32	1293.04
					12/8/16	4.06	1295.30
MW-5R					2/24/17	3.77	1295.59
					6/1/17	3.01	1296.35
MW-6	15.30	3-15.3	-0.51	1301.21	5/8/12	5.74	1295.47
(2)					6/17/12	7.98	1293.23
					5/14/13	6.08	1295.13
					11/8/13	AB	AB
MW-7	14.99	5-14.99	-0.57	1298.58	11/8/13	12.48	1286.10
					12/11/13	12.59	1285.99
					2/4/14	NS	NC
					3/7/14	NS	NC
					4/29/14	NS	NC
					6/12/14	7.73	1290.85
					9/17/14	9.19	1289.39
					12/3/14	9.16	1289.42
					3/25/15	6.60	1291.98
					6/25/15	7.07	1291.51
					8/26/15	9.27	1289.31
					11/12/15	NS	NS
					12/9/15	7.82	1290.76
					1/14/16	5.99	1292.59
					3/30/16	7.25	1291.33
					6/23/16*	8.14	1290.44
					9/21/16	11.07	1287.51
					12/8/16	10.90	1287.68
					2/24/17	7.91	1290.67
					6/1/17	8.00	1290.58

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-8	14.62	4-14.62	-0.39	1295.27	11/8/13	6.24	1289.03
					12/11/13	3.14	1292.13
					2/4/14	3.52	1291.75
					3/7/14	3.05	1292.22
					4/29/14	NS	NC
					6/12/14	2.80	1292.47
					9/17/14	3.06	1292.21
					12/3/14	1.68	1293.59
					3/25/15	2.67	1292.60
					6/25/15	2.43	1292.84
					8/26/15	3.22	1292.05
					11/12/15	NS	NS
					12/9/15	2.46	1292.81
					1/14/16	2.02	1293.25
					3/30/16	2.24	1293.03
					6/23/16*	3.79	1291.48
					9/21/16	4.45	1291.40
					12/8/16	2.35	1290.02
					2/24/17	0.65	1292.92
					6/1/17	1.84	1294.02
MW-9	14.65	4-14.62	-0.37	1293.91	11/8/13	3.96	1289.95
10100-9	14.05	4-14.02	-0.37	1293.91	12/11/13	1.14	1209.93
					2/4/14	1.14	1292.77
					3/7/14	1.12	1292.79
					4/29/14	NS 4.42	NC
					6/12/14	1.43	1292.48
					9/17/14	1.89	1292.02
					12/3/14	0.81	1293.10
					3/25/15	0.40	1293.51
					6/25/15	0.62	1293.29
					8/26/15	1.23	1292.68
					11/12/15	0.08	1293.83
					12/9/15	0.50	1293.41
					1/14/16	0.20	1293.71
					1/21/16	0.90	1293.01
					3/30/16	0.85	1293.06
					6/23/16*	2.54	1291.37
					9/21/16	2.96	1290.95
					12/8/16	1.78	1292.13
					2/24/17	0.00	1293.91
NAVA 40	44.05	E 4405	0.44	1007.01	6/1/17	0.71	1293.20
MW-10	14.25	5-14.25	-0.41	1297.61	11/8/13	NI NI	NC NC
					12/11/13	NI 2.12	NC
					2/4/14	3.13	1294.48
					3/7/14	2.72	1294.89
					4/29/14	NS 2.04	NC
					6/12/14	3.04	1294.57
					9/17/14	3.84	1293.77
					12/3/14	2.14	1295.47
					3/25/15	2.09	1295.52
					6/26/15	2.60	1295.01
					8/27/15	3.46	1294.15
					11/12/15	NS	NS
					12/9/15	2.83	1294.78
					1/14/16	2.33	1295.28
					3/30/16	2.52	1295.09
					6/23/16*	3.81	1293.80
					9/21/16	4.00	1293.61
					12/8/16	2.80	1294.81
					2/24/17	2.42	1295.19
					6/1/17	2.34	1295.27

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-11	14.73	5-14.73	-0.25	1298.35	11/8/13	NI	NC
					12/11/13	NI	NC
					2/4/14	3.68	1294.67
					3/7/14	3.22	1295.13
					4/29/14	NS	NC
					6/12/14	3.47	1294.88
					9/17/14	4.01	1294.34
					12/3/14	3.16	1295.19
					3/25/15	4.00	1294.35
					6/26/15	2.83	1295.52
					8/27/15	4.44	1293.91
					11/12/15	NS	NS
					12/9/15	2.52	1295.83
					1/14/16	2.11	1296.24
					3/30/16	2.94	1295.41
					6/23/16*	4.50	1293.85
					9/21/16	6.14	1292.21
					12/8/16	3.89	1294.46
					2/24/17	2.60	1295.75
					6/1/17	2.60	1295.75
MW-12	14.65	4-14.65	-0.81	1297.44	11/8/13	9.40	1288.04
10100 12	14.00	4 14.00	0.01	1207.44	12/11/13	5.46	1291.98
					2/4/14	5.55	1291.89
					3/7/14	5.18	1291.09
					4/29/14	NS	NC
					6/12/14	4.93	1292.51
					9/17/14	4.93 5.44	1292.00
					12/3/14	3.72	1292.00
							1293.72
					3/25/15	3.80	
					6/25/15	3.70	1293.74
					8/26/15	5.20	1292.24
					11/12/15	NS 4.00	NS
					12/9/15	4.23	1293.21
					1/14/16	3.66	1293.78
					3/30/16	4.09	1293.35
					6/23/16*	5.35	1292.09
					9/21/16	6.14	1291.30
					12/8/16	4.66	1292.78
					2/24/17	3.95	1293.49
101110	44.00			1000.01	6/1/17	4.00	1293.44
MW-13	14.93	5.75-14.93	-0.2	1303.84	11/8/13		
					12/11/13	١	VNI
					2/4/14		
					3/7/14	44.50	1000.01
					4/29/14	11.53	1292.31
					6/12/14	12.64	1291.20
					9/17/14	11.34	1292.50
					12/3/14	13.77	1290.07
					3/25/15	DRY	DRY
					6/25/15	11.74	1292.10
					8/26/15	15.65	1288.19
					11/12/15	NS	NS
					12/9/15	12.72	1291.12
					1/14/16	10.69	1293.15
					3/30/16	12.08	1291.76
					6/23/16*	13.29	1290.55
					9/21/16	DRY	DRY
					12/8/16	DRY	DRY
					2/24/17	10.23	1293.61
]			6/1/17	11.46	1292.38

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-14	18.65	5-18.65	-0.3	1304.54	11/8/13		
					12/11/13	1	VNI
					2/4/14	\ 	VINI
					3/7/14		
					4/29/14	11.37	1293.17
					6/12/14	12.73	1291.81
					9/17/14	14.52	1290.02
					12/3/14	13.94	1290.60
					3/25/15	11.69	1292.85
					6/25/15	12.08	1292.46
					8/26/15	14.80	1289.74
					11/12/15	NS	NS
					12/9/15	13.30	1291.24
					1/14/16	10.91	1293.63
					3/30/16	11.55	1292.99
					6/23/16*	13.33	1291.21
					9/21/16	16.61	1287.93
					12/8/16	10.38	1294.16
					2/24/17	10.30	1294.24
					6/1/17	11.72	1292.82
MW-15	14.86	5-14.86	-0.3	1301.14	11/8/13		
					12/11/13	V	WNI
					2/4/14		
					3/7/14		T
					4/29/14	6.45	1294.69
					6/12/14	8.41	1292.73
					9/17/14	9.73	1291.41
					12/3/14	9.34	1291.80
					3/25/15	7.37	1293.77
					6/25/15	7.68	1293.46
					8/26/15	9.88	1291.26
					11/12/15	NS	NS
					12/9/15	8.61	1292.53
					1/14/16	7.20	1293.94
					1/21/16	7.34	1293.80
					3/30/16	8.04	1293.10
					6/23/16*	7.10	1294.04
					9/21/16	11.57	1289.57
					12/8/16	10.91	1290.23
					2/24/17	7.30	1293.84
					6/1/17	7.90	1293.24

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-16	14.69	5-14.69	-0.3	1295.24	11/8/13		
					12/11/13	\	VNI
					2/4/14		
					3/7/14		
					4/29/14	0.71	1294.53
					6/12/14 9/17/14	1.47	1293.77
					12/3/14	2.52 0.10	1292.72 1295.14
					3/25/15	NS	1295.14 NS
					6/25/15	0.82	1294.42
					8/26/15	1.64	1293.60
					11/12/15	NS	NS
					12/9/15	0.75	1294.49
					1/14/16	0.40	1294.84
					1/21/16	0.80	1294.44
					3/30/16	0.50	1294.74
					6/23/16*	2.50	1292.74
					9/21/16	4.13	1291.11
					12/8/16	0.95	1294.29
					2/24/17	0.40	1294.84
					6/1/17	0.60	1294.64
MW-17	15.00	3-15	-0.24	1296.68	11/12/15	8.34	1288.34
					12/9/15	5.72	1290.96
					1/14/16 1/21/16	4.85 5.01	1291.83
					3/30/16	5.01 5.44	1291.67 1291.24
					6/23/16*	6.38	1291.24
					9/21/16	8.58	1288.10
					12/8/16	7.15	1289.53
					2/24/17	4.91	1291.77
					6/1/17	4.91	1291.77
MW-18	17.95	3-18	-0.31	1300.38	11/12/15	12.19	1288.19
					12/9/15	11.09	1289.29
					1/14/16	9.15	1291.23
					1/21/16	10.65	1289.73
					3/30/16	10.38	1290.00
					6/23/16*	11.60	1288.78
					9/21/16	14.45	1285.93
					12/8/16	13.98	1286.40
					2/24/17 6/1/17	9.89 3.29	1290.49 1297.09
MW-19	16.56	2-17	-0.47	1301.68	11/12/15	13.32	1288.36
10100-13	10.50	2-17	-0.47	1501.00	12/9/15	12.22	1289.46
					1/14/16	NM	NM
					1/21/16	11.44	1290.24
					3/30/16	11.98	1289.70
					6/23/16*	14.02	1287.66
					9/21/16	DRY	DRY
					12/8/16	DRY	DRY
					2/24/17	10.95	1290.73
					6/1/17	12.98	1288.70
MW-20	14.47	3-15	-0.26	1294.17	11/12/15	1.01	1293.16
					12/9/15	1.42	1292.75
					1/14/16	1.31	1292.86
					1/21/16	1.01	1293.16
					3/30/16 6/23/16*	1.59	1292.58
					6/23/16* 9/21/16	2.80 4.82	1291.37 1289.35
					12/8/16	4.82 1.26	1289.35
					2/24/17	1.20	1292.91
					6/1/17	1.22	1293.17

WELL	TWD	SI	TOCG	TOC	DATE	DTW	GW ELEV
MW-21	15.00	3-15	-0.29	1293.09	11/12/15	1.04	1292.05
					12/9/15	1.59	1291.50
					1/14/16	2.12	1290.97
					1/21/16	1.66	1291.43
					3/30/16	1.24	1291.85
					6/23/16*	3.48	1289.61
					9/21/16	5.45	1287.64
					12/8/16	1.48	1291.61
					2/24/17	1.03	1292.06
					6/1/17	1.62	1291.47
MW-22	14.90	3-15	-0.44	1291.48	11/12/15	0.25	1291.23
					12/9/15	0.79	1290.69
					1/14/16	1.15	1290.33
					1/21/16	0.82	1290.66
					3/30/16	0.73	1290.75
					6/23/16*	2.96	1288.52
					9/21/16	6.22	1285.26
					12/8/16	1.00	1290.48
					2/24/17	0.35	1291.13
					6/1/17	0.73	1290.75

(2) = Diameter of Well Casing in Inches.
 TWD = Total Well Depth in feet below grade.
 SI = Screened Interval in feet below grade.
 TOCG = Top of Well Casing relative to Grade.

+ = Approximate feet above grade.

- = Approximate feet below grade.

TOC = Top of Well Casing.

NI = Not Installed

DTW = Measured Depth to Groundwater from TOC.

GW ELEV = Calculated Groundwater Elevation.

NM = Well not measured.

NA = Not Applicable.

IA = Inaccessible.

NS = Not Sampled.

AB = Abandoned or Destroyed

*= See chain on custody for specific well dates

	Statewide Health																			
Sample ID (Depth)	Standards	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1R	MW-1R	MW-1R
	Residential																			
Sampling Date	Groundwater	5/8/12	6/7/12	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	3/31/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COMPO	OUNDS																			
1,3,5-Trimethylbenzene	420	1,030	736	310/646	643/625	NS	618/662	365	389	792/594	279/294	265	300	270/297	<50	54/59.5	<50	<10	140	190
1,2,4-Trimethylbenzene	15	2,310	2,580	978/1,020	2,100/2,050	NS	1,900/2,100	1,300	1,490	3,040/1,700	981/997	996	1,150	1,060/1,090	<50	198/218	<50	<10	467	684
Benzene	5	3,930	5,680	6,410/,6620	7,400/7,610	NS	7,740/8,210	7,170	6,330	6290/8,530	4,500/4,600	4,230	6,250	3,480/4,130	85	1810/1780	<50	<10	4510	3680
Toluene	1,000	13,600	10,900	15,700/16,100	9,960/10,000	NS	12,900/14,500	10,200	5,860	7,980/13,900	5,620/5,830	4,490	6,030	6,820/6,910	94	1850/1860	<50	<10	2400	3040
Ethylbenzene	700	2,450	2,720	1,540/1,580	2,380/2,350	NS	2,710/2,760	1,770		4,530/2,740		1,390	1,700	1,180/1,310	<50	333/368	<50	<10	806	1120
Xylenes (total)	10,000	11,800	12,200	8,980/9,060	5,550/5,390	NS	14,000/14,400	8640	11,000	8,300/ 14,200	9,130/9,150	7,170	8,930	7380/8,110	<100	1810/1960	<100	<20	2960	4190
Isopropylbenzene	840	1,210	395	111/405	387/386	NS	336/364	213	233	482/394	158/158	152	175	118/138	<50	<50	<50	<10	98	103
Methyl tert-butyl ether	20	69	<50	195/269	162/166	NS	<100/<100	82	<100	1	<50/<50	<50	< 50	<50/5.8	<50	<50	< 50	<10	65	59
Naphthalene	100	881	276	265/693	424/450	NS	194/209	254	319	652/696	107/ 99	239	252	322/313	<50	75/83.5	< 50	<10	156	196

Sample ID (Depth)	Statewide Health Standards	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
	Residential																			
Sampling Date	Groundwater	5/8/12	6/17/12	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	3/31/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COMPO	DUNDS																			
1,3,5-Trimethylbenzene	420	635	687	406	406	NS	255	NS	112/195	201	< 5	<5	49.5	15	146	36	251	234	37/34	51
1,2,4-Trimethylbenzene	15	1,820	1,940	1,200	1,110	NS	612	NS	279/585	721	16	29	244	116	458	291	809	963	170/164	176
Benzene	5	791	272	273	164	NS	115	NS	50/1,040	1,320	23	42	310	78	886	399	876	529	32/21	16
Toluene	1,000	1,520	1,460	958	514	NS	298	NS	3090/3,83	5,720	16	44	1,130	127	3,790	1,110	4520	3100	60/53	64
Ethylbenzene	700	765	752	828	634	NS	391	NS	424/ 831	1,330	18	38	337	107	690	382	1120	1170	110/104	101
Xylenes (total)	10,000	4,060	3,470	1,380	875	NS	586	NS	1070/2,110	3,060	30	50	868	120	1910	715	3300	3070	196/181	183
Isopropylbenzene	840	1,020	246	3,227	255	NS	153	NS	97.1/190	187	<5	9.4	59	33	113	<5	210	188	37/32	41
Methyl tert-butyl ether	20	32.6	<20	<50	<10	NS	<10	NS	<10/ 27.7	32.7	<5	<5	<5	<5	<5	<5	<5	<10	<10/<5	<10
Naphthalene	100	898	145	240	265	NS	160	NS	159/344	235	15	31	46	37	146	55	266	232	27/24	22

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)
WD - Well Destroyed

	Statewide Health																				
Sample ID (Depth)	Standards	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3		MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
Sampling Date	Groundwater	5/8/12	6/17/12	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	11/13/15	12/9/15	3/31/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers		Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COMPOU	INDS																				
1,3,5-Trimethylbenzene	420	<10	<10	< 5	<2	NS	NS	<10	22.4	<10	<5	<1	3.4	1.5	<1	3.7	<1	<1	<1	3.3	<1
1,2,4-Trimethylbenzene	15	<10	<10	5.2	<2	NS	NS	38.5	87.1	10	< 5	<1	13	6.1	1.8	13	<1	<1	<1	32	2.4
Benzene	5	273	236	91	88	NS	NS	788	476	318	2.4	<1	207	82.4	<1	189	3.5	<1	<1	50	8.6
Toluene	1,000	86	<10	<5	<2	NS	NS	62.8	109	<10	< 5	<1	12	13	<1	54	3.3	<1	<1	6.5	<1
Ethylbenzene	700	12	<10	<5	3.2	NS	NS	56.8	145	11	<5	<1	15	20	1.1	43	1.5	<1	<1	43	8
Xylenes (total)	10,000	49	<20	<10	7.2	NS	NS	122	541	<20	<10	<2	39	28	<2	62	4.2	<2	<2	38	<2
Isopropylbenzene	840	<10	11	13	6.9	NS	NS	44	50	18	<5	<1	35	11	<1	28	<1	<1	<1	16	7
Methyl tert-butyl ether	20	768	684	375	348	NS	NS	1,180	1,190	2,560	30.9	<1	636	419	<1	397	<1	<1	<1	38	186
Naphthalene	100	<10	<10	<5	2.5	NS	NS	<10	26	18	<5	<1	4.7	1.6	<1	4.3	<1	<1	<1	3.9	<1

	Statewide Health																				
Sample ID (Depth)	Standards	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
Sampling Date	Groundwater	5/8/12	6/17/12	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	11/13/15	12/9/15	3/31/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COMPOL	JNDS																				
1,3,5-Trimethylbenzene	420	594	590	736	NS	NS	NS	358	128	5.15	1.2	1.9	131	8.2	55	58	24	47	<5	<5	8.8
1,2,4-Trimethylbenzene	15	1,400	2,210	2,000	NS	NS	NS	1,250	445	14.1	2.0	4.9	473	20.1	175	214	62.7	119	<5	<5	35
Benzene	5	4,120	2,460	3,040	NS	NS	NS	301	225	2,130	6.6	4.3	75	7.3	36	25	95	142	<5	<5	7.7
Toluene	1,000	19,700	9,210	2,860	NS	NS	NS	2,060	864	66	10	11	304	15	148	150	181	248	<5	<5	17
Ethylbenzene	700	1,420	2,000	2,290	NS	NS	NS	1,050	452	87	2.9	4.2	390	8.4	139	207	92	127	<5	<5	29
Xylenes (total)	10,000	9,440	10,400	5,540	NS	NS	NS	4,720	2,070	62	13	21	1,650	41	623	870	301	515	<10	<10	98
Isopropylbenzene	840	728	228	433	NS	NS	NS	178	66	44	<1	<1	88.4	2.4	22	33	12	21	<5	< 5	5.9
Methyl tert-butyl ether	20	15	<50	56.9	NS	NS	NS	<20	<20	11	<1	<1	<1	<1	<5	<5	<2	< 5	<5	<5	<1
Naphthalene	100	1,090	244	604	NS	NS	NS	205	74	20	<1	<1	94	1.9	18	32	14	21	< 5	<5	3.6

NS - Not Sampled All concentrations in micrograms per liter (ug/L) WD - Well Destroyed

	Statewide Health																	
Sample ID (Depth)	Standards	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5R	MW-5R	MW-5R	MW-5R	MW-5R	MW-5R	MW-5R	MW-5R	MW-5	MW-5
Sampling Date	Groundwater	5/8/12	6/17/12	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	3/25/15	6/25/15	8/26/15	12/9/15	3/31/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	POUNDS																	1
1,3,5-Trimethylbenzene	420	155	15	<10	<2	NS	<2	WD	437	388/370	430	434	355/347	378	415	562	433	351
1,2,4-Trimethylbenzene	15	427	36	14	<2	NS	<2	WD	1,680	1,510/2,460	1,670	1,700	1,360/1,320	1,470	1,790	2,260	1,700	1,440
Benzene	5	14	4.3	90	2.4	NS	<2	WD	3,960	5,450/11,200	6,210	4,690	4,790/4,670	445	4,610	4,120	2,270	1,930
Toluene	1,000	116	14	<10	<2	NS	<2	WD	13,600	16,600/33,700	17,500	18,200	14,100/12,000	450	13,000	9,530	4,200	1,470
Ethylbenzene	700	107	15	81	<2	NS	<2	WD	2,740	2,430/4,420	3,110	2,500	2,350/2,300	1,980	2,680	2,570	2,710	2,260
Xylenes (total)	10,000	403	39	<20	< 4	NS	< 4	WD	9,460	10,900/20,800	14,100	12,200	10,300/10,100	6,440	12,400	11,500	11,100	6,820
Isopropylbenzene	840	52	<10	25	< 2	NS	<2	WD	197	1	186	170	154	220	176	225	185	175
Methyl tert-butyl ether	20	<5	<10	13	2.8	NS	<2	WD	34	<50/35	<50	<50	<100	<50	14	<25	14	<25
Naphthalene	100	94	< 10	<10	< 2	NS	< 2	WD	331	376/436	316	443	349/330	485	477	545	405	326

	Statewide Health			
Sample ID (Depth)	Standards	MW-6	MW-6	MW-6
Sampling Date	Groundwater	5/8/12	6/17/12	3/7/14
Matrix	Used Aquifers	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	POUNDS			
1,3,5-Trimethylbenzene	13	<1	<1	AB
1,2,4-Trimethylbenzene	15	<1	<1	AB
Benzene	5	<1	1.2	AB
Toluene	1,000	<1	2.6	AB
Ethylbenzene	700	<1	<1	AB
Xylenes (total)	10,000	<2	<2	AB
Isopropylbenzene	840	<1	<1	AB
Methyl tert-butyl ether	20	<1	<1	AB
Naphthalene	100	<1	<1	AB

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide																	
	Health																	
Sample ID (Depth)	Standards	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
Sampling Date	Groundwater	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/2015	12/9/2015	3/30/2016	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	IPOUNDS																	
1,3,5-Trimethylbenzene	420	8.5	12	NS	NS	<20	56.2	158	< 25	<25	91.5/85.8	18	71	104	198	128	<25	<25
1,2,4-Trimethylbenzene	15	5.2	6.4	NS	NS	40	153	300	50	61	238/229	48	199	308	578	316	43	27
Benzene	5	7,480	5,100	NS	NS	390	2,200	6,120	884	582	4,780/4,540	917	2320	4,600	6,860	4,360	4070	9180
Toluene	1,000	63	55	NS	NS	<20	66	296	300	193	279/275	157	767	980	716	117	59	66
Ethylbenzene	700	34	31	NS	NS	<20	299	800	120	91	436/438	97	391	612	1120	726	231	68
Xylenes (total)	10,000	32	33	NS	NS	97	436	1,120	293	314	876/849	222	1010	1,700	2,510	793	87	<50
Isopropylbenzene	840	43	55	NS	NS	<20	52	167	<25	<25	85/91	23	68	99	177	133	103	156
Methyl tert-butyl ether	20	546	449	NS	NS	<20	48	192	< 25	<25	75/73	16	16	32	62	72.5	81	240
Naphthalene	100	44	79	NS	NS	<20	65	222	< 25	<25	134/127	33	107	193	281	208	103	97

	Statewide																	
	Health																	
Sample ID (Depth)	Standards	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8
Sampling Date	Groundwater	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	3/30/2016	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	IPOUNDS																	
1,3,5-Trimethylbenzene	420	<2	<1	NS	<1	<1	5.2	1.3	1.6	1.5	2.2	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<2	< 1	NS	< 1	<1	19	4.1	5.4	5.5	7.5	2.7	<1	<1	<1	<1	<1	<1
Benzene	5	<2	<1	NS	<1	<1	8.8	2.1	15	7.1	10	1.6	3.4	<1	8.3	<1	<1	<1
Toluene	1,000	<2	<1	NS	< 1	<1	13	3.6	35	19	22	8.1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<2	<1	NS	<1	<1	19	3.6	7.5	5.1	6.9	2.1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<4	<2	NS	<2	<2	91	17	37	27	34	11	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	<2	<1	NS	<1	<1	2.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	2.7	<1	NS	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	<2	<1	NS	<1	<1	3.6	1.2	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide																			
	Health																			
Sample ID (Depth)	Standards	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9
Sampling Date	Groundwater	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	11/13/15	12/9/15	1/20/16	3/30/16	6/23/16	9/21/16	12/6/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC CON	/IPOUNDS																			
1,3,5-Trimethylbenzene	420	<2	<1	NS	<1	<1	8.7	7.7	<10	41	24	15	15	17	36	<25	<5	<5	<5	<5/<1
1,2,4-Trimethylbenzene	15	<2	<1	NS	<1	<1	36	<5	<10	65	24	12	17	10	34	26	<5	<5	<5	<5/<1
Benzene	5	13	17	NS	96	58	83	19	853	1050	1590	1210	1510	1600	1660	857	387	500	243	86/108
Toluene	1,000	<2	<1	NS	<1	2.2	40	<5	81	178	113	112	116	97	210	214	28	19	8.9	<5/3.2
Ethylbenzene	700	<2	<1	NS	3.2	2.0	41	9.7	66	152	175	251	265	244	284	152	81	67	25	<5/5.9
Xylenes (total)	10,000	< 4	<2	NS	<2	<2	165	17.4	66	298	153	73	99	67	208	184	17	<10	<10	<10/<2
Isopropylbenzene	840	<2	<1	NS	5.5	5.7	9.9	< 5	39	83	77	93	97	90	102	54	37	39	26	1
Methyl tert-butyl ether	20	8	2.9	NS	9.4	5.9	5.1	<5	11	<10	<10	<10	<10	<10	<25	<25	<5	<5	<5	<5/2.1
Naphthalene	100	<2	< 1	NS	<1	<1	8.1	< 5	15	69	36	61	84	79	87	63	16	8.5	<5	<5/<1

	Statewide																	
	Health																	ĺ
Sample ID (Depth)		MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10
Sampling Date	Groundwater	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/27/15	12/9/15	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	/IPOUNDS																	
1,3,5-Trimethylbenzene	420	WNI	WNI	<2	<1	<1	<1	1.7	<1	1.1	1.4	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	WNI	WNI	<2	<1	<1	<1	4.8	2.6	5.0	4.5	<1	<1	<1	<1	<1	<1	<1
Benzene	5	WNI	WNI	< 0.24	<1	<1	<1	13	14	50	27	33	11	15	1.0	1.7	14	14
Toluene	1,000	WNI	WNI	<2	<1	<1	<1	14	15	10	5.7	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	WNI	WNI	<2	<1	<1	<1	7.2	3.7	3.2	3.4	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	WNI	WNI	<4	<2	<2	<2	32	17	16	15	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	WNI	WNI	<2	<1	<1	<1	1.2	<1	6.1	3.5	4.9	1.4	3.2	1.3	<1	3.2	3.6
Methyl tert-butyl ether	20	WNI	WNI	<2	<1	<1	12	13	24	116	106	106	17	24	11	5.9	11	15
Naphthalene	100	WNI	WNI	<2	NS	<1	<1	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

NS - Not Sampled All concentrations in micrograms per liter (ug/L) WD - Well Destroyed

	Statewide																	
	Health																	
Sample ID (Depth)	Standards	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11
Sampling Date	Groundwater	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/27/15	12/10/15	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	IPOUNDS																	
1,3,5-Trimethylbenzene	420	WNI	WNI	<2	<1	<1	<1	2.6	1.8	1.3	1.8	<1	<1	< 1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	WNI	WNI	<2	<1	<1	<1	9.8	6.3	4.01	6.0	<1	<1	< 1	<1	<1	<1	<1
Benzene	5	WNI	WNI	0.3	<1	<1	<1	19	32	5.65	3.8	<1	1.4	< 1	<1	<1	<1	<1
Toluene	1,000	WNI	WNI	<2	<1	<1	<1	20	51	12	6.7	<1	<1	< 1	<1	<1	<1	<1
Ethylbenzene	700	WNI	WNI	<2	<1	<1	<1	10	12	3.9	4.3	<1	<1	< 1	<1	<1	<1	<1
Xylenes (total)	10,000	WNI	WNI	< 4	<2	<2	<2	47	53	18	19	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	WNI	WNI	<2	<1	<1	<1	1.6	1.5	<1	1.3	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	WNI	WNI	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	WNI	WNI	<2	<1	<1	<1	2.2	1.5	<1	1.5	<1	<1	<1	<1	<1	<1	<1

	Statewide																	
Sample ID (Depth)	Health Standards	MW-12	NAVA/ 12	NAVA/ 12	MW-12	MW-12	MW-12	NAVA/ 12	MW-12	N/N// 12	NAVA/ 12	MW-12	MW-12	NAVA/ 12	MW-12	MW-12	MW-12	MW-12
Sampling Date	Groundwater	11/8/13	12/11/13	2/4/14	3/7/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/10/15	3/31/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	IPOUNDS																	
1,3,5-Trimethylbenzene	420	<2	<1	NS	<1	<1	6.7	<1	2.3	4.7	4.5	2.5	<1	<1	5.7	<1	<1	<1
1,2,4-Trimethylbenzene	15	<2	<1	NS	<1	<1	20	<1	8.3	17.7	15.7	9.3	3.2	<1	20.8	<1	<1	<1
Benzene	5	2.1	<1	NS	1.4	1.4	20	<1	26	21	22	10	11	<1	1.7	<1	<1	<1
Toluene	1,000	6.6	<1	NS	3.1	3.1	25	<1	60	54	43	36	57	<1	18	<1	<1	<1
Ethylbenzene	700	<2	<1	NS	1.5	1.5	19	<1	12	17	15	7.3	9.5	<1	12	<1	<1	<1
Xylenes (total)	10,000	4.1	<2	NS	6.4	6.4	83	<2	60	87	67	41	36	<2	37	<2	<2	<2
Isopropylbenzene	840	<2	<1	NS	<1	<1	3.5	<1	1.1	2.1	2.2	<1	<1	<1	4.3	<1	<1	<1
Methyl tert-butyl ether	20	<2	<1	NS	<1	<1	< 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	<2	<1	NS	NS	<1	1.3	<1	1.6	3.4	4.0	1.7	<1	< 1	4.5	<1	<1	<1

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)
WD - Well Destroyed

	Statewide														
	Health														
Sample ID (Depth)	Standards	MW-13	MW-13												
Sampling Date	Groundwater	4/29/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water												
Units	<2,500 TDS	(ug/L)	(ug/L)												
VOLATILE ORGANIC COM	MPOUNDS														
1,3,5-Trimethylbenzene	420	<1	<1	<1	4.9	DRY	1.9	DRY	4.3	<1	<1	DRY	DRY	<1	<1
1,2,4-Trimethylbenzene	15	<1	<1	<1	18.9	DRY	6.8	DRY	17	<1	<1	DRY	DRY	<1	<1
Benzene	5	<1	<1	<1	108	DRY	10	DRY	16	<1	<1	DRY	DRY	<1	<1
Toluene	1,000	66	102	1.8	120	DRY	25	DRY	91	<1	<1	DRY	DRY	<1	<1
Ethylbenzene	700	<1	<1	<1	30.5	DRY	6.67	DRY	18	<1	<1	DRY	DRY	<1	<1
Xylenes (total)	10,000	<2	<2	3.6	133	DRY	34	DRY	98	<2	<2	DRY	DRY	<2	<2
Isopropylbenzene	840	<1	<1	<1	3.3	DRY	<1	DRY	1.7	<1	<1	DRY	DRY	<1	<1
Methyl tert-butyl ether	20	<1	<1	<1	<1	DRY	<1	DRY	<1	<1	<1	DRY	DRY	<1	<1
Naphthalene	100	<1	<1	<1	6.0	DRY	1.2	DRY	3.7	<1	<1	DRY	DRY	<1	<1

	Statewide														
Sample ID (Depth)	Health Standards	MW-14	NAVA/ 1.4	MW-14	MW-14	NAVA/ 1.4	MW-14	MW-14	NAVA/ 1.4	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14
Sampling Date	Groundwater	4/29/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	MPOUNDS														
1,3,5-Trimethylbenzene	420	<1	<1	<1	7.2	6.2	2.5	2.9	1.8	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<1	<1	<1	26	21	9.0	9.1	6.6	<1	<1	<1	<1	<1	<1
Benzene	5	<1	<1	<1	72	63	13	17	5.2	3.9	<1	<1	<1	<1	<1
Toluene	1,000	<1	<1	<1	65	96	30	36	23	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<1	<1	<1	31	28	8.2	11	5.1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<2	<2	2.2	137	147	43	51	29	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	<1	<1	<1	4.4	2.9	1.0	2	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	<1	<1	<1	7.0	3.7	1.5	2.7	1.2	<1	<1	<1	<1	<1	<1

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide Health															
Sample ID (Depth)	Standards	MW-15	MW-15	N/N/ 1E	MW-15	N/N// 1E	MW-15	MW-15	N/N/ 1E	MW-15	N/N// 1E	MW-15	MW-15	MW-15	MW-15	MW-15
Sample 1D (Depth)	Stariuarus	IVIVV-13	10100-13	10100-13	10100-13	IVIVV-13	IVIVV- IS	10100-13		10100-13	10100-13	10100-13	10100-13		10100-13	
Sampling Date	Groundwater	4/29/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	MPOUNDS															
1,3,5-Trimethylbenzene	420	<1	<1	<1	7.7	3.06	5.86	7.29	5.37	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<1	<1	<1	25.7	10.6	21.8	25.3	20.2	<1	<1	<1	<1	<1	<1	<1
Benzene	5	<1	<1	<1	71	29.1	27.7	38.3	22.8	<1	1.71	<1	<1	<1	<1	<1
Toluene	1,000	<1	2.35	<1	57.2	61.2	63.2	62.4	70.2	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<1	<1	<1	31	13.4	20.6	23.4	15.2	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<2	2.94	4.25	135	68	105	105	87.9	< 2	<2	<2	<2	< 2	<2	<2
Isopropylbenzene	840	<1	<1	<1	4.7	1.23	2.70	3.86	1.92	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	<1	<1	<1	7.06	1.91	4.5	7.31	3.98	<1	<1	<1	<1	<1	<1	<1

	Statewide															
Sample ID (Depth)	Health Standards	MW-16	MW-16													
Sampling Date	Groundwater	4/29/14	6/12/14	9/17/14	12/3/14	3/25/15	6/25/15	8/26/15	12/9/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water													
Units	<2,500 TDS	(ug/L)	(ug/L)													
VOLATILE ORGANIC CON	/IPOUNDS															
1,3,5-Trimethylbenzene	420	<1	<1	7	NS	NS	1.7	1.7	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<1	<1	27	NS	NS	4.8	5.3	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	5	<1	<1	20	NS	NS	8.1	7.9	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	1,000	<1	<1	26	NS	NS	14	12	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<1	<1	32	NS	NS	4.8	5.4	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<2	<2	138	NS	NS	22	21	<2	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	<1	<1	4.2	NS	NS	1.1	1.4	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	9.2	3.0/3.4	30	NS	NS	15	12	6.7	8.1	4.9	7.8	48	7.4	4.8	5.3
Naphthalene	100	<1	<1	1.8	NS	NS	1.1	1.9	<1	<1	<1	<1	<1	<1	<1	<1

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide Health									
Sample ID (Depth)	Standards	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17
Sampling Date	Groundwater	11/12/15	12/9/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COMPOUNDS										
1,3,5-Trimethylbenzene	420	<1	3.6	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<1	13	<1	<1	<1	<1	<1	<1	<1
Benzene	5	<1	15	<1	1.4	<1	<1	<1	<1	<1
Toluene	1,000	<1	47	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<2	9.9	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<1	56	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	<1	1.2	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	<1	2.2	<1	<1	<1	<1	<1	<1	<1

	Statewide Health									
Sample ID (Depth)	Standards	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18
Sampling Date	Groundwater	11/12/15	12/9/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COM	POUNDS			_	_					
1,3,5-Trimethylbenzene	420	<1	2.3	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<1	8.5	<1	<1	<1	<1	<1	<1	<1
Benzene	5	<1	7.3	<1	<1	<1	<1	<1	<1	<1
Toluene	1,000	<1	30	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<2	6.6	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<1	37	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	<1	<1	<1	<1
Naphthalene	100	<1	1.6	<1	<1	<1	<1	<1	<1	<1

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide Health									
Sample ID (Depth)	Standards	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19	MW-19
Sampling Date	Groundwater	11/12/15	12/9/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC CON	/IPOUNDS									
1,3,5-Trimethylbenzene	420	<1	<2	<1	<1	<1	DRY	DRY	<1	<1
1,2,4-Trimethylbenzene	15	<1	3.6	<1	<1	<1	DRY	DRY	<1	<1
Benzene	5	<1	3.0	<1	<1	<1	DRY	DRY	<1	<1
Toluene	1,000	<1	12	<1	<1	<1	DRY	DRY	<1	<1
Ethylbenzene	700	<2	2.8	<1	<1	<1	DRY	DRY	<1	<1
Xylenes (total)	10,000	<1	16	<2	<2	<2	DRY	DRY	<2	<2
Isopropylbenzene	840	<1	<2	<1	<1	<1	DRY	DRY	<1	<1
Methyl tert-butyl ether	20	<1	<2	<1	<1	<1	DRY	DRY	<1	<1
Naphthalene	100	<1	<2	<1	<1	<1	DRY	DRY	<1	<1

	Statewide												
	Health												
Sample ID (Depth)	Standards	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20			
Sampling Date	Groundwater	11/12/15	12/10/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17			
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water			
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)			
VOLATILE ORGANIC CON	VOLATILE ORGANIC COMPOUNDS												
1,3,5-Trimethylbenzene	420	<1	<1	<1	<1	<1	<1	<1	<1	<1			
1,2,4-Trimethylbenzene	15	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Benzene	5	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Toluene	1,000	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Ethylbenzene	700	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Xylenes (total)	10,000	<2	<2	<2	<2	<2	<2	<2	<2	<2			
Isopropylbenzene	840	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	1.1	<1	1.0	<1			
Naphthalene	100	<1	<1	<1	<1	<1	<1	<1	<1	<1			

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide												
	Health												
Sample ID (Depth)	Standards	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21	MW-21			
Sampling Date	Groundwater	11/12/15	12/10/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17			
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water			
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)			
VOLATILE ORGANIC CON	VOLATILE ORGANIC COMPOUNDS												
1,3,5-Trimethylbenzene	420	<1	<1	<1	<1	<1	<1	<1	<1	<1			
1,2,4-Trimethylbenzene	15	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Benzene	5	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Toluene	1,000	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Ethylbenzene	700	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Xylenes (total)	10,000	<2	<2	<2	<2	<2	<2	<2	<2	<2			
Isopropylbenzene	840	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Naphthalene	100	<1	<1	<1	<1	<1	<1	<1	<1	<1			

	Statewide									
Sample ID (Depth)	Health Standards	MW-22	MW-22	MW-22	MW-22	MW-22	MW-22	MW-22	MW-22	MW-22
Sampling Date	Groundwater	11/12/15	12/10/15	1/20/16	3/30/16	6/23/16	9/21/16	12/8/16	2/24/17	6/1/17
Matrix	Used Aquifers	Water	Water	Water	Water	Water	Water	Water	Water	Water
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE ORGANIC COMPOUNDS										
1,3,5-Trimethylbenzene	420	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	15	<1	<1	<1	<1	<1	<1	<1	<1	<1
Benzene	5	<1	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	1,000	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ethylbenzene	700	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylenes (total)	10,000	<2	<2	<2	<2	<2	<2	<2	<2	<2
Isopropylbenzene	840	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl tert-butyl ether	20	<1	<1	<1	<1	<1	4.5	<1	<1	<1
Naphthalene	100	<1	<1	<1	NS	<1	<1	<1	<1	<1

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

	Statewide									
	Health									
Sample ID (Depth)	Standards	DPE-4	DPE-4	DPE-4	DPE-4					
Sampling Date	Groundwater	6/12/14	9/17/14	12/3/14	3/25/15					
Matrix	Used Aquifers	Water	Water	Water	Water					
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)	(ug/L)					
VOLATILE ORGANIC COMPOUNDS										
1,3,5-Trimethylbenzene	420	686	545	865	NS					
1,2,4-Trimethylbenzene	15	2,270	1,820	963	NS					
Benzene	5	7,300	1,760	1,440	NS					
Toluene	1,000	8,650	4,930	2,270	NS					
Ethylbenzene	700	2,590	2,200	1,520	NS					
Xylenes (total)	10,000	12,800	16,900	8,470	NS					
Isopropylbenzene	840	322	337	443	NS					
Methyl tert-butyl ether	20	447	<20	<20	NS					
Naphthalene	100	502	681	518	NS					

	Statewide									
	Health									
Sample ID (Depth)	Standards	ТВ	ТВ	ТВ						
Sampling Date	Groundwater	9/21/16	12/8/16	6/1/17						
Matrix	Used Aquifers	Water	Water	Water						
Units	<2,500 TDS	(ug/L)	(ug/L)	(ug/L)						
VOLATILE ORGANIC COMPOUNDS										
1,3,5-Trimethylbenzene		<1	<1	<1						
1,2,4-Trimethylbenzene	15	<1	<1	<1						
Benzene	5	<1	<1	<1						
Toluene	1,000	<1	<1	<1						
Ethylbenzene	700	<1	<1	<1						
Xylenes (total)	10,000	<2	<2	<2						
Isopropylbenzene	840	<1	<1	<1						
Methyl tert-butyl ether	20	<1	<1	<1						
Naphthalene	100	<1	<1	<1						

NS - Not Sampled

All concentrations in micrograms per liter (ug/L)

Table 3 - DPE System Aqueous Sample Results FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

					VOLATILI	ORGANI	С СОМРО	JNDS		
Sample	Sampling Date	1,3,5- TMB	1,2,4- TMB	Benzene	Toluene	Ethyl- benzene	Xylenes (total)	Isopropyl- benzene	Methyl tert butyl ether	Naph- thalene
Statewide Health	Standards ³	420	15	5	1,000	700	10,000	840	20	100
Influent	4/20/2016	187	630	566	734	494	1980	86.7	6.95	204
iniluent	1/30/2017	35.6	78.2	109	133	49	338	<5	<5	19
	2/24/2017	32.5	112	121	192	49.4	285	6.26	<1	78.6
	3/22/2017	31	75	34	60	12	180	<5	<5	41
	4/27/2017	19.3	43	23	39	7.8	97	1.5	<1	27
	5/23/2017	7.4	14	8.3	13	2.1	32	<1	<1	7.2
	1/30/2017	37	47	51.9	58.7	19.9	226	2.18	<1	6.22
Between Carbon	2/24/2017	<1	<1	<1	<1	<1	<2	<1	<1	1.4
	3/22/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
	4/27/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
	5/23/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
	4/20/2016	<1	<1	<1	<1	<1	<2	<1	<1	<1
Γ£51	1/30/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
Effluent	2/24/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
	3/22/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
	4/27/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
	5/23/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1
Trip Blank	2/24/2017	<1	<1	<1	<1	<1	<2	<1	<1	<1

Note:

All concentrations in micrograms per liter (ug/L)

Matrix: Groundwater

^{*}Residential Ground water Used Aquifers <2,500 TDS

DPE SYSTEM TABLES

DPE SYSTEM DATA FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA

11-17788-03

	Vaccum	Temp Before	Temp After	Air Flow	Air Pressure	H2O Pressure	H20 Pressure	H2O Pressure
Date	(Hg)	Blower (F)	Blower (F)	Scfm	After Blower	Before Bag (psi)	After Bag (psi)	Between Carbon
01/04/17	12.50	96	>250	N/A	>30	25	20	8
01/09/17	N/A	35-60	35	N/A	N/A	N/A	N/A	N/A
01/11/17	12.50	83	245	N/A	2.5	5	0	2
01/16/17	11.50	85	214	N/A	0	8	0	0
01/23/17	12.50	85	232	N/A	0	8	0	0
01/30/17	10.50	68	220	N/A	0	6	0	0
02/08/17	12.00	90	226	N/A	0	6	0	0
02/23/17	12.50	104	240	N/A	2	20	0	0
02/24/17	13.00	88	192	N/A	1	8	0	0
03/02/17	-12.10	83.1	192.1	73	N/A	37	25	8
03/21/17	15.00	102	240	35	0	32	0	0
03/28/17	13.5	97	222	>350	N/A	35/37	42/26	13
4/11/2017	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4/17/2017	13	80	187	N/A	N/A	25	17	11
4/27/2017	16.00	124	232	>35	N/A	10	0	0
5/12/2017	12.00	104	212	>35	N/A	0	0	0
5/23/2017	13.00	122	238	>35	N/A	9	0	0
6/7/2017	11.00	120	213	>35	N/A	19	0	0
7/12/2017	9.50	135	200	>35	.76 psi	0	0	0

DPE SYSTEM DATA (cont.) FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 **HAWLEY, PA** 11-17788-03

PID System On Upon System on Upon Totalizer Run-Time CatOx CatOx CatOx PID Date Gallons Temp 3 Temp 2 Pre CatOx After CatOx Arrival (yes or no) Departure (yes or no) (hours) Temp 1 01/04/17 88871-89002 VAS

01/04/17	88871-89002	135	360	353	330	N/A	N/A	yes	yes
01/09/17	92398.20	146.1	3	4	Low temp A1	N/A	N/A	no	no
01/11/17	92471.80	149.8	364	361	330	N/A	N/A	no	yes
01/16/17	98950.90	320.7	365	360	330	N/A	N/A	yes	yes
01/23/17	106874.00	487.4	357	350	330	N/A	N/A	yes	yes
01/30/17	114066.00	604.9	350	343	330	N/A	N/A	yes	yes
02/08/17	124519.00	815.6	355	346	330	N/A	N/A	yes	yes
02/23/17	146789.00	1174.4	345	338	330	N/A	N/A	yes	no
02/24/17	146921.00	1175.8	345	333	330	97.8 ppm	7.8 ppm	no	yes
03/02/17	159342.00	1314.3	345	331	330	800 ppm*	N/A	yes	yes
03/21/17	183719.00	1771.2	344	334	330	N/A	N/A	yes	yes
03/28/17	197007	1933.6	340	329	330	640 ppm*	N/A	yes	yes
4/11/2017	N/A	2141.9	N/A	N/A	N/A	N/A	N/A	no	no
4/17/2017	220490	2144.4	343	327	330	440	N/A	no	yes
4/27/2017	237583.00	2377.5	341	330	330	59.7	2.1	yes	yes
5/12/2017	251372.00	2737.9	342	330	330	780 ppm*	N/A	yes	yes
5/23/2017	264483.00	3001.9	344	332	330	48.6 ppm	0 ppm	yes	yes
6/7/2017	281754.00	3360.4	341	330	330	34.2 ppm	0 ppm	yes	yes
7/12/2017	286300.00	3455.4	342	329	330	27.5 ppm	0 ppm	no	yes

^{*-} Different instrument used

SYSTEM ZONE WATER LEVELS FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

Date	Piesometer 1	Piezometer 2	Piezometer 3	MW-2	MW-3	MW-5R	MW-7
5/24/2016	1295.15	1294.97	1294.61	1295.6	1295.28	1295.06	1291.75
5/24/2016	1294.62	1294.5	1294.34	1295.52	1295.16	1294.78	1291.73
9/13/2016	1292.38	1292.43	N/A	1292.51	1292.3	1292.89	1287.91
9/21/2016	N/A	N/A	N/A	1292.92	1294.64	1293.04	1287.51
12/8/2016	N/A	N/A	N/A	1295.22	1297.16	1295.3	1287.68
1/4/2017	1297.09	1293.84	1292.65	1295.11	1295.86	1294.51	1288.76
1/9/2017	1295.78	1294.09	1292.6	1295.25	1295.22	1294.66	1289.43
1/11/2017	1295.85	1293.78	1292.74	1295.37	1295.09	1294.61	1295.58
1/16/2017	1295.41	1292.33	1291.62	1294.68	1295.16	1293.73	1289
1/23/2017	1295.32	1292.7	1292.25	1294.99	1295.41	1293.7	1289.58
1/30/2017	1296.21	1294.79	1293.17	1295.92	1295.61	1295.34	1290.68
2/8/2017	1295.33	1290.99	1292.21	1294.35	1295.01	1293.47	1289.88
2/23/2017	1297.18	1291.48	1293.22	1293.74	1295.53	1294.69	1290.24
2/24/2017	1297.48	1294.69	1293.42	1295.8	1295.71	1295.59	1290.67
3/2/2017	1296.46	1292.8	1293.23	1295.68	1295.64	1294.48	1290.29
3/21/2017	N/A	1292.62	1292.45	1295.03	N/A	1293.74	1290.08
3/28/2017	N/A	1294.19	1293.77	1296.75	N/A	1295.77	1291.71
4/11/2017	1296.77	1299.9	1300.35	1299.67	1296.12	1299.36	1298.58
4/17/2017	1296.58	1296.29	1296.51	1296.7	1295.71	1296.35	1293.68
4/27/2017	1295.98	1296.29	1296.51	1296.7	1295.60	1296.35	1293.68
5/12/2017	1295.45	1292.91	1293.06	1295.55	1295.14	1294.33	1291.18
5/23/2017	1295.20	1292.22	1292.75	1295.09	1294.91	1294.03	1290.72
6/7/2017	1296.32	1292.21	1292.76	1294.88	1295.55	1293.82	1290.76
7/12/2017	1296.28	1292.66	1292.82	1295.29	1295.12	1294.28	1290.58

WELL HEAD VACUUM WITH SYSTEM RUNNING FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA

11-17788-03

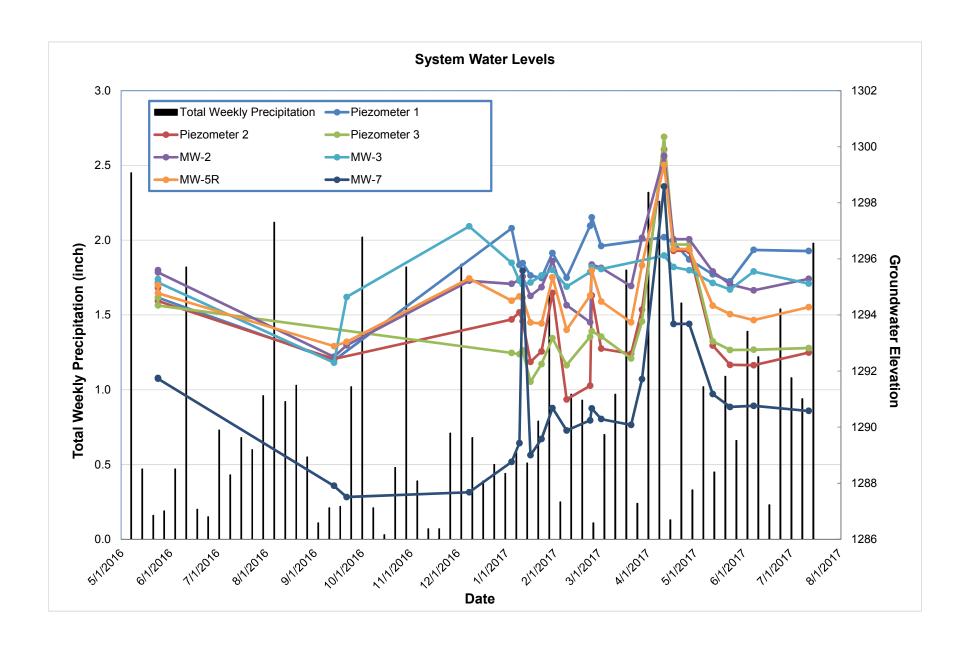
Date	DPE-1	DPE-2	DPE-3	DPE-4	DPE-5	DPE-6	DPE-7	DPE-8	MW-1R	MW-4
01/04/17	>100	>100	N/A	82	97	>100	42	80	>100	N/A
01/11/17	64	76	N/A	78	64	80	40	80	84	N/A
01/16/17	82	76	N/A	80	68	66	8	74	66	N/A
01/23/17	84	92	N/A	96	76	2	10	10	80	N/A
01/30/17	78	100	N/A	NS	80	2	NS	96	4	N/A
02/08/17	88	90	N/A	85	96	0	8	85	0	N/A
02/23/17	90	92	N/A	>100	78	82	58	>100	>100	N/A
02/24/17	76	80	N/A	84	56	74	NS	98	92	N/A
03/02/17	94	85	N/A	94	73	88	10	90	98	N/A
03/21/17	95	94	N/A	NS	84	88	NS	NS	>100	N/A
03/28/17	92	94	N/A	96	82	92	45	110	107	N/A
4/11/2017	NS	NS	N/A	NS	NS	NS	NS	NS	NS	N/A
4/17/2017	58	74	N/A	92	64	72	22	92	77	N/A
4/27/2017	90	>100	N/A	>100	74	84	12	98	>100	N/A
5/12/2017	88	98	N/A	98	58	86	70	98	96	N/A
5/23/2017	82	92	N/A	87	68	86	84	85	92	N/A
6/7/2017	>100	>100	N/A	>100	92	>100	>100	96	>100	N/A
7/12/2017	76	78	N/A	88	72	80	90	84	98	N/A

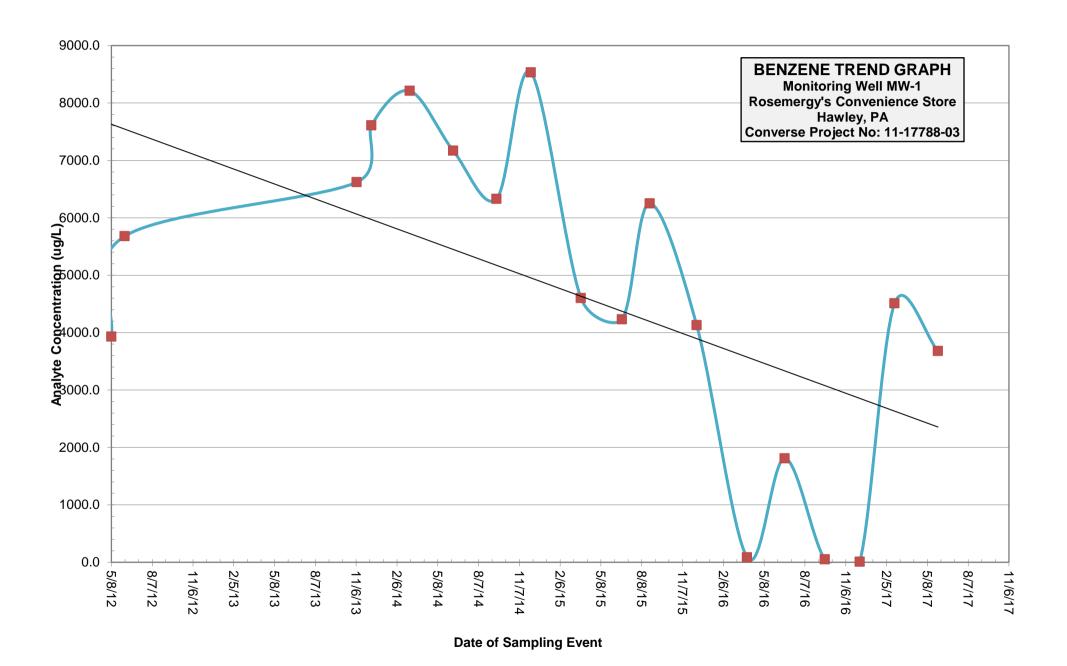
VACUUM READINGS WITH SYSTEM RUNNING FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA

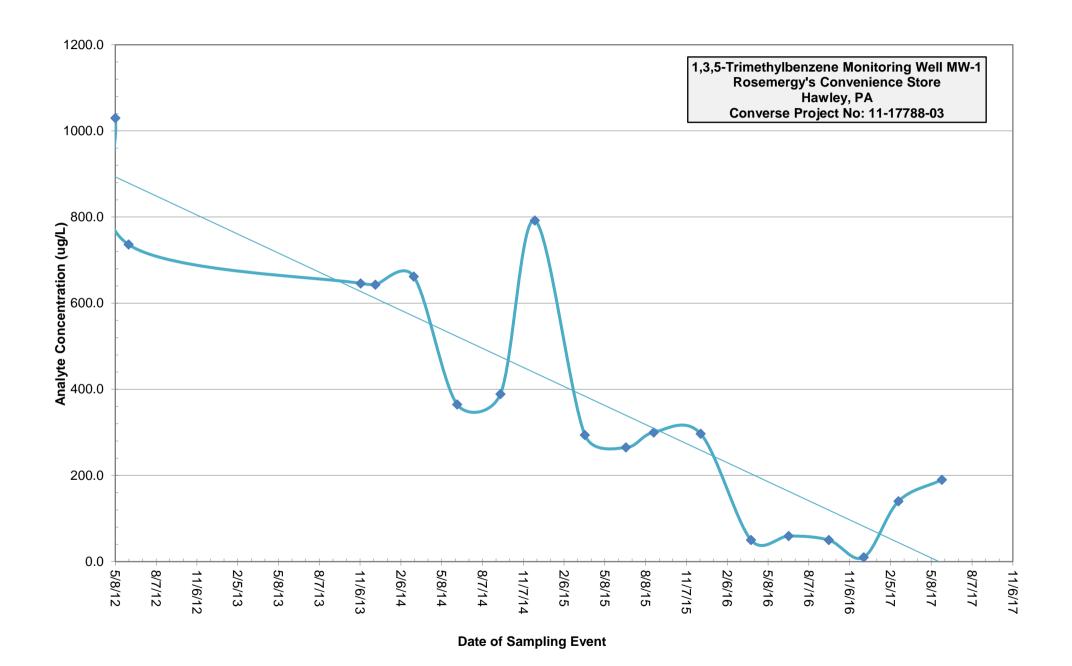
11-17788-03

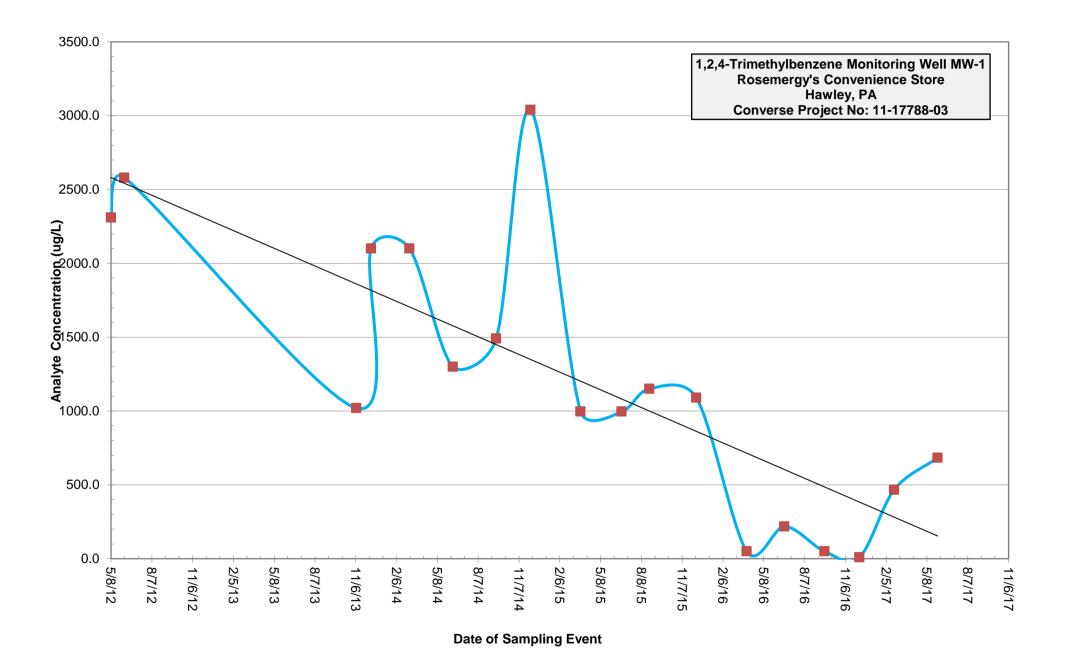
Date	P-1	P-2	P-3	MW-2	MW-3	MW-5R	MW-7
03/28/17	NM	0.7	3.1	AS	NM	AS	0
4/27/2017	AS	1.3	0	0	AS	AS	0
5/12/2017	0	1.6	0	0	0	8.0	0
5/23/2017	0	1.6	0	0	0	0	0
6/7/2017	AS	1.8	0	0.1	AS	AS	0
7/12/2017	AS	0	0	0	0	AS	0

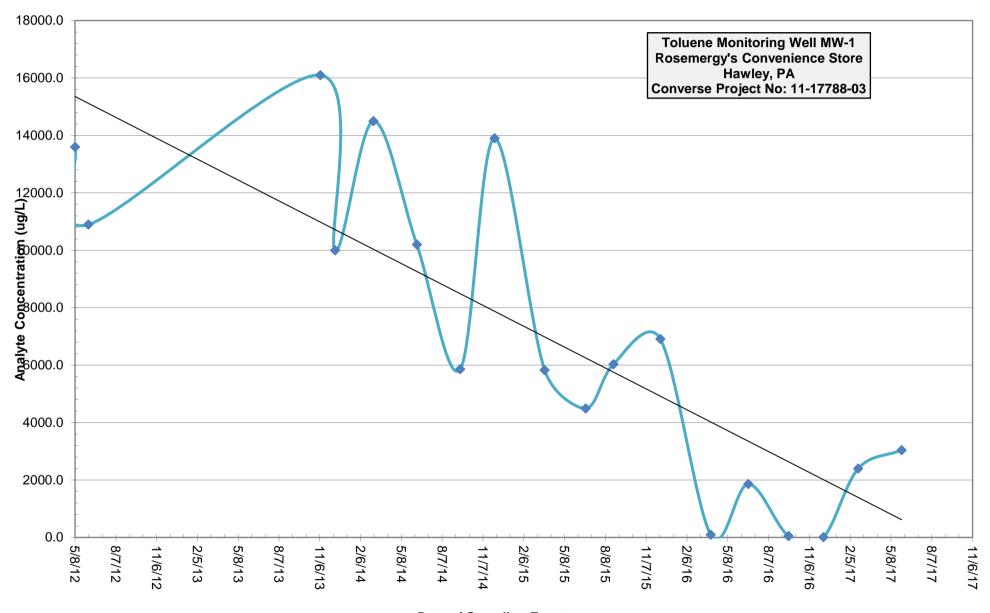
Notes:

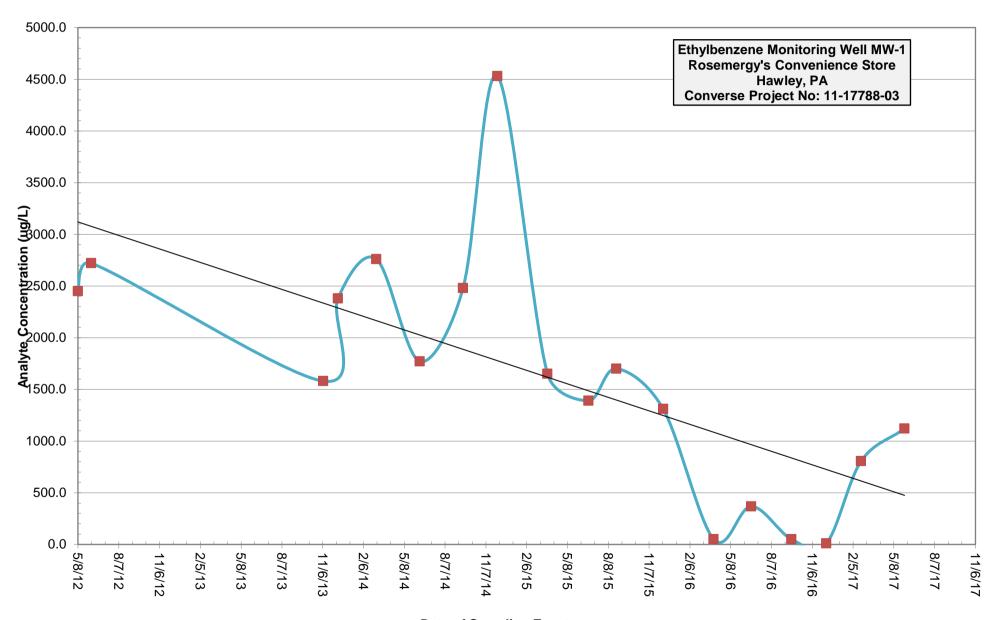

Vacuum Readings in inches of water (IWC)

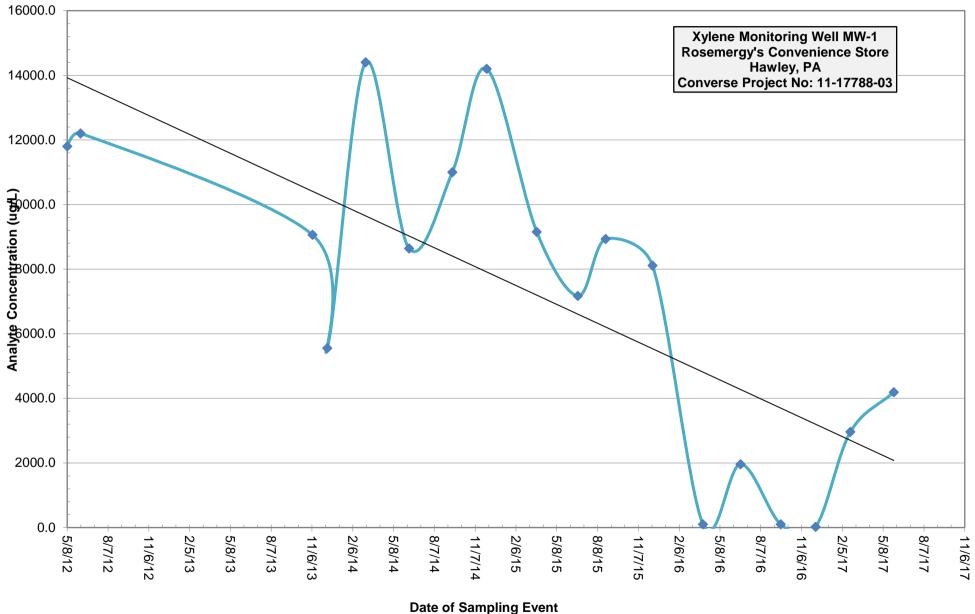

NM - Not measured, wells were not accessible.

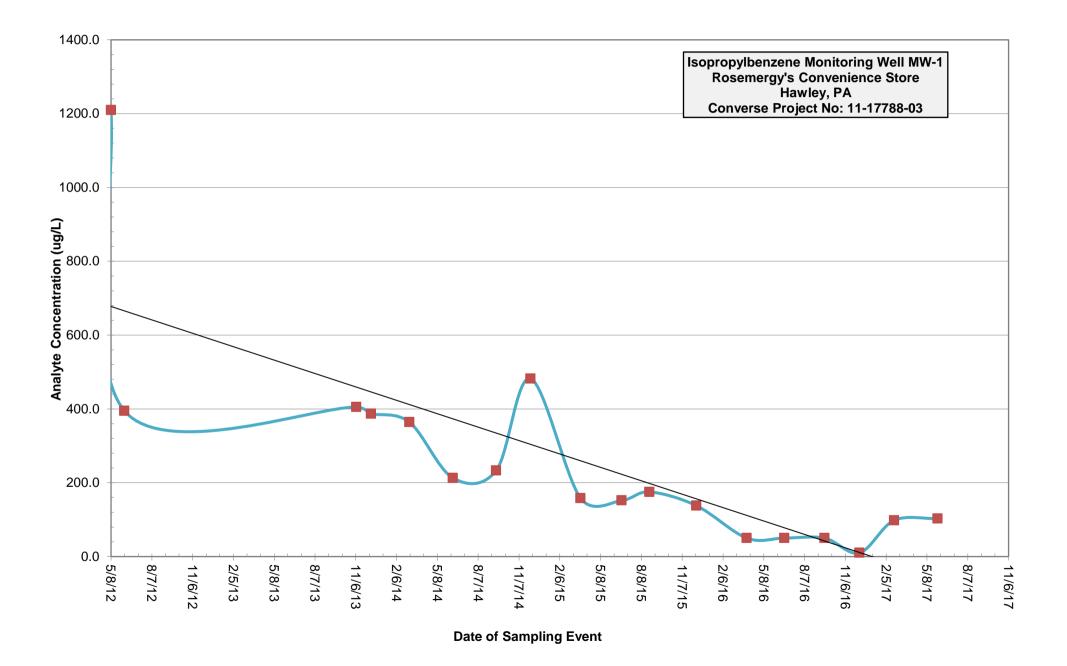

AS - Water level is very near to or above screened interval.

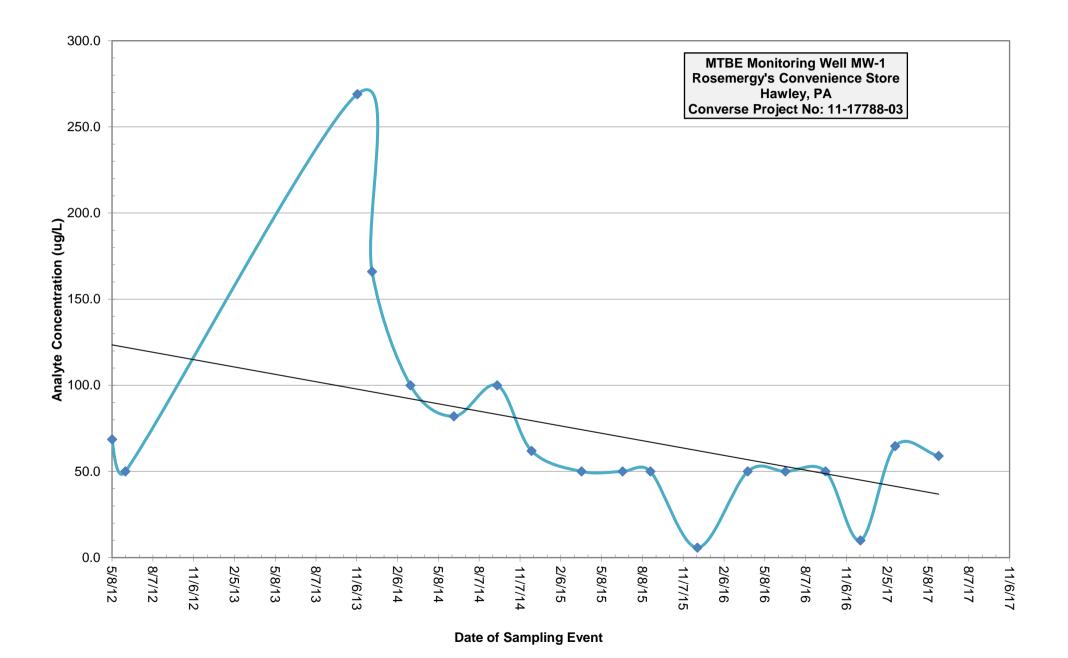

TOTAL WEEKLY PRECIPITATION FORMER ROSEMERGY'S CONVENIENT STORE 1623 ROUTE 590 HAWLEY, PA 11-17788-03

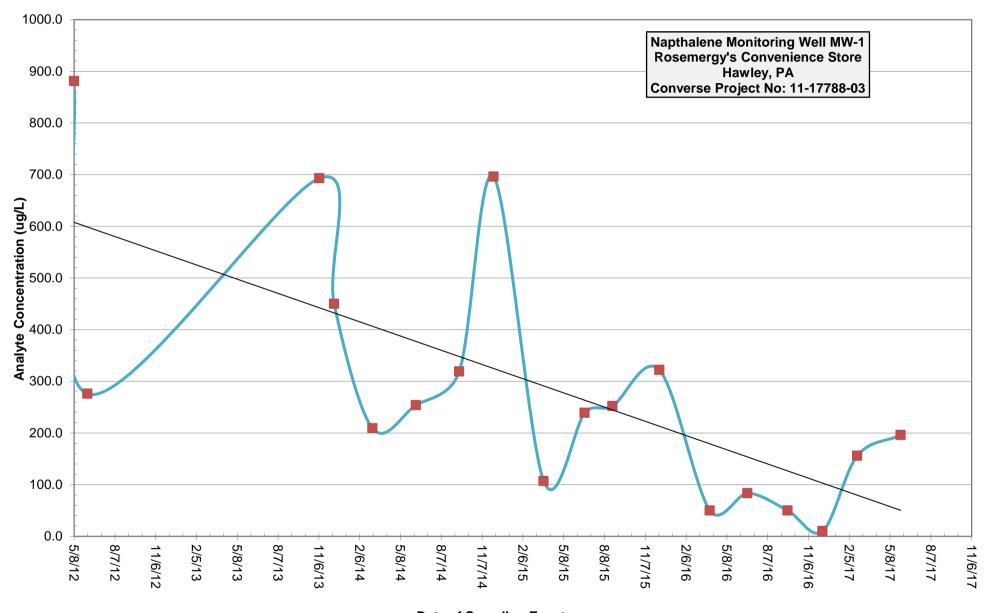

11-1	7788-03
Date	Total Weekly Precipitation (in)
5/7/2016	2.45
5/14/2016	0.47
5/21/2016	0.16
5/28/2016	0.19
6/4/2016	0.47
6/11/2016	1.82
6/18/2016	0.2
6/25/2016	0.15
7/2/2016	0.73
7/9/2016	0.43
7/16/2016	0.68
7/23/2016	0.6
7/30/2016	0.96
8/6/2016	2.12
8/13/2016	0.92
8/20/2016	1.03
8/27/2016	0.55
9/3/2016 9/10/2016	0.11 0.21
9/10/2016	0.21
9/17/2016	1.02
10/1/2016	2.02
10/8/2016	0.21
10/15/2016	0.03
10/22/2016	0.48
10/29/2016	1.82
11/5/2016	0.39
11/12/2016	0.07
11/19/2016	0.07
11/26/2016	0.71
12/3/2016	1.84
12/10/2016	0.68
12/17/2016	0.39
12/24/2016	0.5
12/31/2016	0.44
1/7/2017	0.58
1/14/2017	0.51
1/21/2017	0.79
1/28/2017	1.63
2/4/2017	0.25
2/11/2017	0.97
2/18/2017	0.93
2/25/2017	0.11
3/4/2017	0.7
3/11/2017	0.97
3/18/2017	1.8
3/25/2017	0.24
4/1/2017	2.32
4/8/2017	2.26
4/15/2017	0.13
4/22/2017	1.58
4/29/2017	0.33
5/6/2017	1.02
5/0/2017	0.45
5/20/2017	1.09
5/27/2017	0.66
6/3/2017	1.39
6/10/2017	1.22
6/17/2017	0.23
6/24/2017	1.54
7/1/2017	1.08
7/8/2017	0.94
7/15/2017	1.98



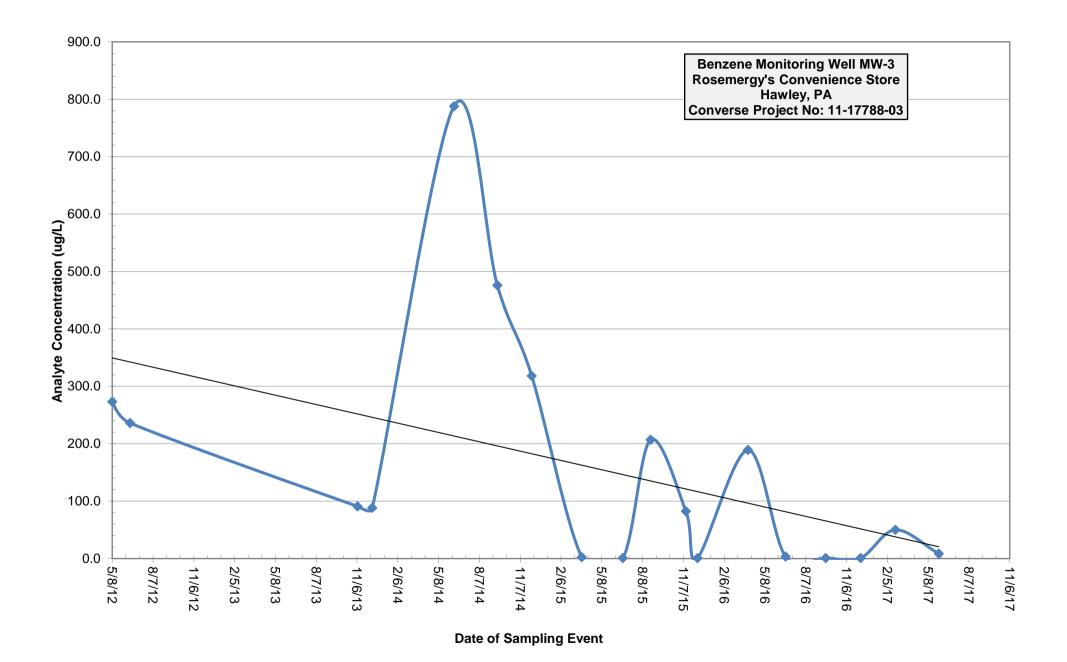


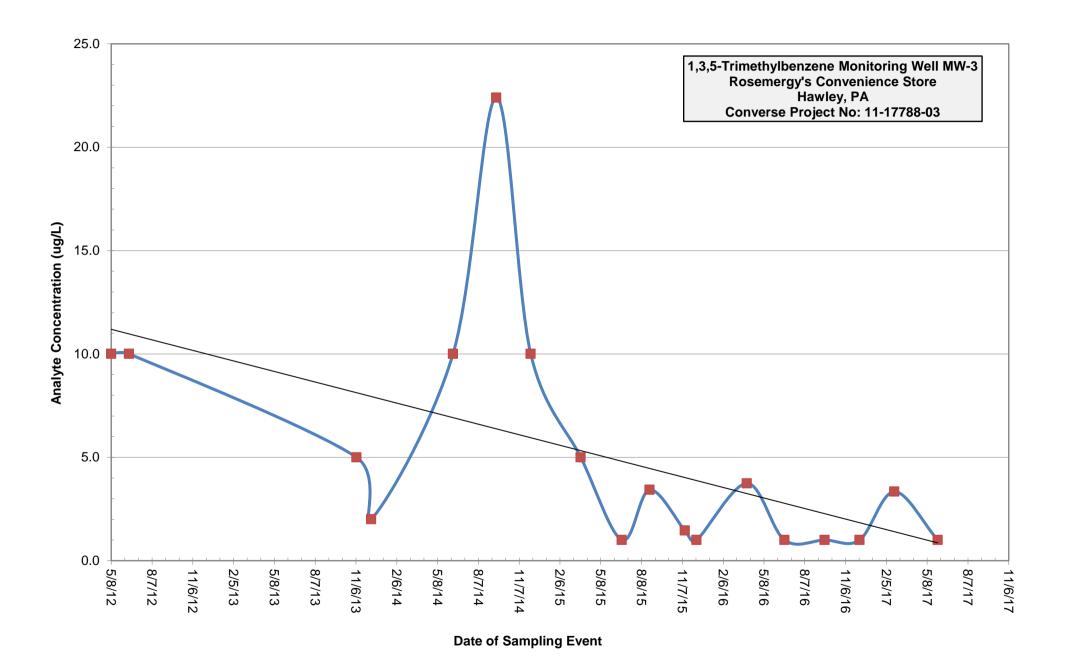


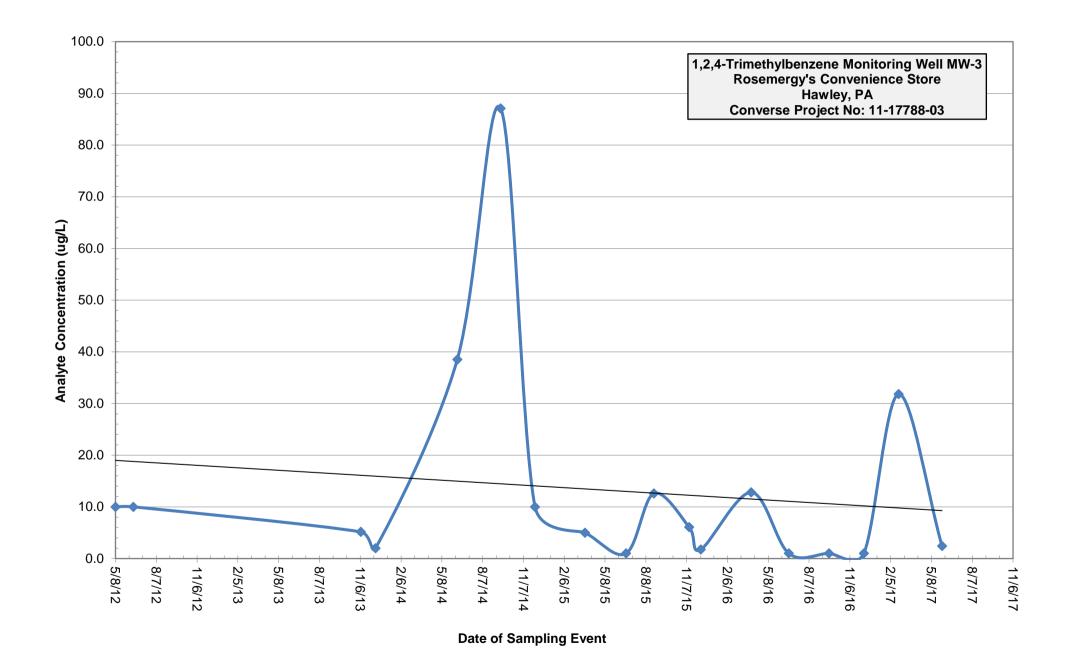

Date of Sampling Event

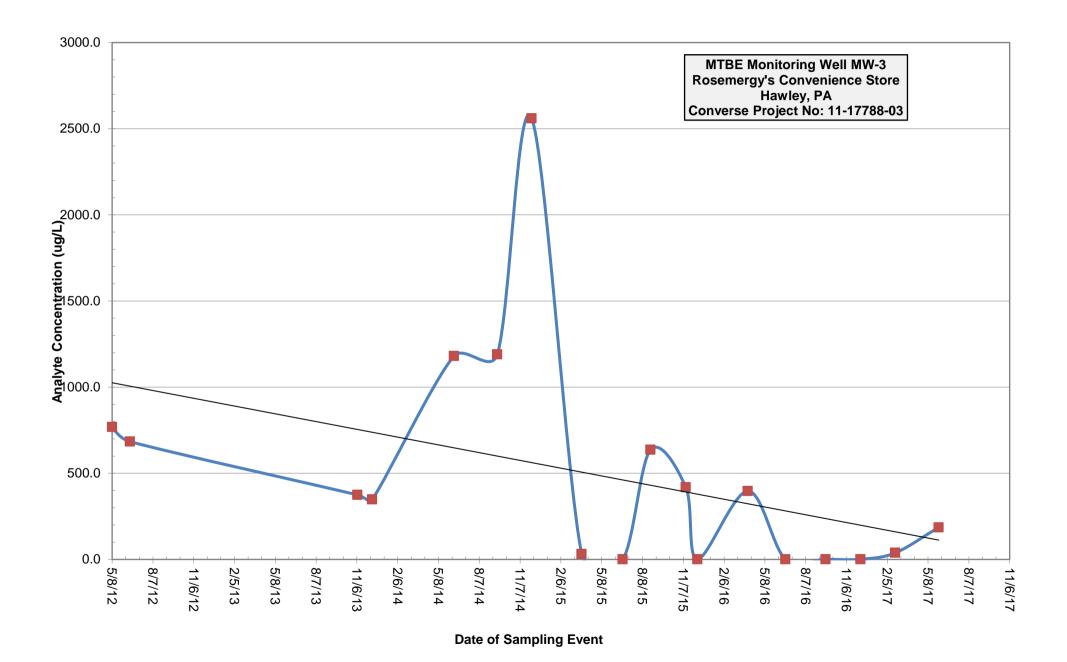


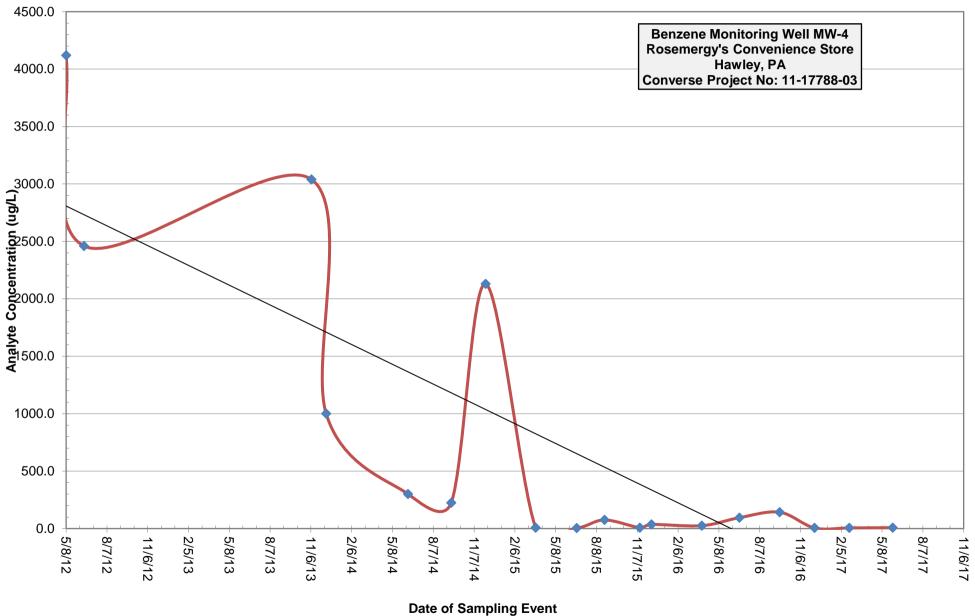
Date of Sampling Event

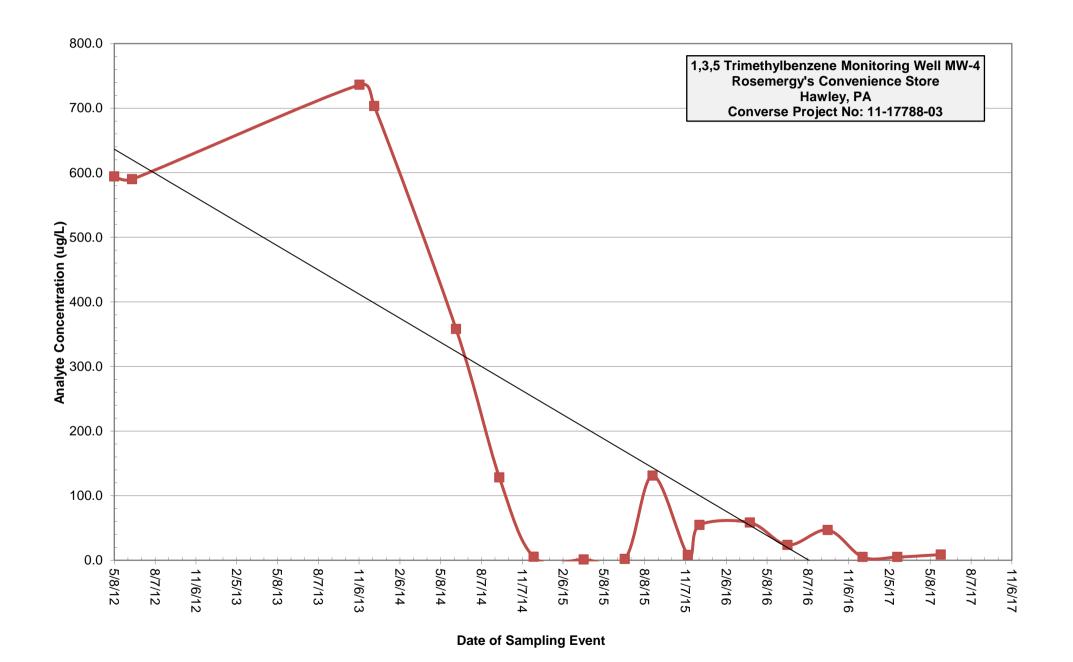


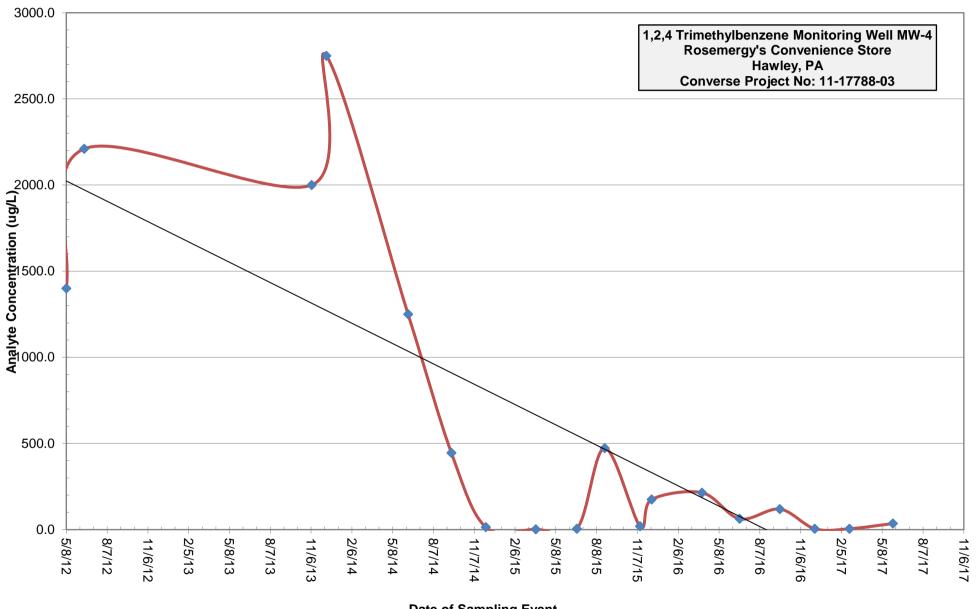


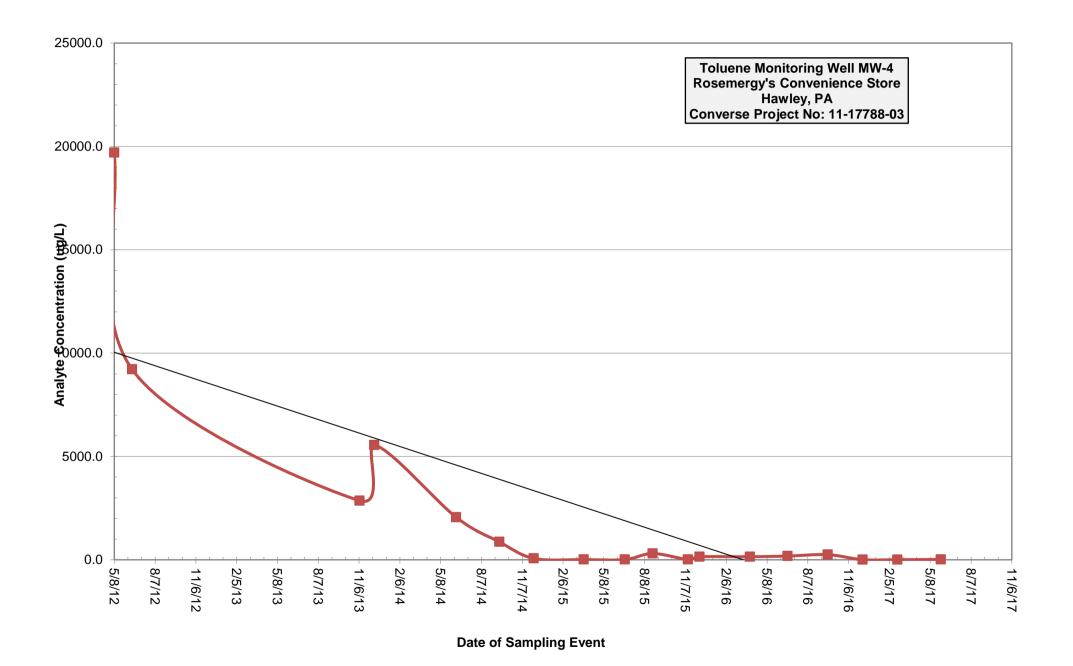


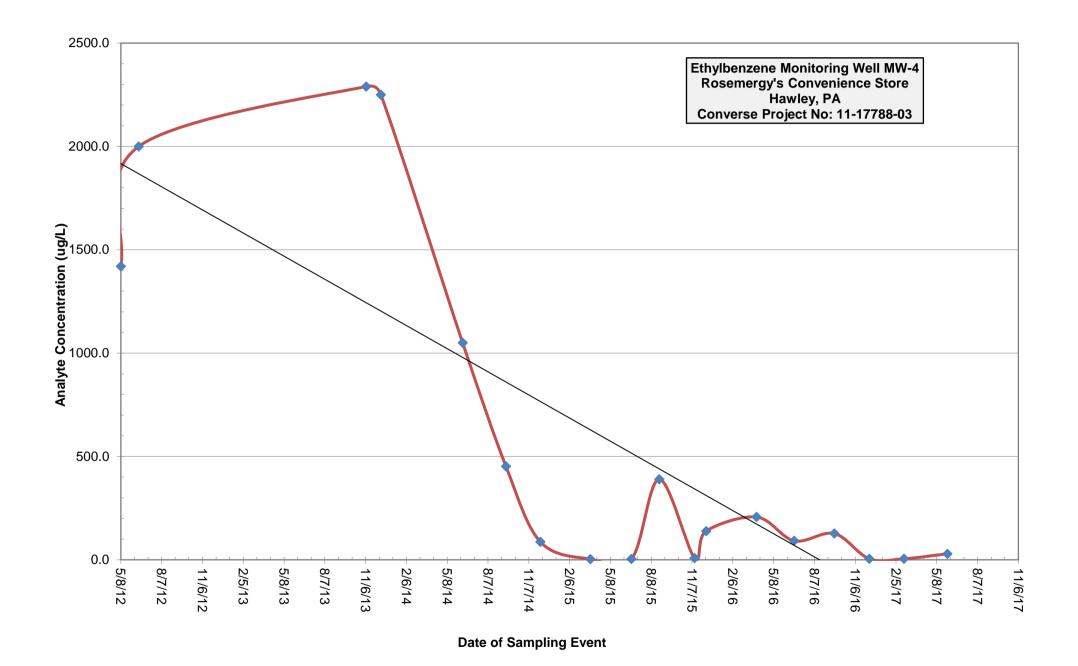


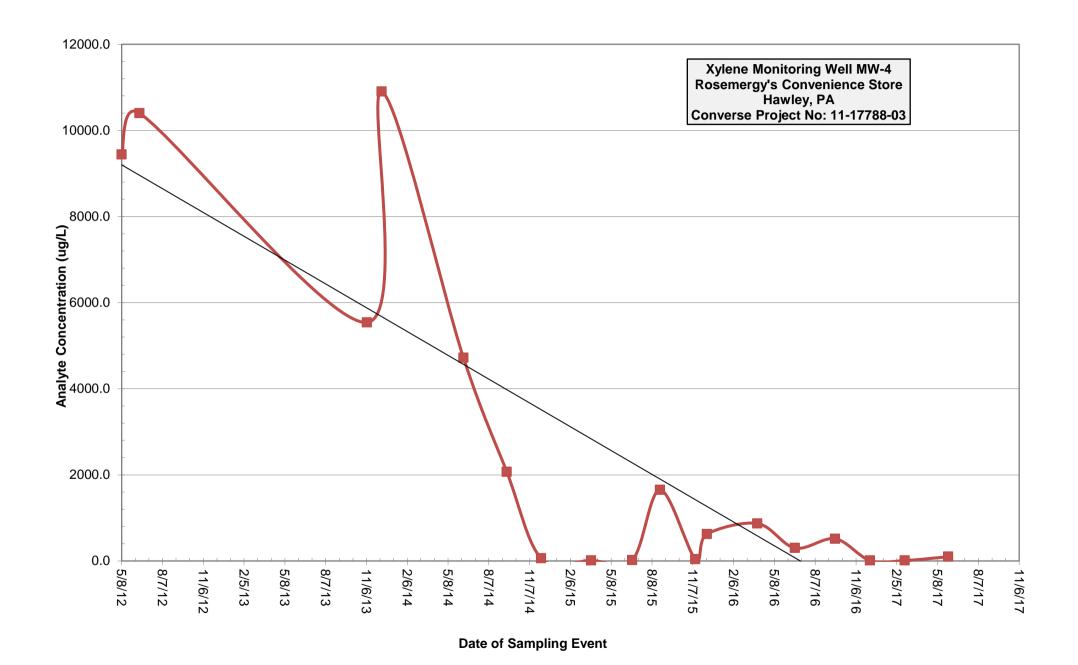

Date of Sampling Event

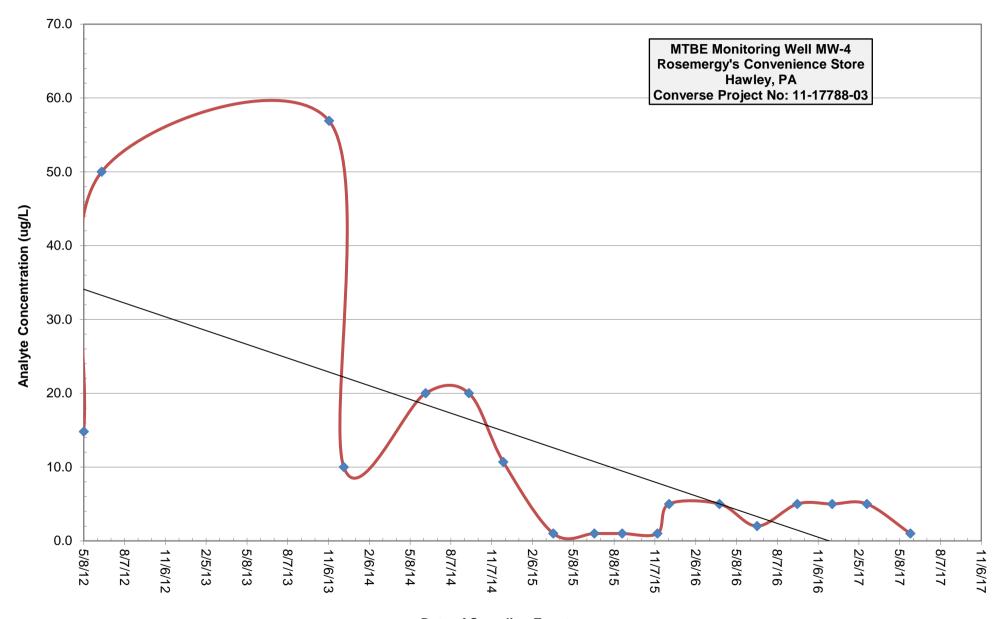




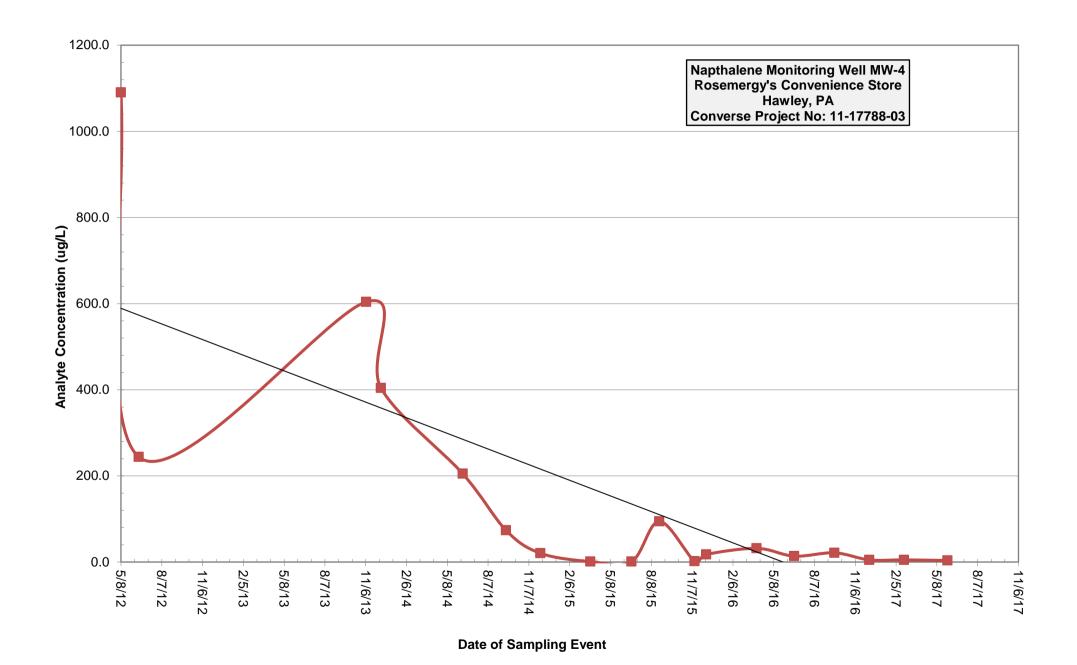


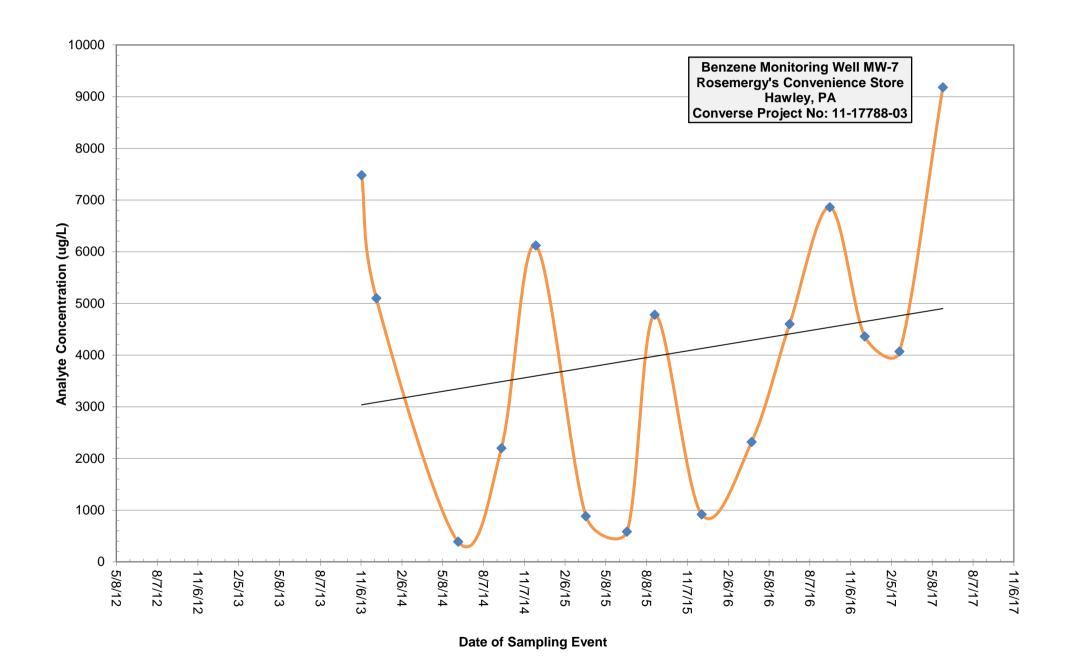


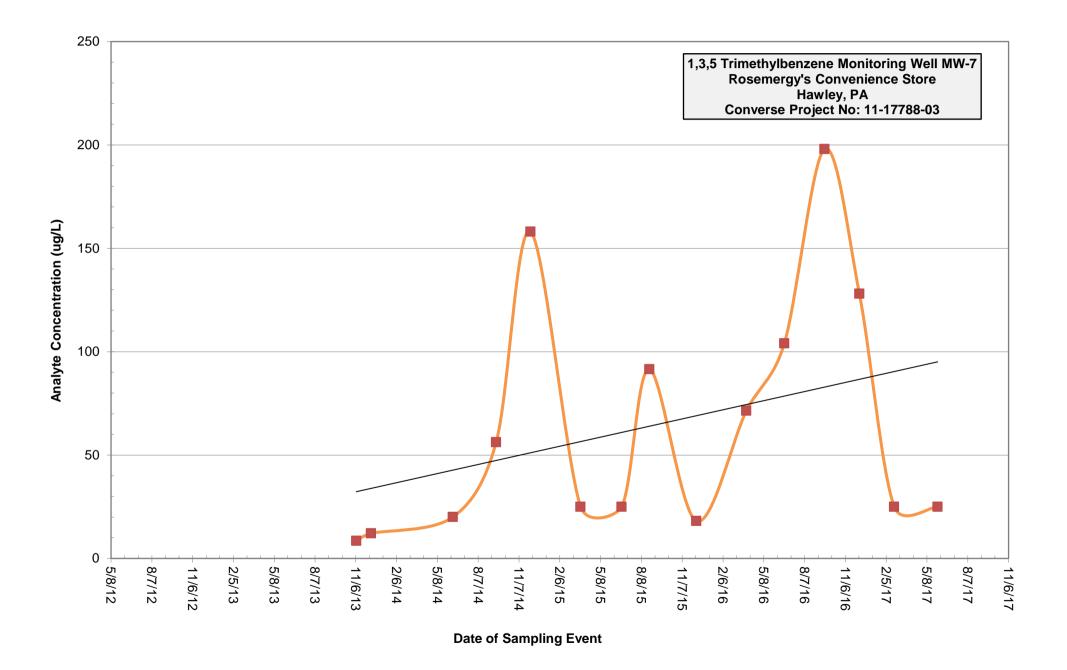


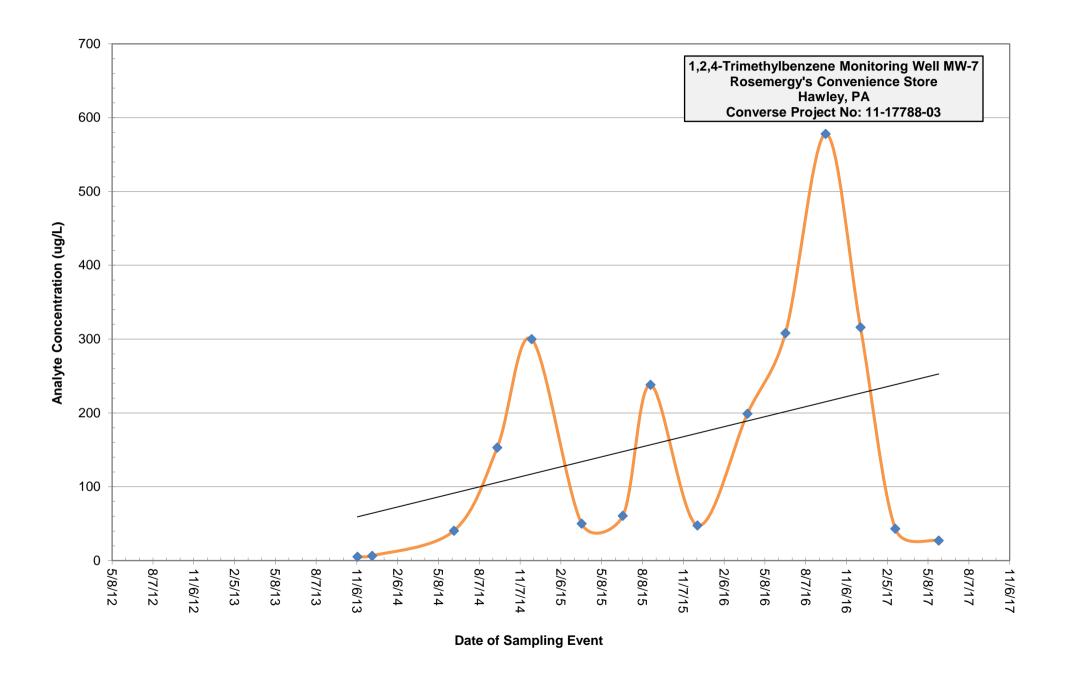


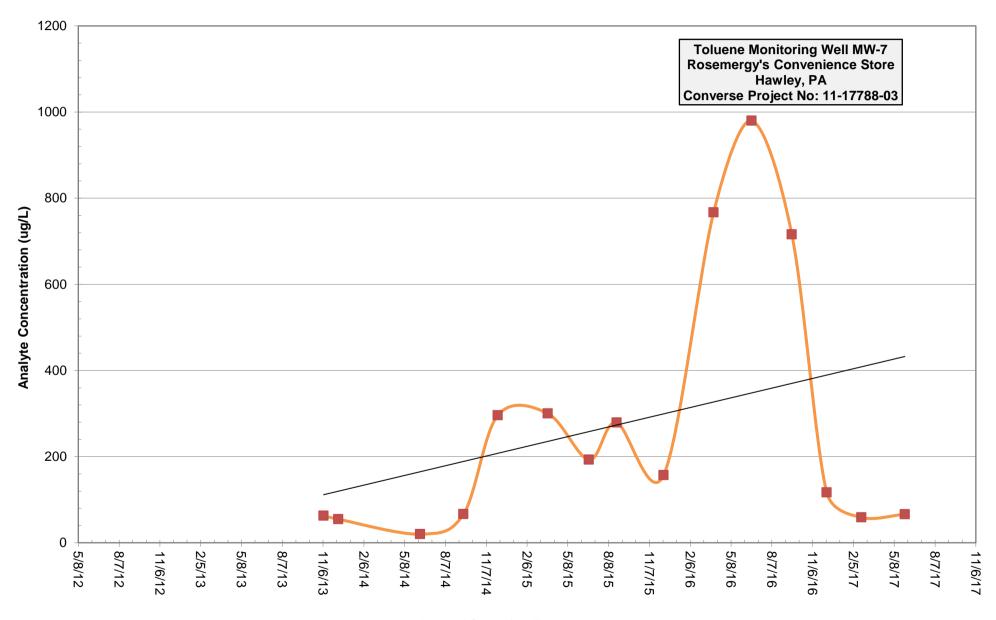
Date of Sampling Event

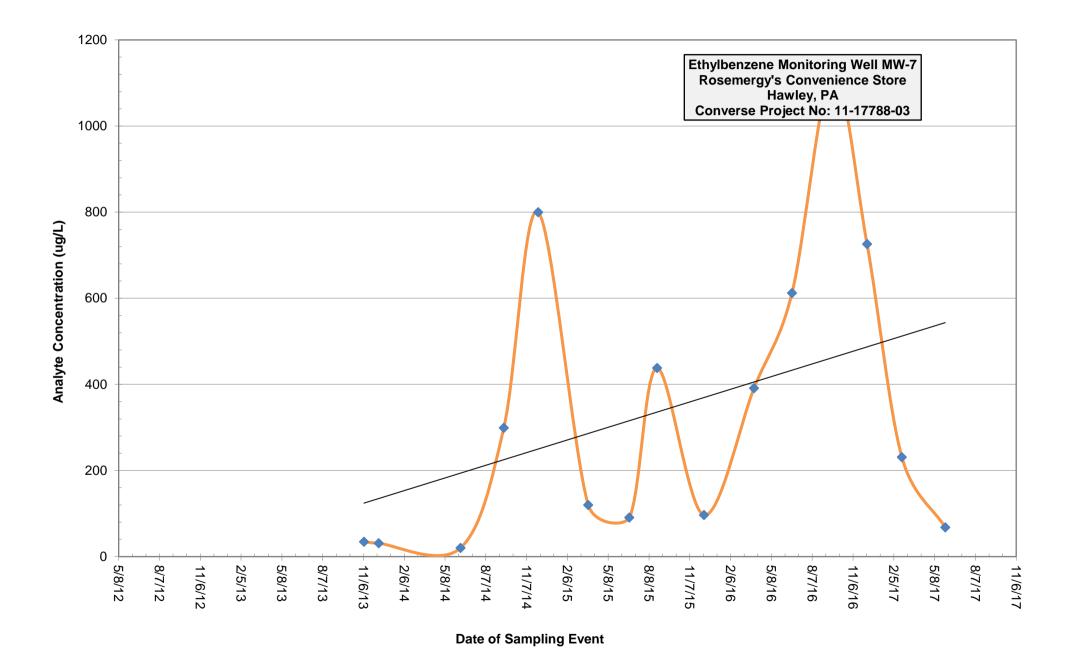


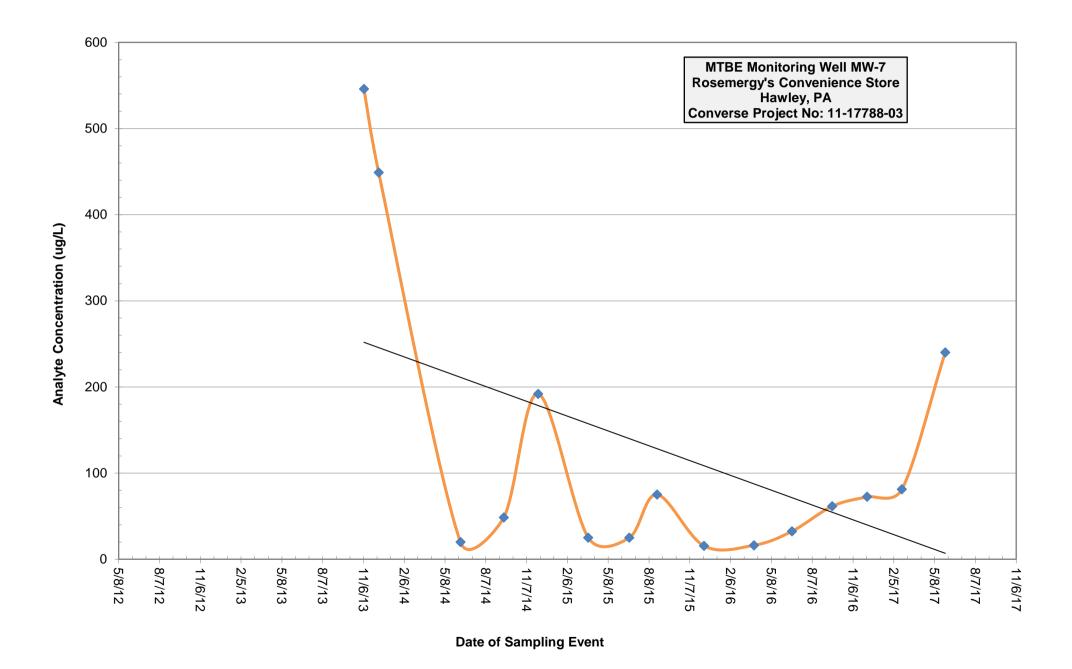


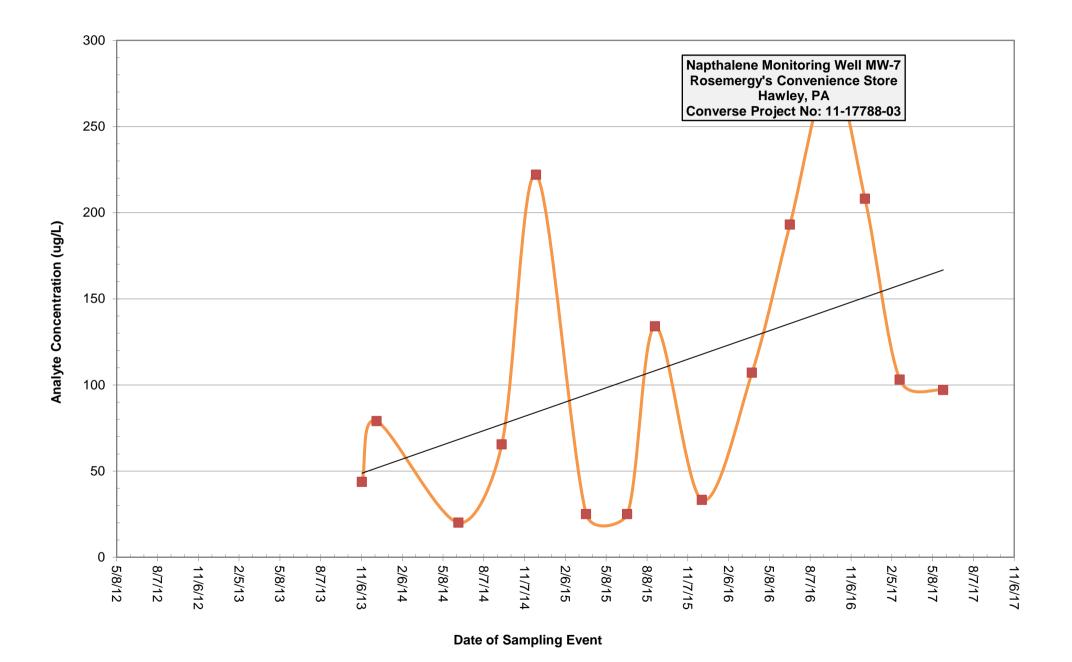


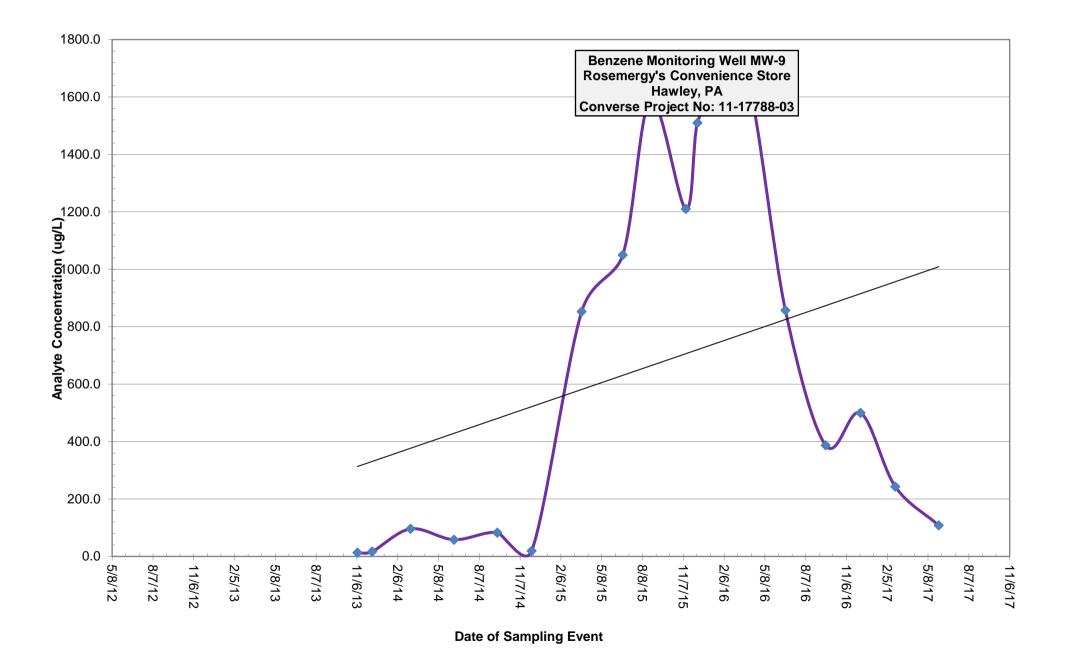


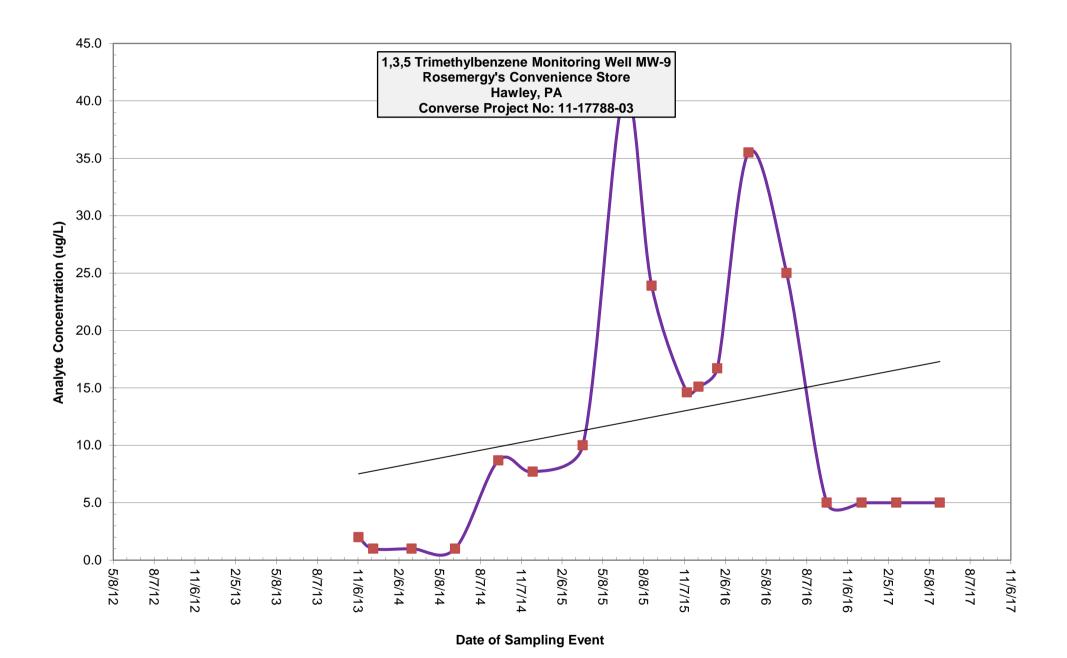

Date of Sampling Event

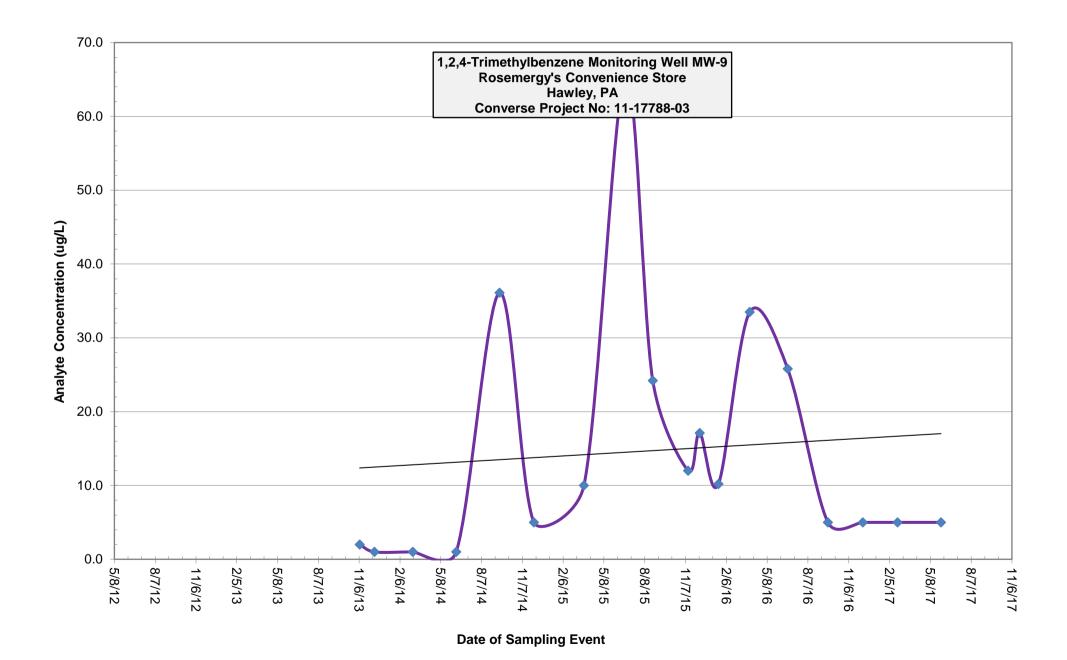


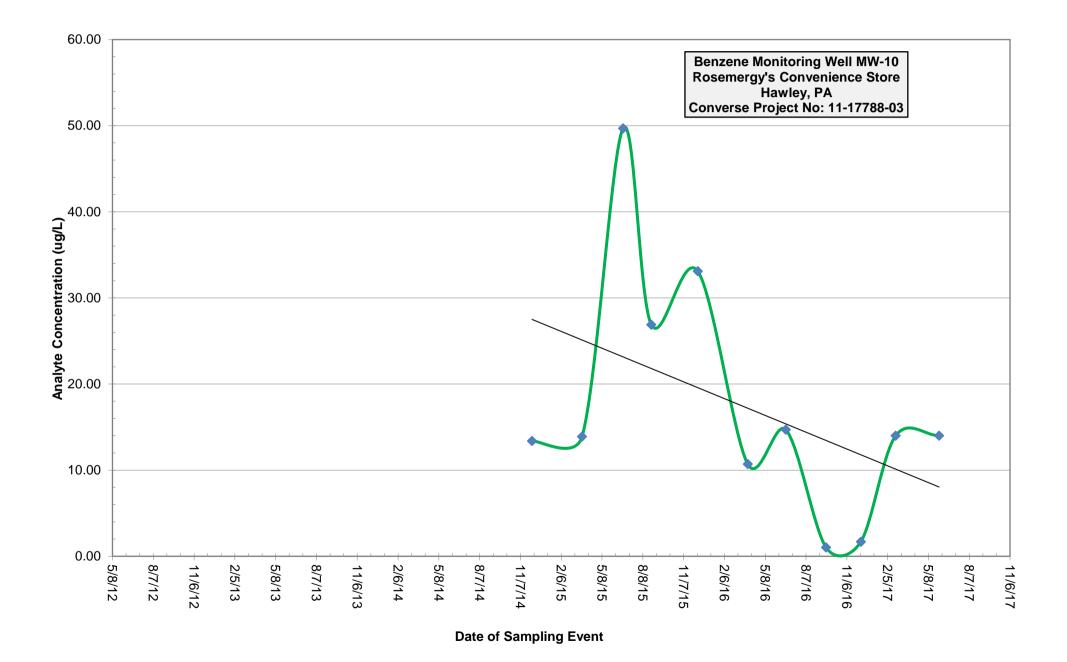


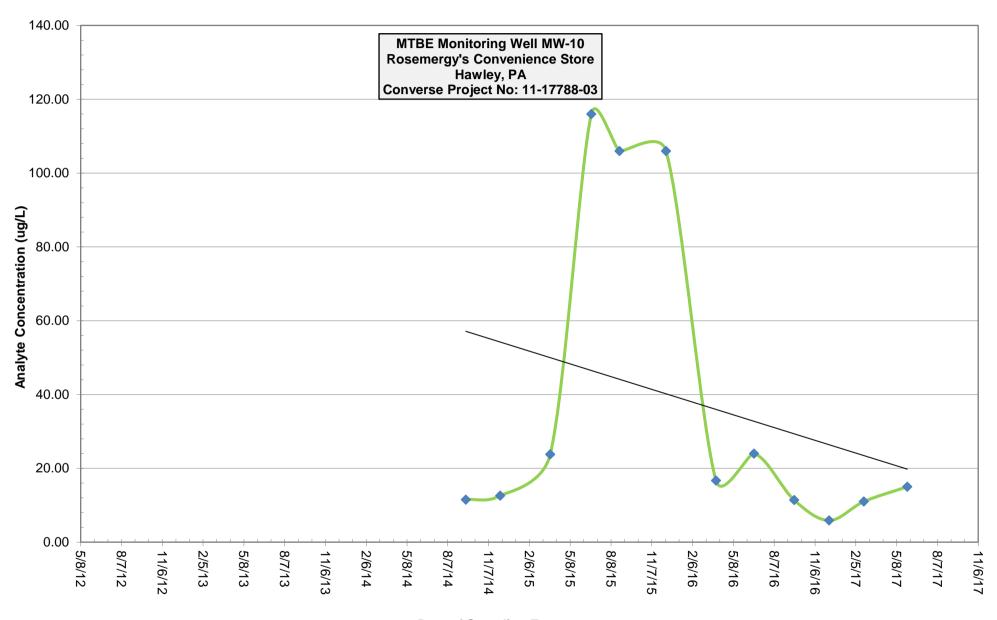


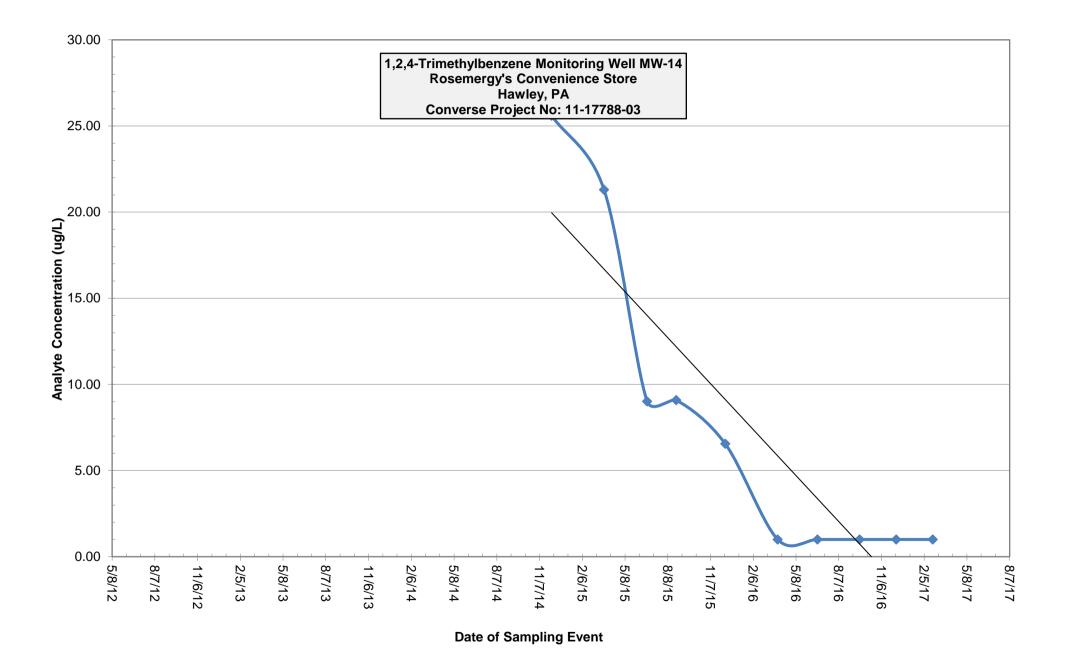


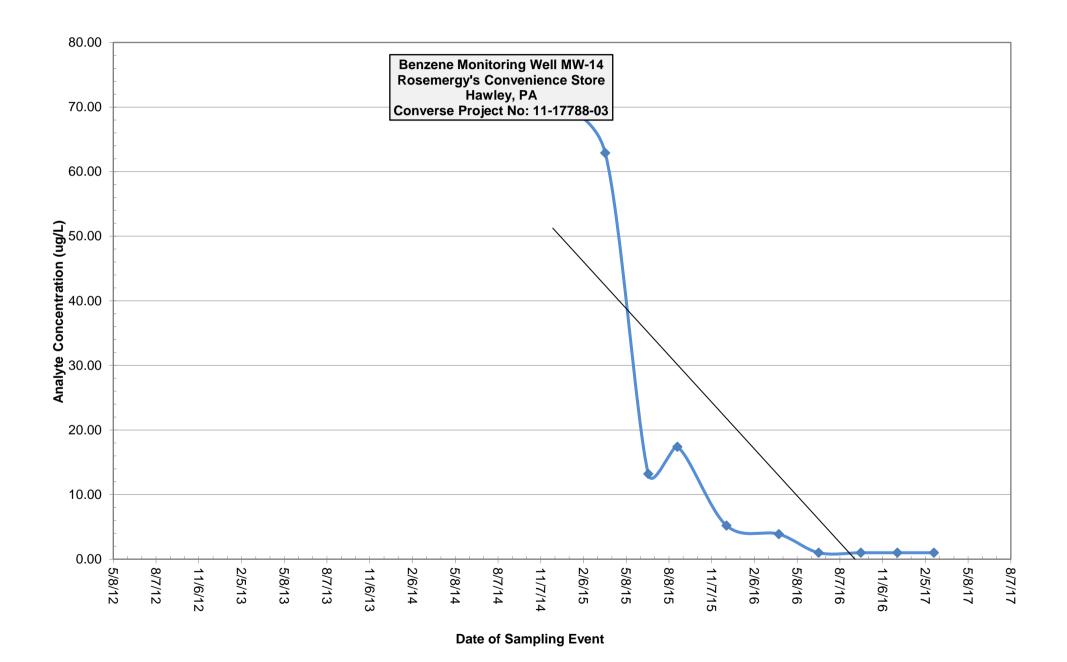

Date of Sampling Event

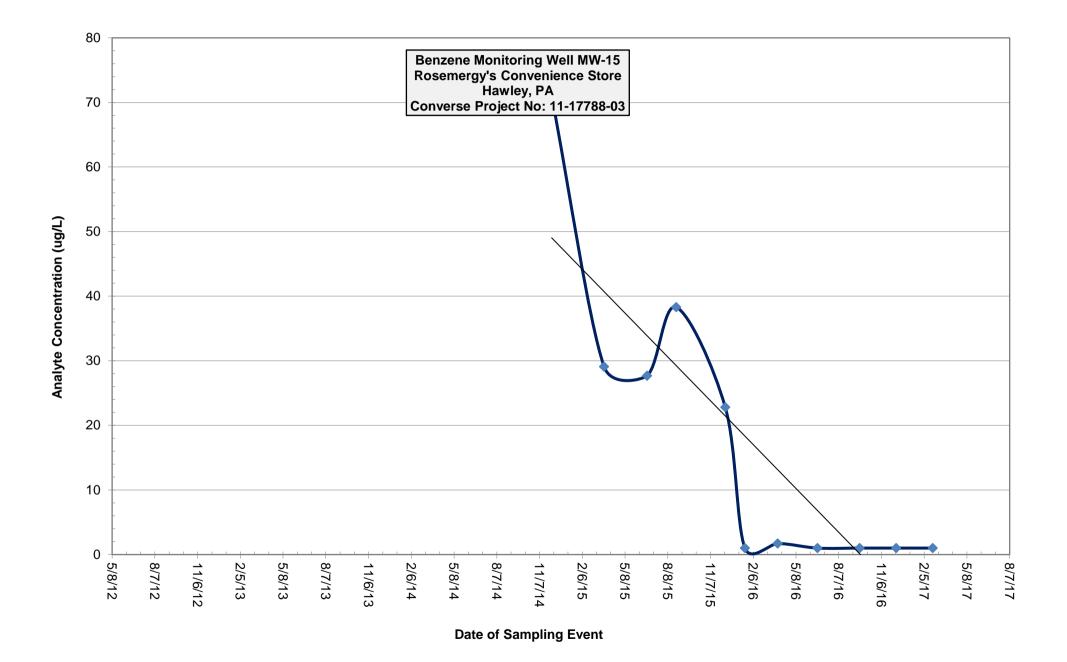


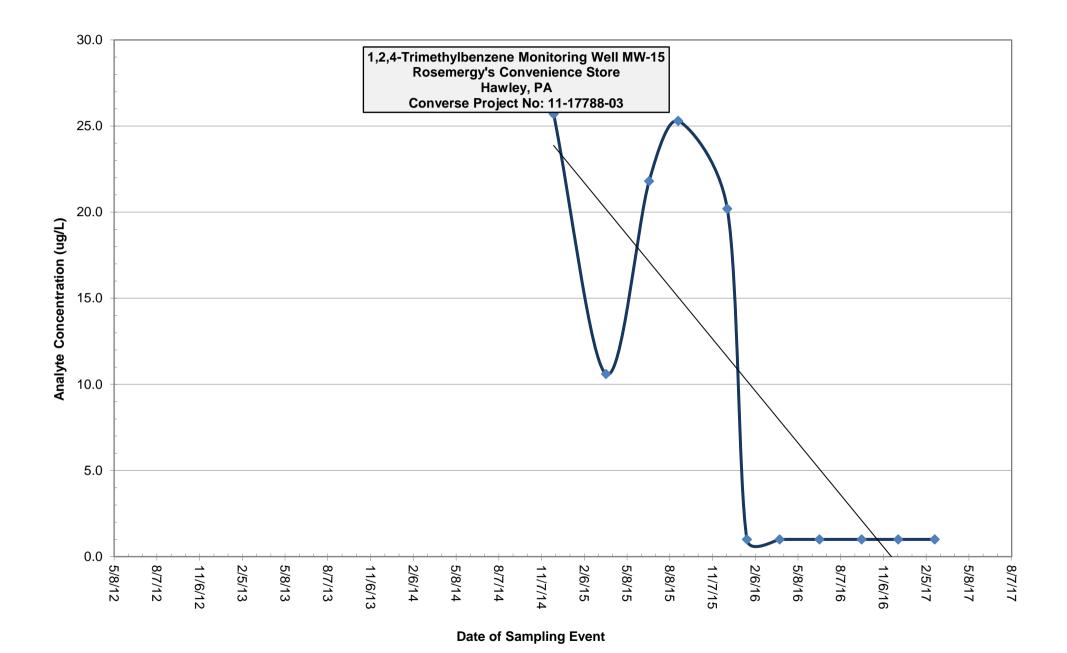


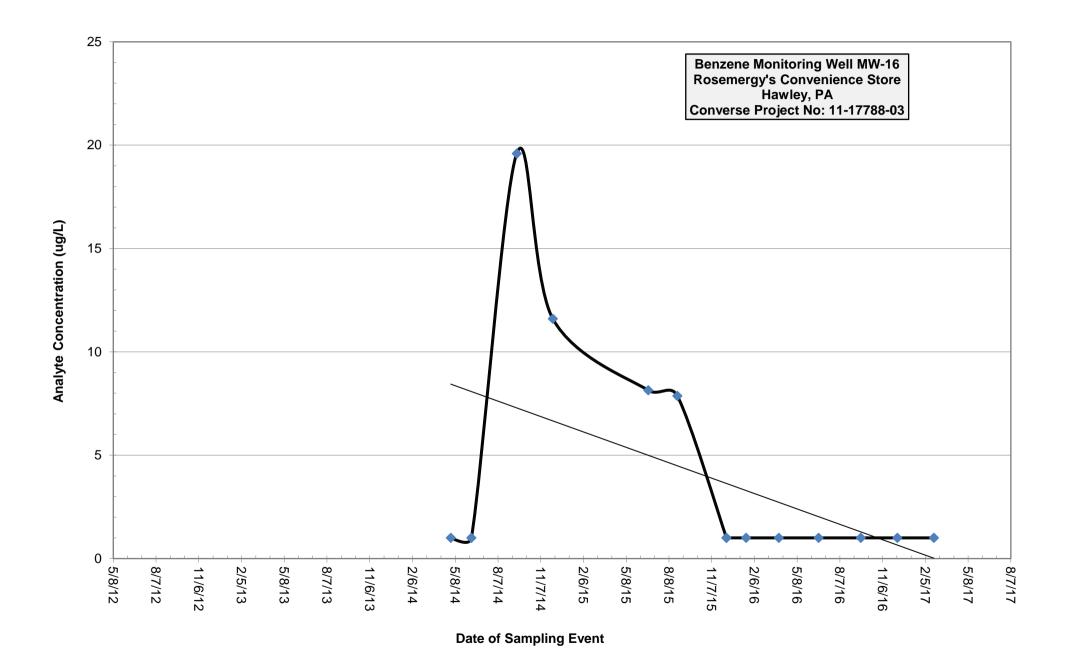


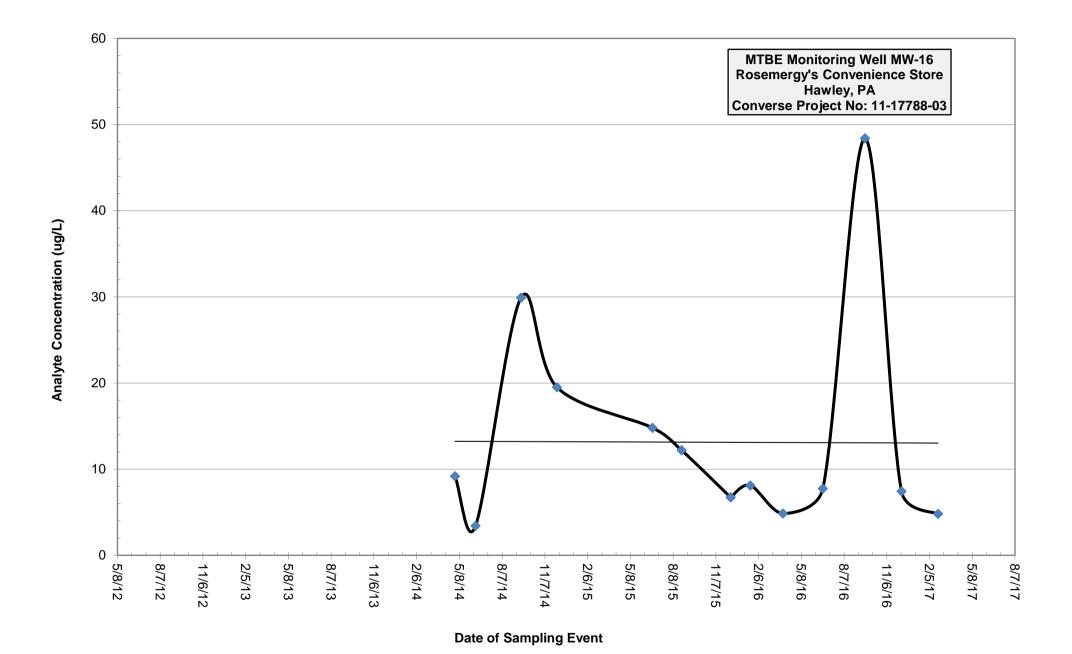









Date of Sampling Event



State College PA, 16801

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306 NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

Collector:

CLIENT

www.fairwaylaboratories.com

05/08/17 10:31

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: [none] Reported:

Project Manager: David Swetland Number of Containers: 6

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Sample Type	Date Sampled	Date Received
PRE-CARBON	7D28050-01	Water	Grab	04/27/17 11:31	04/28/17 13:40
BETWEEN CARBON	7D28050-02	Water	Grab	04/27/17 11:35	04/28/17 13:40
POST- CARBON	7D28050-03	Water	Grab	04/27/17 11:39	04/28/17 13:40

Fairway Laboratories, Inc.

Reviewed and Submitted by:

mat

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College AvenueProject Number:[none]Reported:State College PA, 16801Collector:CLIENT05/08/17 10:31

Project Manager: David Swetland Number of Containers: 6

Client Sample ID: PRE-CARBON Date/Time Sampled: 04/27/17 11:31

Laboratory Sample ID: 7D28050-01 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volotile Organia Compounds by EDA	Mathad 9260D							
Volatile Organic Compounds by EPA	19.3		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
1,3,5-Trimethylbenzene								
1,2,4-Trimethylbenzene	42.8		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Benzene	22.9		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Toluene	39.3		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Ethylbenzene	7.75		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Xylenes (total)	97.4		2.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Isopropylbenzene	1.51		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Naphthalene	26.5		1.00	ug/l	04/29/17 14:16	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		101 %	70-	130	04/29/17 14:16	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		113 %	70-	130	04/29/17 14:16	EPA 8260B	bag	
Surrogate: Fluorobenzene		106 %	70-	130	04/29/17 14:16	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380

PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: none Reported: State College PA, 16801 Collector: **CLIENT** 05/08/17 10:31

Project Manager: David Swetland Number of Containers:

Client Sample ID: BETWEEN CARBON **Date/Time Sampled:** 04/27/17 11:35

> 7D28050-02 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	Result MDL			Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	04/29/17 14:48	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		99.0 %	70	130	04/29/17 14:48	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		116 %	70	130	04/29/17 14:48	EPA 8260B	bag	
Surrogate: Fluorobenzene		106 %	70-	130	04/29/17 14:48	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: none Reported: State College PA, 16801 Collector: **CLIENT** 05/08/17 10:31

Project Manager: David Swetland Number of Containers:

Client Sample ID: POST- CARBON **Date/Time Sampled:** 04/27/17 11:39

> 7D28050-03 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	04/29/17 15:51	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		94.2 %	70-1	30	04/29/17 15:51	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		112 %	70-1	30	04/29/17 15:51	EPA 8260B	bag	
Surrogate: Fluorobenzene		103 %	70-1	30	04/29/17 15:51	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

State College PA, 16801

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306 NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

Collector:

CLIENT

www.fairwaylaboratories.com

05/08/17 10:31

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: [none] **Reported:**

Project Manager: David Swetland Number of Containers: 6

Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- # The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- * P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252 certified
- * G indicates analysis performed by Fairway Laboratories, Inc. at the Greensburg location PaDEP: 65-00392. This location is PaDEP Chapter 252 certified.
- Represents "less than" indicates that the result was less than the reporting limit.
- MDL Method Detection Limit is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RL Reporting Limit is the lowest or minimum level at which the analyte can be quantified.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: [none] Reported:

State College PA, 16801 Collector: CLIENT 05/08/17 10:31

Project Manager: David Swetland Number of Containers: 6

Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

CONFIDENTIALITY Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

PAYMENT/BILLING
Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date.

A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

SAMPLE COLLECTION AND SUBMISSION Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

RETURN OF RESULTS Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.

HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

WARRANTY AND LIMITATION OF LIABILITY For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

	JEĐAM/	AG/ĐNISSIN	D 84 ⁻ 67			0	ት§ I	<u></u> 1	-82-1	B. Baula	0751	F1.36	h ^l	ree	78 0
LES ONO						1	(38	UTAN	(2101	BECEINED BA	AMIT .	3TAQ	(BRUTAND	S/VB g	ELINQUISHE
TIME			EINED	S BEC	3TA 0		Sig	21	P	100 PB 2	21:61	1-8C-71	<	$ \mathcal{T}$	STR
						١	アング	UTA C-13	(SIGI	HECEINED BA	∃MIT 	DATE	(BRUTAND	S) AB O	EHRIOUISHE
						7		\equiv	X	1	11:30	£1-82-4	4	2%	23~
workery Labs	4	HESS				1	(CLL	1	DATE	(BUO IVAID) 10 10 C	FINONIZHE
		YAOTARC	18418	- ואואי	1 1	+	(38	ILITAL	(SiG)	WECKINED BY	3MIT	3170	(38) (14)	37 X8 C	
				$oxed{\bot}$	\sqcup	\dashv	-	++	_						<u> </u>
			ļ	Щ	\sqcup	$\perp \! \! \perp$	\perp	11	<u> </u>					ļ	
														<u> </u>	
					\prod	\sqcap		\sqcap							
				\vdash	11	\top	\top	$\dagger \dagger$	1						
		-		\vdash	††	+		$\dagger \dagger$							
			-	\vdash	++	+	+	++	+-	<u> </u>		 			
	ļ			╟	++	\dashv	+	₩	+		}			 	
	ļ		ļ	oxdapprox	\sqcup	44	+	1-1	4-					ļ	<u> </u>
				Ш	11		\perp	+	+				_	1 6 111	Nucher).
taylar				Ш	Ш	Ш		Ш	1	1				ke:11]	
showt list compands										(55:11	100cm
SECS PADEP WARRED (П					I	(جريده				15:11	المحالين الم
				П	П				(1			JAVABTNI	/		ļ
	į	_ 8							40~1		Á	SAMPLE (FT.)	l Ma		S A
	류	SPE 3		Ш					3	ME	ဉ် N		P = =	l	MP A
ANALYSIS COMMENTS REQUEST COMMENTS	TEMP: °C	SPECIFIC CONDUCTANCE (µ mohs/cm.)	모						HC'C	SAMPLING METHOD	AMOUNT PURGED (GALS)		DEPTH TO WATER (FEET) DATUM	TIME	SIATION NO.
·	ဂိ) A C	İ						ŗ	២ ត	RGE	метнор	,		
				广	++	/OITql	ESCE	a		1		опрегис	3 3		
v20al		1	<u>. </u>	Щ.		HBNIA	TNOC	,		<u> </u>		<i>Y</i>			
Fax 814-234-3255		•						\				-			IECT NAME
814-234-3223			<i>-</i>	00.		10									
2738 West College Avenue State College, Pennsylvania 16 814-234-3223			ζο- 025		- (-(-)	-!!	<u>5</u>	73HT/	MEV						SS3Ł
Converse Consultants	41-F														83
FIRM RESPONSIBLE FOR SAME	R SOIL, GROUNDWATER AND AIR M							, 1314					DOW TO		PLING PLAC

:: <u>4-28-</u>	 -(7 (or Cus	tou, ite				
: <u>4-28-</u>	·(7 (ceiving Docu Pa	ge <u></u> of	2	2.50
		425	Clien	ıt: <u>Co</u> ^	IVERS E			La	b#	10280SO
* :	Sample [Гетрег	rature w	hen deli	vered t	o the Lal	o: <u>1.1</u> Accept	table? 🚣 [□ * or *(Not	In cool down process? ** applicable for WV compliance)*
у	Intact?	? _ y _							(1101	applicable for the companies,
agree?	⊬ □*	Cor	rect cont	ainers fo	or all the	e analysis	requested? y	_	atrix:	
			Nu	mber and	1 Туре	of BOTT	LES			Comments
Poly Non- Pres.	Poly H2SO4	Poly HNO3	Amber H2SO4	Amber Non- Pres.	Poly NaOH	VOCS (Head space?)	Other *	Properly Preserved	Bacti	* Internal notification completed for deviations.
						2.1.1				
						2461		NA_		
							•			
				-						
					<u></u>					
SENT: nperatur	re ())) .		YE		Date:_		Proceed Will Re Provide No Resp	with a sample d Info	analysis; qualify data ()
	Poly Non-Pres. SENT:	Poly Poly Non-Pres. Poly H2SO4 Pres. Poly Poly H2SO4 Pres. Poly H2SO4 Pres. Poly H2SO4 Pres. Poly H2SO4 Pres. Poly H2SO4	Poly Non- H2SO4 HNO3 Pres. Poly H2SO4 HNO3 Pres. () SENT: () () ()	Intact?	Agree? \(\frac{1}{2} \) Intact? \(\frac{1}{2} \) Romagree? \(\frac{1}{2} \) Number and \(\frac{1}{2} \) Number and \(\frac{1}{2} \) Non-Pres. \(\frac{1}{2} \) Poly Non-Pres. \(\frac{1}{2} \) Poly H2SO4 HNO3 H2SO4 Amber Non-Pres. \(\frac{1}{2} \) Non-Pres. \(\frac{1}{2} \) Non-Pres. \(\frac{1}{2} \) Poly Non-Pres. \(\frac{1}{2} \) Non-Pres. \(\frac{1}{2} \) Poly Non-Pres. \(\frac{1}{2} \	Agree? Intact? Y	Intact?	Intact?	Intact? V	Number and Type of BOTTLES Poly Non- Pres. Poly NaOH (Haad space?) Reserved (

* Comments:

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Project: ROSEMERGY'S Converse

2738 West College Avenue Project Number: 11-77788-03 Reported: State College PA, 16801 Collector: **CLIENT** 05/31/17 09:43

Project Manager: David Swetland Number of Containers: 6

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Sample Type	Date Sampled	Date Received
PRE- CARBON	7E24032-01	Water	Grab	05/23/17 12:22	05/24/17 12:45
BETWEEN CARBON	7E24032-02	Water	Grab	05/23/17 12:24	05/24/17 12:45
POST CARBON	7E24032-03	Water	Grab	05/23/17 12:27	05/24/17 12:45

Fairway Laboratories, Inc.

Reviewed and Submitted by:

MAI

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-77788-03 Reported: State College PA, 16801 Collector: 05/31/17 09:43 **CLIENT**

Project Manager: David Swetland Number of Containers:

Client Sample ID: PRE- CARBON **Date/Time Sampled:** 05/23/17 12:22

> 7E24032-01 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260R							
1,3,5-Trimethylbenzene	7.42		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
1,2,4-Trimethylbenzene	13.6		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Benzene	8.25		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Toluene	13.1		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Ethylbenzene	2.09		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Xylenes (total)	31.7		2.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Naphthalene	7.23		1.00	ug/l	05/25/17 19:57	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.7 %	70	130	05/25/17 19:57	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		98.6 %	70	130	05/25/17 19:57	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.4 %	70	130	05/25/17 19:57	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-77788-03 **Reported:**State College PA, 16801 Collector: CLIENT 05/31/17 09:43

Project Manager: David Swetland Number of Containers: 6

Client Sample ID: BETWEEN CARBON Date/Time Sampled: 05/23/17 12:24

Laboratory Sample ID: 7E24032-02 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	05/25/17 20:35	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		93.4 %	70-	130	05/25/17 20:35	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		95.2 %	70-	130	05/25/17 20:35	EPA 8260B	bag	
Surrogate: Fluorobenzene		96.2 %	70-	130	05/25/17 20:35	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-77788-03 **Reported:**State College PA, 16801 Collector: CLIENT 05/31/17 09:43

Project Manager: David Swetland Number of Containers: 6

Client Sample ID: POST CARBON Date/Time Sampled: 05/23/17 12:27

Laboratory Sample ID: 7E24032-03 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	05/26/17 00:22	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.0 %	70-	130	05/26/17 00:22	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		95.9 %	70-	130	05/26/17 00:22	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.4 %	70-	130	05/26/17 00:22	EPA 8260B	bag	

State College PA, 16801

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306 NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

Collector:

CLIENT

State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

05/31/17 09:43

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-77788-03 **Reported:**

Project Manager: David Swetland Number of Containers: 6

Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- # The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- * P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252 certified
- * G indicates analysis performed by Fairway Laboratories, Inc. at the Greensburg location PaDEP: 65-00392. This location is PaDEP Chapter 252 certified.
- Represents "less than" indicates that the result was less than the reporting limit.
- MDL Method Detection Limit is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RL Reporting Limit is the lowest or minimum level at which the analyte can be quantified.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-77788-03 **Reported:**

State College PA, 16801 Collector: CLIENT 05/31/17 09:43

Project Manager: David Swetland Number of Containers: 6

Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

CONFIDENTIALITY Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

PAYMENT/BILLING
Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date.

A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

SAMPLE COLLECTION AND SUBMISSION Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

RETURN OF RESULTS Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.

HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

WARRANTY AND LIMITATION OF LIABILITY For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

OWNED		exercy	MPLING, CHAIN			_ C	C F	IELD	REP.	<u>R</u> · 1≯	PE				ID AIR	MONITO	RING PA FIRM RESPONSIBLE FOR SAMPLING Converse Consultants
ADDRESS						W	/FAT	HFR	\odot	rast	1 1	4"1	<u> </u>			**	2738 West College Avenue
	_					_ ₽	ROJI	ECIN	1O		778	8-C)3				State College, Pennsylvania 16801 814-234-3223 Fax 814-234-3255 7 (2) 403 - 43
		~	PURGING	0					NTAIN CRIPT								
STATION NO. OR SAMPLE IDENT.	TIME	DEPTH TO WATER (FEET) DATUM	SAMPLE DEPTH (FT.) INTERVAL	AMOUNT PURGED (GALS)	SAMPLING METHOD	2 40 mL HC1							Ŧ	SPECIFIC CONDUCTANCE (µ mohs/cm.)	TEMP. °C		ANALYSIS COMMENTS
Pre-Carbon	12:22	-			Grab	li				П						2008	PADEP unleaded gas list terget compounds
Bekween Carbon	12:24					17	П			П						short	1st terret compounds
Post Carbon	12:27				1	V	П										
TOST CHOST					¥		П										
-	1						П										
							П										
						Ì	П			П							
						T	П										
	1					1	Ħ			\prod							
						T	\prod			П							
						T	\Box	\top				Ħ					
						T	T		T	I	\top	T					
RELINQUISHI	ED BY (S	_	E) DATE	11,30	RECEIVED BY	7				RE	CEIV	/ING I	LAB(DRATORY RESS	Fai	Cuay	Labs
RECTNOUISH				TIME	RECEIVED &	(SI	•										
D	1	>	2-24-17	11:40	M	_				IODA	TE F	RECEI	VED				TIME
RELINQUISH	ED BY	IGNATUR	E) DATE	TIME	RECEIVED B	-								EC'D. INTA			
15%			5-2417	1245	bbunds	5	- 24-	17	1245					HISSING/D/		D	

SOP FLI0601-002			Revision	on 22				ovember 8, 2016			Page of				
SOF 1-10001-002				Chain of Custody Receiving Document Page Of											
Receiver: 6b		_						Pag	ge <u>//</u> of	_0	() (an)				
Receiver: <u>68</u> Date/Time of this check:	- ارال 1.	· • (320	Clien	t: (o	NURSE	Cor.		La ¹	b#_7	EAHOSO				
Date/Time of this check.	5/04-1		<u> </u>	0			. T.L	- A coopt	able2 V] * or	In cool down proces	ss? 🗆 *			
Received on ICE?] * S	Sample T	Temper	ature w	hen deli	vered t	the Lab	: <u>1. </u>	aule: _7_ L	*(Not	applicable for WV com	pliance)*			
Custody Seals?	N	Intact?		·	<u>.</u>										
COC/Labels on bottles ag	ree? _ y	*	Cor						_	atrix:	Comments	-			
COC#				Nui	nber and	d Type	of BOTT			T 50	- Day of the Pos				
	Poly Non-	Poly H2SO4	Poly HNO3	Amber H2SO4	Amber Non-	Poly NaOH	VOCS (Head	Other	Properly Preserved	Bacti	☐ * Internal notification completed for deviation				
	Pres.				Pres.		space?)	<u> </u>	□*	2527005					
PRE							ZHCI		MA	100					
BN										400					
PEST						-	d d		-						
					_										
		 	<u> </u>			-									
			-												
		<u> </u>			<u> </u>	-									
		 	-		 	1									
		<u> </u>	<u> </u>	<u>.</u>	L										
* DEVIATION PRESE ® No Ice ® Not at Proper Temp ® Wrong Container		re ())		NT CA YE hom:				Proceed Will Re Provide	d with esampled Info	analysis; qualify da e rmation	()			
Missing Information	n:	()				Date:_			-	et:D				
No IceNot at Proper TempWrong Container		YE				Proceed Will Re Provide No Res	d with esampled Info ponse;	e rmation Proceed and qualif	ied						

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Sample Type	Date Sampled	Date Received
MW-1R	7F02062-01	Water	Grab	06/01/17 14:50	06/02/17 14:35
MW-2	7F02062-02	Water	Grab	06/01/17 15:18	06/02/17 14:35
MW-3	7F02062-03	Water	Grab	06/01/17 14:36	06/02/17 14:35
MW-4	7F02062-04	Water	Grab	06/01/17 11:45	06/02/17 14:35
MW-5R	7F02062-05	Water	Grab	06/01/17 15:01	06/02/17 14:35
MW-7	7F02062-06	Water	Grab	06/01/17 14:25	06/02/17 14:35
MW-8	7F02062-07	Water	Grab	06/01/17 11:43	06/02/17 14:35
MW-9	7F02062-08	Water	Grab	06/01/17 11:12	06/02/17 14:35
MW-10	7F02062-09	Water	Grab	06/01/17 15:52	06/02/17 14:35
MW-11	7F02062-10	Water	Grab	06/01/17 15:38	06/02/17 14:35
MW-12	7F02062-11	Water	Grab	06/01/17 12:57	06/02/17 14:35
MW-13	7F02062-12	Water	Grab	06/01/17 13:57	06/02/17 14:35
MW-14	7F02062-13	Water	Grab	06/01/17 13:32	06/02/17 14:35
MW-15	7F02062-14	Water	Grab	06/01/17 12:51	06/02/17 14:35
MW-16	7F02062-15	Water	Grab	06/01/17 10:43	06/02/17 14:35
MW-17	7F02062-16	Water	Grab	06/01/17 12:26	06/02/17 14:35
MW-18	7F02062-17	Water	Grab	06/01/17 13:27	06/02/17 14:35
MW-19	7F02062-18	Water	Grab	06/01/17 11:50	06/02/17 14:35

Fairway Laboratories, Inc.

Reviewed and Submitted by:

MAT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

Michael P. Tyler Laboratory Director

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**

State Certifications: MD 275, WV 364

State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Sample Type	Date Sampled	Date Received
MW-20	7F02062-19	Water	Grab	06/01/17 11:19	06/02/17 14:35
MW-21	7F02062-20	Water	Grab	06/01/17 10:15	06/02/17 14:35
MW-22	7F02062-21	Water	Grab	06/01/17 10:28	06/02/17 14:35
TRIP BLANK	7F02062-22	Water	Trip Blank	06/01/17 00:00	06/02/17 14:35
MW-9A	7F02062-23	Water	Grab	06/01/17 11:12	06/02/17 14:35

Refer to receiving document. gc

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Converse Project: ROSEMERGY'S

State Certifications: MD 275, WV 364

2738 West College AvenueProject Number:11-17788-03Reported:State College PA, 16801Collector:CLIENT06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-1R Date/Time Sampled: 06/01/17 14:50

Laboratory Sample ID: 7F02062-01 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	190		5.00	ug/l	06/05/17 20:33	EPA 8260B	bag	
1,2,4-Trimethylbenzene	684		50.0	ug/l	06/05/17 20:33	EPA 8260B	bag	
Benzene	3680		50.0	ug/l	06/05/17 20:33	EPA 8260B	bag	
Toluene	3040		50.0	ug/l	06/05/17 20:33	EPA 8260B	bag	
Ethylbenzene	1120		50.0	ug/l	06/05/17 20:33	EPA 8260B	bag	
Xylenes (total)	4190		100	ug/l	06/05/17 20:33	EPA 8260B	bag	
Isopropylbenzene	103		5.00	ug/l	06/05/17 20:33	EPA 8260B	bag	
Methyl tert-butyl ether	59.2		5.00	ug/l	06/05/17 20:33	EPA 8260B	bag	
Naphthalene	196		5.00	ug/l	06/05/17 20:33	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.8 %	70	130	06/05/17 20:33	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		90.4 %	70	130	06/05/17 20:33	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.6 %	70	130	06/05/17 20:33	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported: State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-2 **Date/Time Sampled:** 06/01/17 15:18

> 7F02062-02 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	50.6		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
1,2,4-Trimethylbenzene	176		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Benzene	16.2		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Toluene	64.1		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Ethylbenzene	101		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Xylenes (total)	183		20.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Isopropylbenzene	40.9		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Methyl tert-butyl ether	<10.0		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Naphthalene	22.2		10.0	ug/l	06/05/17 19:36	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		98.3 %	70-1	130	06/05/17 19:36	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		108 %	70-1	130	06/05/17 19:36	EPA 8260B	bag	
Surrogate: Fluorobenzene		106 %	70-1	130	06/05/17 19:36	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-3 Date/Time Sampled: 06/01/17 14:36

Laboratory Sample ID: 7F02062-03 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatila Organia Compounds by EDA	Mothod 9260P							
Volatile Organic Compounds by EPA	<1.00		1.00	/1	06/06/17 00:03	EDA 9260D	hoa	
1,3,5-Trimethylbenzene				ug/l		EPA 8260B	bag	
1,2,4-Trimethylbenzene	2.42		1.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Benzene	8.59		1.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Ethylbenzene	8.20		1.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Isopropylbenzene	7.22		1.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Methyl tert-butyl ether	186		5.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 00:03	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		100 %	70-	130	06/06/17 00:03	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		106 %	70-	130	06/06/17 00:03	EPA 8260B	bag	
Surrogate: Fluorobenzene		105 %	70-	130	06/06/17 00:03	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Converse Project: ROSEMERGY'S

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-4 Date/Time Sampled: 06/01/17 11:45

Laboratory Sample ID: 7F02062-04 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	8.79		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
1,2,4-Trimethylbenzene	34.8		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Benzene	7.69		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Toluene	16.7		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Ethylbenzene	29.3		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Xylenes (total)	97.7		2.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Isopropylbenzene	5.94		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Naphthalene	3.56		1.00	ug/l	06/06/17 18:35	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		97.4 %	70-	130	06/06/17 18:35	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		109 %	70-	130	06/06/17 18:35	EPA 8260B	bag	
Surrogate: Fluorobenzene		108 %	70-	130	06/06/17 18:35	EPA 8260B	bag	

Converse

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-5R Date/Time Sampled: 06/01/17 15:01

Laboratory Sample ID: 7F02062-05 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
WI CO CO I I DDA	M (1 102/0D							
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	351		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
1,2,4-Trimethylbenzene	1440		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Benzene	1930		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Toluene	1470		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Ethylbenzene	2260		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Xylenes (total)	6820		100	ug/l	06/06/17 17:18	EPA 8260B	bag	
Isopropylbenzene	175		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Methyl tert-butyl ether	<25.0		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Naphthalene	326		25.0	ug/l	06/05/17 20:14	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		99.9 %	70-	130	06/05/17 20:14	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		109 %	70-	130	06/05/17 20:14	EPA 8260B	bag	
Surrogate: Fluorobenzene		105 %	70-	130	06/05/17 20:14	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-7 Date/Time Sampled: 06/01/17 14:25

Laboratory Sample ID: 7F02062-06 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<25.0		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
1,2,4-Trimethylbenzene	26.8		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Benzene	9180		250	ug/l	06/05/17 20:52	EPA 8260B	bag	
Toluene	66.0		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Ethylbenzene	67.8		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Xylenes (total)	< 50.0		50.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Isopropylbenzene	156		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Methyl tert-butyl ether	240		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Naphthalene	96.5		25.0	ug/l	06/05/17 20:52	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		97.8 %	70	130	06/05/17 20:52	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		104 %	70	130	06/05/17 20:52	EPA 8260B	bag	
Surrogate: Fluorobenzene		102 %	70	130	06/05/17 20:52	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported: State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-8 **Date/Time Sampled:** 06/01/17 11:43

> 7F02062-07 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
					·			
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 00:41	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		97.0 %	70	130	06/06/17 00:41	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		110 %	70-	130	06/06/17 00:41	EPA 8260B	bag	
Surrogate: Fluorobenzene		105 %	70	130	06/06/17 00:41	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-9 Date/Time Sampled: 06/01/17 11:12

Laboratory Sample ID: 7F02062-08 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	< 5.00		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
1,2,4-Trimethylbenzene	< 5.00		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Benzene	86.2		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Toluene	< 5.00		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Ethylbenzene	< 5.00		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Xylenes (total)	<10.0		10.0	ug/l	06/05/17 21:50	EPA 8260B	bag	
Isopropylbenzene	10.6		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Methyl tert-butyl ether	< 5.00		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Naphthalene	< 5.00		5.00	ug/l	06/05/17 21:50	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.5 %	70	130	06/05/17 21:50	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		93.4 %	70	130	06/05/17 21:50	EPA 8260B	bag	
Surrogate: Fluorobenzene		94.8 %	70	130	06/05/17 21:50	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-10 Date/Time Sampled: 06/01/17 15:52

Laboratory Sample ID: 7F02062-09 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EP	A Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Benzene	14.2		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Isopropylbenzene	3.64		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Methyl tert-butyl ether	14.7		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 01:19	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		101 %	70-	130	06/06/17 01:19	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-	130	06/06/17 01:19	EPA 8260B	bag	
Surrogate: Fluorobenzene		104 %	70-	130	06/06/17 01:19	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Converse Project: ROSEMERGY'S

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-11 Date/Time Sampled: 06/01/17 15:38

Laboratory Sample ID: 7F02062-10 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 01:57	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		99.3 %	70-	130	06/06/17 01:57	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		108 %	70-	130	06/06/17 01:57	EPA 8260B	bag	
Surrogate: Fluorobenzene		105 %	70-	130	06/06/17 01:57	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

Converse

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684 FAIRWAY LABORAT

www.fairwaylaboratories.com

Project: ROSEMERGY'S

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-12 Date/Time Sampled: 06/01/17 12:57

Laboratory Sample ID: 7F02062-11 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 23:06	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.9 %	70-	130	06/05/17 23:06	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		93.9 %	70-	130	06/05/17 23:06	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.1 %	70-	130	06/05/17 23:06	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported: State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-13 **Date/Time Sampled:** 06/01/17 13:57

> 7F02062-12 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 03:13	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		97.5 %	70-1	130	06/06/17 03:13	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		106 %	70-1	130	06/06/17 03:13	EPA 8260B	bag	
Surrogate: Fluorobenzene		105 %	70-1	130	06/06/17 03:13	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

Converse

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306 NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380

PaDEP: PA 41-04684

Project:

ROSEMERGY'S

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported:

State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-14 **Date/Time Sampled:** 06/01/17 13:32

> 7F02062-13 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 23:44	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.2 %	70	130	06/05/17 23:44	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		92.3 %	70	130	06/05/17 23:44	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.3 %	70	130	06/05/17 23:44	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported: State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-15 **Date/Time Sampled:** 06/01/17 12:51

> **Laboratory Sample ID:** 7F02062-14 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 00:22	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.1 %	70-	130	06/06/17 00:22	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		91.3 %	70-	130	06/06/17 00:22	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.1 %	70-	130	06/06/17 00:22	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

Converse

2019 Ninth Avenue PO Box 1925 Altoona, PA 16603 (814) 946-4306 NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

Project:

ROSEMERGY'S

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported:

State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-16 **Date/Time Sampled:** 06/01/17 10:43

> 7F02062-15 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Methyl tert-butyl ether	5.27		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 01:00	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.0 %	70-	130	06/06/17 01:00	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		90.8 %	70-	130	06/06/17 01:00	EPA 8260B	bag	
Surrogate: Fluorobenzene		93.8 %	70-	130	06/06/17 01:00	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported: State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-17 **Date/Time Sampled:** 06/01/17 12:26

> 7F02062-16 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 01:38	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		93.2 %	70	130	06/06/17 01:38	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70	130	06/06/17 01:38	EPA 8260B	bag	
Surrogate: Fluorobenzene		97.8 %	70	130	06/06/17 01:38	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-18 Date/Time Sampled: 06/01/17 13:27

Laboratory Sample ID: 7F02062-17 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/06/17 02:54	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		92.0 %	70-	130	06/06/17 02:54	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		95.0 %	70-	130	06/06/17 02:54	EPA 8260B	bag	
Surrogate: Fluorobenzene		98.9 %	70-	130	06/06/17 02:54	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-19 Date/Time Sampled: 06/01/17 11:50

Laboratory Sample ID: 7F02062-18 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 21:11	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		93.3 %	70-	130	06/05/17 21:11	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		99.9 %	70-	130	06/05/17 21:11	EPA 8260B	bag	
Surrogate: Fluorobenzene		99.6 %	70-	130	06/05/17 21:11	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-20 Date/Time Sampled: 06/01/17 11:19

Laboratory Sample ID: 7F02062-19 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 21:42	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		94.7 %	70	130	06/05/17 21:42	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		100 %	70	130	06/05/17 21:42	EPA 8260B	bag	
Surrogate: Fluorobenzene		99.7 %	70	130	06/05/17 21:42	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

Converse Project: ROSEMERGY'S

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-21 Date/Time Sampled: 06/01/17 10:15

Laboratory Sample ID: 7F02062-20 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 22:14	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		94.8 %	70-1	130	06/05/17 22:14	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-1	130	06/05/17 22:14	EPA 8260B	bag	
Surrogate: Fluorobenzene		102 %	70-1	130	06/05/17 22:14	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380

PaDEP: PA 41-04684

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

State Certifications: MD 275, WV 364

2738 West College Avenue Project Number: 11-17788-03 Reported: State College PA, 16801 Collector: 06/09/17 10:24 **CLIENT**

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-22 **Date/Time Sampled:** 06/01/17 10:28

> 7F02062-21 (Water/Grab) **Laboratory Sample ID:**

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 22:46	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		96.0 %	70-	130	06/05/17 22:46	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		103 %		130	06/05/17 22:46	EPA 8260B	bag	
Surrogate: Fluorobenzene		101 %	70-	130	06/05/17 22:46	EPA 8260B	bag	

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: TRIP BLANK Date/Time Sampled: 06/01/17 00:00

Laboratory Sample ID: 7F02062-22 (Water/Trip Blank)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Benzene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Toluene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Ethylbenzene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Isopropylbenzene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Methyl tert-butyl ether	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 22:09	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene	97.7 %		70-	130	06/05/17 22:09	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		105 %		130	06/05/17 22:09	EPA 8260B	bag	
Surrogate: Fluorobenzene	105 %		70-130		06/05/17 22:09	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

NELAP: PA 07-062, VA 460212

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Client Sample ID: MW-9A Date/Time Sampled: 06/01/17 11:12

Laboratory Sample ID: 7F02062-23 (Water/Grab)

Analyte	Result	MDL	RL	Units	Date / Time Analyzed	Analytical Method	* Analyst	Note
Volatile Organic Compounds by EPA	Method 8260B							
1,3,5-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Benzene	108		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Toluene	3.19		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Ethylbenzene	5.87		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Xylenes (total)	< 2.00		2.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Isopropylbenzene	12.7		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Methyl tert-butyl ether	2.09		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Naphthalene	<1.00		1.00	ug/l	06/05/17 22:28	EPA 8260B	bag	
Surrogate: 4-Bromofluorobenzene		93.6 %	70-	130	06/05/17 22:28	EPA 8260B	bag	
Surrogate: 1,2-Dichloroethane-d4		93.8 %	70-130		06/05/17 22:28	EPA 8260B	bag	
Surrogate: Fluorobenzene		95.7 % 70-130		130	06/05/17 22:28	EPA 8260B	bag	

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

State Certifications: MD 275, WV 364

www.fairwaylaboratories.com

Project: ROSEMERGY'S Converse

2738 West College Avenue Project Number: 11-17788-03 **Reported:**

State College PA, 16801 Collector: **CLIENT** 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Definitions

If surrogate values are not within the indicated range, then the results are considered to be estimated.

Reporting limits are adjusted accordingly when samples are analyzed at a dilution due to the matrix.

MBAS, calculated as LAS, mol wt 348

If the solid sample weight for VOC analysis does not fall within the 3.5-6.5 gram range, the results are considered estimated values.

Unless otherwise noted, all results for solids are reported on a dry weight basis.

Samples collected by Fairway Laboratories' personnel are done so in accordance with Standard Operating Procedures established by Fairway Laboratories.

- The following analyses are to be performed immediately upon sampling: pH, sulfite, chlorine residual, dissolved oxygen, filtration for ortho phosphorus, and ferrous iron. The date and time reported reflect the time the samples were analyzed at the laboratory; and should be considered as analyzed outside the EPA holding time.
- P indicates analysis performed by Fairway Laboratories, Inc. at the Pennsdale location. This location is PaDEP Chapter 252
- G indicates analysis performed by Fairway Laboratories, Inc. at the Greensburg location PaDEP: 65-00392. This location is PaDEP Chapter 252 certified.
- Represents "less than" indicates that the result was less than the reporting limit.
- **MDL** Method Detection Limit - is the lowest or minimum level that provides 99% confidence level that the analyte is detected. Any reported result values that are less than the RL are considered estimated values.
- RLReporting Limit - is the lowest or minimum level at which the analyte can be quantified.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical

89 Kristi Road Pennsdale, PA 17756 (570) 494-6380 PaDEP: PA 41-04684

www.fairwaylaboratories.com

State Certifications: MD 275, WV 364

Converse Project: ROSEMERGY'S

2738 West College Avenue Project Number: 11-17788-03 **Reported:**

State College PA, 16801 Collector: CLIENT 06/09/17 10:24

Project Manager: David Swetland Number of Containers: 45

Terms & Conditions

Services provided by Fairway Laboratories Inc. are limited to the terms and conditions stated herein, unless otherwise agreed to in a formal contract.

CHAIN OF CUSTODY Fairway Laboratories Inc. ("Fairway," "us" or "we") will initiate a chain-of-custody/request for analysis upon sample receipt unless the client includes a completed form with the received sample(s). Upon request, Fairway will provide chain-of-custody forms for use.

CONFIDENTIALITY Fairway maintains confidentiality in all of our client interactions. The client's consent will be required before releasing information about the services provided.

CONTRACTS All contracts are subject to review and approval by Fairway's legal council. Each contract must be signed by a corporate officer.

PAYMENT/BILLING
Unless otherwise set forth in a signed contract or purchase order, terms of payment are "NET 30 Days." The time allowed for payment shall begin based on the invoice date.

A 1.5% per month service charge may be added to all unpaid balances beyond the initial 30 days. In its sole discretion, Fairway reserves the right to request payment before services and hold sample results for payment of due balances. We will not bill a third party without prior agreement among all parties acknowledging and accepting responsibility for payment.

SAMPLE COLLECTION AND SUBMISSION Clients not requesting collection services from Fairway are responsible for proper collection, preservation, packaging, and delivery of samples to the laboratory in accordance with current law and commercial practice. Fairway shall have no responsibility for sample integrity prior to the receipt of the sample(s) and/or for any inaccuracy in test or analyses results as a result of the failure of the client or any third party to maintain the integrity of samples prior to delivery to Fairway. All samples submitted must be accompanied by a completed chain of custody or similar document clearly noting the requested analyses, dates/time sampled, client contact information, and trail of custody.

SUBCONTRACTING Some analyses may require subcontracting to another laboratory. Unless the client indicates otherwise, this decision will be made by Fairway. Subcontracted work will be identified on the final report in accordance with NELAC requirements.

RETURN OF RESULTS Fairway routinely provides faxed or verbal results within 10 working days of receipt of sample(s) and a hard copy of the data results is routinely received via US Postal Service within 15 working days. At the request of the client, Fairway may offer expedited return of sample results. Surcharges may apply to rush requests. All rush requests must be pre-approved by Fairway. We reserve the right to charge an archive retrieval fee for results older than one (1) year from the date of the request. All records will be maintained by Fairway for 5 years, after which, they will be destroyed.

SAMPLE DISPOSAL Fairway will maintain samples for four (4) weeks after the sample receipt date. Fairway will dispose of samples which are not and/or do not contain hazardous wastes (as such term is defined by applicable federal or state law), unless prior arrangements have been made for long-term storage. Fairway reserves the right to charge a disposal fee for the proper disposal of samples found or suspected to contain hazardous waste. A return shipping charge will be invoiced for samples returned to the client at their request.

HAZARD COMMUNICATION The client has the responsibility to inform the laboratory of any hazardous characteristics known or suspected about the sample, and to provide information on hazard prevention and personal protection as necessary or otherwise required by applicable law.

WARRANTY AND LIMITATION OF LIABILITY For services rendered, Fairway warrants that it will apply its best scientific knowledge and judgment and to employ its best level of effort consistent with professional standards within the environmental testing industry in performing the analytical services requested by its clients. We disclaim any other warranties, expressed or implied by law. Fairway does not accept any legal responsibility for the purposes for which client uses the test results.

LITIGATION All costs associated with compliance to any subpoena for documents, for testimony in a court of law, or for any other purpose relating to work performed by Fairway Laboratories, Inc. shall be invoiced by Fairway and paid by client. These costs shall include, but are not limited to, hourly charges for the persons involved, travel, mileage, and accommodations and for any and all other expenses associated with said litigation.

Fairway Laboratories, Inc.

Fairway Labs in Altoona, PA is a NELAP (National Environmental Laboratory Accreditation Program) accredited lab, and as such, certifies that all applicable test results meet the requirements of NELAP, unless otherwise stated on the analytical report.

MPLING PLACE ROSE ME (9) WHEN SEME	ANALYSES RECORD FOR SOIL GROUNDWATER CC FIELD REP. DATE WEATHER SUNDY PROJECT NO. 11-17787-03 ATTENTION DWS	FIRM RESPONSIBLE FOR SAMPLING Converse Consultants 2738 West College Avenue State College, Pennsylvania 16801 814-234-3223 Fax 814-234-3255			
STATION NO. OR SAMPLE IDENT. TIME DEPTH TO WATER (FEET) DATUM DATUM AMOUNT PURGED (GALS)	METHOD A-40mL HCL SPECIFIC CONDUCTANCE (# mobs/cm.)	O ANALYSIS COMMENTS REQUEST COMMENTS			
MW-1R 2:50 10.01 Ball 2 G	ab 1 6.6 1694	14.1 2008 PADEP Short			
MV-2 318 4.50 5	V (5 1222	145 List target Compands			
MV-3 2:30 2.98 6	M	14.4			
1W-4 11:48 J.JO 6	75 340	13.4			
MW-5R 3.01 4.97 5	GX 3.39,	13.9			
7W 1 [X.23] Y.00	59 1440	127			
/VV [//·/ // // // // // // // // // // // /	V 1 1 1 1 1 1 1 1 1 1 3 9	12.7			
1W-7 1/1/X 0.11	V	12.(
MW-10 3:52 2:34 Pump 6	V 6.7 545	13,9			
MW-11 338 2.60 Pump 7	62 548	13.2			
MV-12 12:57 4:00 Bail 5.5	V (2 1650 53)77	· · · · / · · · · · · · · · · · · · · ·			
MW-13 1:57 1.46 1 2 MW-14 1:32 11.72 V 3.5		11,4			
DEL INCHENE PAR CHANATURE DATE THE RE		111.6			
Mather 5/2 10:45 6	ADDRESS _	Fair way			
	EIVED BY (SIGNATURE)				
	DEUT 1245 DATE RECEIVED	TIME			
RELINQUISHED BY (SIGNATURE) DATE TIME RI	14-24	ALL SAMPLES REC'D. INTACT YES NO LIST SAMPLES MISSING/DAMAGED			

SAMPLING PLACE ROSE OWNER ADDRESS PROJECT NAME			WEATHER	nny -17788-0 IWS		⊗	FIRM RESPONSIBLE FOR SAMPLING Converse Consultants 2738 West College Avenue State College, Pennsylvania 16801 814-234-3223 Fax 814-234-3255		
STATION NO. OR SAMPLE IDENT. TIME DEPTH TO WATER (FEET) DATUM	AMOUNT PURGED SAMPLE AMOUNT PURGED (GALS)		CONTAINE DESCRIPTIO	Hd	SPECIFIC CONDUCTANCE (\$\mu\$ mohs/cm.) TEMP °C		ANALYSIS / COMMENTS		
14 MV-15 1257 7.90 15 MW-16 10:43 0.60 16 MW-17 12:26 4.91 17 MW-18 1:27 329 18 MW-19 11:50 12:99 19 MW-20 11:14 1.27 20 MW-21 10:15 1.52 21 MW-22 10:28 0.73	Bail 4 Pump 8 Bail 4 Bail 4 7 Pump 6	Grab v		5.3 6,2 4,9 5.7 5.3 7.1 6,6	1665 13.7 767 12.7 3,30mg, 12.9 230 12.0 787 12.2 903 11.7 729 15.3 665 123	Sec	L Page 1		
RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE)	DATE TIME 10.45 DATE TIME 42/17 DATE TIME 62-17 1435	RECEIVED BY (S RECEIVED BY (S RECEIVED BY (S	SIGNATURE) 6-2-17	DATE RECEIVED	EC'D. INTACT D'	YES INO	TIME		

SOP FLI0601-002			Revi	Chain of Custody Receiving Documen Page							Page of	#3
Receiver:	r Ch				Chain	of Cus	stody Re	ceiving Do	cument 3	.2		
						one	use	i	Pageo	t <u> </u>		
Date/Time of this check	k: 6-7	17-1	452	Clie	nt:	024	mer	cu -	L	ab #	7F0206	25
Received on ICE?Custody Seals?	└□*	Sample	Тетре	rature w	hen del	ivered	to the Lah	O Acce	entable?	□ * or	· In cool down process	9 🗆 *
Custody Seals?	I No							· <u> </u>	7	*(Not	t applicable for WV comp	liance)*
Custody Seals?	/VO .	_ intact	?	41								·
COC/Labels on bottles	agree?_	X□**(De Con	rect conf	ainers fo	or all th	e analysis	requested?	4- □* M	latrix:_\	water	
COC#				Nu	nber and	1 Туре	of BOTTI	LES			Comments	\neg
	Poly Non- Pres.	Poly H2SO4	Poly HNO3	Amber H2SO4	Amber Non- Pres.	Poly NaOH	VOCS (Head space?)	Other	Properly Preserved	Bacti	□ * Internal notification completed for deviations.	
1			<u> </u>				P	<u> </u>	*			
							244		P/M			·
			-									
										140		
21 TIB:							1414					
				1			Ha					
Not at Proper Temperature () Wrong Container () By Whom: Will Resample Provided Inform							nalysis; qualify data					
											PATRICK Date:	6 5 17
* Comments: Reci	* Comments: Reclived vials not marked on chang town mwgg. Glib7 11-18											
* PROCE			JALYSI				-		······································	•		